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The last fraction of a fractional conjecture

Frantǐsek Kardoš∗ Daniel Král’† Jean-Sébastien Sereni‡

Abstract

Reed conjectured that for every ε > 0 and every integer ∆, there
exists g such that the fractional total chromatic number of every graph
with maximum degree ∆ and girth at least g is at most ∆+ 1+ ε. The
conjecture was proven to be true when ∆ = 3 or ∆ is even. We settle
the conjecture by proving it for the remaining cases.

1 Introduction

Fractional graph theory has led to many elegant and deep results in the
last three decades, broadening the range of applications of graph theory and
providing partial results and insights to many hard problems. In this paper,
we are interested in fractional total colorings of graphs. Total colorings form
an extensively studied topic—see the monograph by Yap [11]—with the total
coloring conjecture of Behzad [1] and Vizing [10] being one of its grails.

Conjecture 1 (total coloring conjecture). The total chromatic number of
every graph with maximum degree ∆ is at most ∆ + 2.
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The most important partial result toward the total coloring conjecture to
date is the following theorem proved by Molloy and Reed [7] in 1998.

Theorem 2. The total chromatic number of every graph with maximum
degree ∆ is at most ∆ + 1026.

As is often the case, the fractional analogue of Conjecture 1 turns out
to be easier to approach. Kilakos and Reed [5] proved in 1993 the following
fractional analogue of the total coloring conjecture.

Theorem 3. The fractional total coloring number of every graph with maxi-
mum degree ∆ is at most ∆ + 2.

The graphs achieving the bound given in Theorem 3 have been identified
by Ito, Kennedy, and Reed [2]: they are the complete graphs of even order
and the complete bipartite graphs with equal part sizes. Inspired by these
results, Reed [8] conjectured the following.

Conjecture 4. For every ε > 0 and every integer ∆, there exists g such that
the fractional total chromatic number of every graph with maximum degree ∆
and girth at least g is at most ∆ + 1 + ε.

Conjecture 4 was proven to be true when ∆ ∈ {3} ∪ {4, 6, 8, 10, . . .} by
Kaiser, King, and Krá ’l [3] in the following stronger form.

Theorem 5. Let ∆ ∈ {3} ∪ {4, 6, 8, 10, . . .}. There exists g such that the
fractional total chromatic number of every graph with maximum degree ∆ and
girth at least g is ∆ + 1.

The purpose of our work is to settle Conjecture 4 by proving that it also
holds for odd values of ∆. Our main theorem reads as follows.

Theorem 6. For every ε > 0 and every odd integer ∆ > 5, there exists an
integer g such that the fractional total chromatic number of every graph with
maximum degree ∆ and girth at least g is at most ∆ + 1 + ε.

The approach we use also yields a proof for the case where ∆ is even, and
thus a full proof of Conjecture 4. However, we restrict ourselves to the case
of odd ∆ > 5, since a stronger result, Theorem 5, has been established [3].
Kaiser, King, and Král’ [3] conjectured that the statement of Theorem 5 also
holds for odd values of ∆.

Conjecture 7. Let ∆ > 5 be an odd integer. There exists g such that the
fractional total chromatic number of every graph with maximum degree ∆ and
girth at least g is ∆ + 1.

However, we were not able to settle this stronger conjecture.
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2 Definitions and notation

Let us start by defining the relevant concepts. For X ⊆ R, we define µ(X) to
be the Lebesgue measure of X. If G is a graph, then V (G), E(G), and ∆(G)
are its vertex-set, edge-set, and maximum degree, respectively. The total
graph T (G) of G is the graph with vertex-set V (G)∪E(G), where two vertices
are adjacent if and only if the corresponding elements of G are adjacent or
incident. In other words, xy ∈ E (T (G)) if and only if

• x, y ∈ V (G) and xy ∈ E(G); or

• x, y ∈ E(G) and x and y share a vertex in G; or

• x ∈ V (G), y ∈ E(G), and y is incident to x in G.

A total independent set of G is an independent set of T (G). Let Φ(G) be the
set of all total independent sets of G.

Consider a function w : Φ(G) → [0 , 1], and let x ∈ V (T (G)). We define
w[x] to be the sum of w(I) over all I ∈ Φ(G) containing x. The mapping w
is a fractional k-total coloring of G if and only if

•
∑

I∈Φ(G) w(I) 6 k; and

• w[x] > 1 for every x ∈ V (T (G)).

Observe that G has a fractional k-total coloring if and only if there exists a
function c : V (T (G)) → 2[0,k] such that

• µ(c(x)) > 1 for every x ∈ V (T (G)); and

• c(x) ∩ c(y) = ∅ for every edge xy ∈ E (T (G)).

Notice that the second condition is the same as to require that µ(c(X) ∩
c(Y )) = 0 whenever x and y are adjacent in T (G), since we consider only
finite graphs. The fractional total chromatic number of G is the infimum of
all positive real numbers k for which G has a fractional k-total coloring. As is
well known, the fractional total chromatic number of a finite graph is always
a rational number, and the infimum is actually a minimum.

A mapping w : Φ(G) → [0 , 1] such that
∑

I∈Φ(G) w(I) = 1 is a weighted

total coloring of G. If in addition w[x] > α for every x ∈ V (T (G)), then
w is a weighted α-total coloring of G. Observe that every fractional k-total
coloring yields a weighted 1

k
-total coloring w of G. Conversely, one can derive

a fractional 1
α
-total coloring from a weighted α-total coloring of G. There

are many equivalent definitions of a fractional coloring of a graph, and we
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refer to the book by Scheinerman and Ullman [9] for further exposition about
fractional colorings (and, more generally, fractional graph theory).

We now introduce some additional notation. Two functions f, g : X → Y
agree on Z ⊆ X if the restrictions of f and g to Z are equal. Let G be a
graph and v ∈ V (G). For a spanning subgraph F of G, the degree of the
vertex v in F is degF (v). A spanning subgraph of G with maximum degree at
most 2 is a sub-2-factor of G. An ℓ-decomposition of G is a partition of the
edges of G into ⌈ℓ/2⌉ sub-2-factors, one of which is required to be a matching
if ℓ is odd.

Given a connected graph G, an edge-cut F of G is a subset of edges such
that the removal of F disconnects G. Note that removing a minimal edge-cut
splits G into exactly two connected components. An edge-cut F is cyclic if
every connected component of G − F contains a cycle. A graph is cyclically
k-edge-connected if it has more than k edges and no cyclic edge-cut of size
less than k.

We also use the following terminology [4]. Let H be a subgraph of a
connected graph G. A path P of G is an H-path if both end-vertices of P
belong to H but no internal vertex and no edge of P belongs to H. Given an
integer d, the subgraph H is d-closed if the length of every H-path is greater
than d. The d-connector of H in G is the smallest d-closed subgraph of G
that contains H. The neighborhood N(H) of H is the subgraph of G spanned
by all the edges of G with at least one end-vertex in H. We end this section
by citing a lemma of Kaiser et al. [4, Lemma 8] about connectors.

Lemma 8. Let d > ℓ > 1. Suppose that H is a subgraph of G with at most ℓ
edges and no isolated vertices. If the girth of G is greater than (d + 1)ℓ, then
the neighborhood of the d-connector of H is a forest.

3 The cyclically ∆-edge-connected case

We find a fractional (∆ + 1 + ε)-total coloring of a given cyclically ∆-edge-
connected graph G with odd maximum degree ∆ > 5 in the following way:
first, we decompose G into a matching and a set of sub-2-factors, then we
search for suitable weighted colorings corresponding to the factors and combine
them into a weighted 1

∆+1+ε
-total coloring of G.

To find the decomposition, we use the following proposition [4, Proposition
1].

Proposition 9. Every cyclically ∆-edge-connected graph with maximum
degree ∆ has a ∆-decomposition.

For the next step, we need the following lemma.
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Lemma 10. Fix a positive real number ε and a positive integer ∆ > 4. There
is an integer g such that for every graph G with maximum degree ∆ and girth
at least g, and for every sub-2-factor F of G such that ∆(G − F ) 6 ∆ − 2,
there exists a weighted total coloring w of G such that

• ∀v ∈ V (G), w[v] >
1

∆+ε
; and

• ∀f ∈ E(F ), w[f ] >
∆−1

2(∆+ε)
.

Actually, Lemma 10 is implicit in [3]. More precisely, the following is
proven. An independent set I of T (G) is full if every vertex of G either
belongs to I or is incident in G to an edge that belongs to I. We define Φ′(G)
to be the set of all full independent sets of T (G).

Lemma 11 ([3, Lemma 18]). Let ∆ > 4. For every ε0 > 0, there exist
g ∈ N and α, β, γ ∈ R

+ satisfying (∆ − 2)α + β + 2γ = 1, α < ε0, such
that for every graph with maximum degree ∆ and girth at least g, and every
2-factor F of G, there exists a function w : Φ′(G) → [0 , 1] such that for every
x ∈ V (G) ∪ E(G)

w[x] =






β if x ∈ V (G),

γ if x ∈ E(F ),

α otherwise.

Our formulation of the lemma slightly differs from the original: in
Lemma 18, the parameter α is upper-bounded by 4/3ℓ, with ℓ depending only
on the girth of G; hence, it suffices to take g sufficiently large to obtain the
inequality stated in Lemma 11. We also note that the function w is a weighted
total coloring of G, up to setting w(I) := 0 for every I ∈ Φ(G)\Φ′(G). Indeed,
let x be a vertex of G of degree ∆, and let e1, e2, . . . , e∆ be the edges incident
to x in G. Then it follows from the definition of a full independent set that∑

I∈Φ(G) w(I) = w[x] +
∑∆

i=1 w[ei] = β + 2γ + (∆ − 2)α = 1.
Before proving Lemma 10 from Lemma 11, we explain in this paragraph

how the proof of Lemma 18 of [3] can be slightly modified to ensure that β
can be taken to be 1

∆+ε
. As a crucial observation, Kaiser, King, and Král’ [3,

Proposition 19] proved that in Lemma 11 (Lemma 18 in [3]), the parameter
β can be chosen to be any value from the interval (ε0 , Q(1)) for a function Q
defined in [3]. A more careful upper bound of one of the parameters in the
proof of their Proposition 19 allows us to ensure that β can be chosen to be

1
∆+ε

: it suffices to prove that Q(1) >
1
∆

. For ∆ ∈ {4, 5, 6} it can be checked
directly, and for ∆ > 7 we have

Q(1) =
1 − F (1)2

2
where F (1) 6 1 −

1

∆ − 2
.
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Since it holds that

1 −
1

∆ − 2
6

√
1 −

2

∆
,

the inequality Q(1) >
1
∆

follows.
We are now ready to explain how to derive Lemma 10 from Lemma 11.

Proof of Lemma 10. Set ε0 := ε
(∆−2)(∆+ε)

, and let g, α, β, γ be the constants

given by Lemma 11. As we just saw, we may assume that β = 1
∆+ε

. Let
G be a graph with maximum degree ∆ and girth at least g, and let F be a
sub-2-factor of G. We first build an auxiliary graph Ĝ as follows.

Set k :=
∑

v∈V (G)(2 − degF (v)). We view G as the subgraph of the

multigraph G′ obtained by adding to G a new vertex v0 and, for each v ∈ V (G),
adding 2 − degF (v) edges between v0 and v. Thus, degG′(v0) = k and every
other vertex of G′ has degree at most ∆, since ∆(G − F ) 6 ∆ − 2. Let H
be a k-regular graph of girth at least g. The existence of such a graph is
well known; consult, e.g., the book by Lovász [6, Solution of Problem 10.12].
Replace every vertex x of H by a copy Gx of G and identify the k edges
incident with x in H with the k edges of G′ incident with v0. Let Ĝ be the
obtained graph. For x ∈ V (H), let Fx be the set of edges of Gx corresponding

to the edges of G that are in F . Define F̂ to be the union of
⋃

x∈V (H) Fx and

the edges corresponding to those of H; thus F̂ is a 2-factor of Ĝ.
By the construction, Ĝ has maximum degree ∆ and girth at least g. Thus,

Lemma 11 ensures the existence of a weighted total coloring w of Ĝ such that
α 6 ε0, the weight of the vertices is β = 1

∆+ε
, and the weight of the edges in

F̂ is

γ =
1

2
(1 − (∆ − 2)α − β) >

1

2

(
1 −

ε

∆ + ε
−

1

∆ + ε

)
=

∆ − 1

2(∆ + ε)
.

This yields the conclusion since Ĝ contains G as a subgraph and F̂ contains
F .

We conclude the section by proving Theorem 6 restricted to cyclically
∆-edge-connected graphs of maximum degree ∆.

Lemma 12. Let ∆ be an odd integer and ε a positive real. There exists g such
that the fractional total chromatic number of every cyclically ∆-edge-connected
graph with maximum degree ∆ and girth at least g is at most ∆ + 1 + ε.

Proof. We may assume that ∆ > 5. Set k := ⌊∆/2⌋ and ε′ := ε/2. Let g be
large enough so that Lemma 10 holds for the fixed values of ∆ and ε′.
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By Proposition 9, the graph G has a ∆-decomposition M, F1, F2, . . . , Fk

where M is a matching. In particular, ∆(G − Fi) 6 ∆ − 2 for i ∈ {1, . . . , k}.
For every i ∈ {1, 2, . . . , k}, let w′

i be a weighted total coloring of G given
by Lemma 10 applied to G and Fi with respect to ∆ and ε′. Further, let
w′

0 be the weighted total coloring of G that assigns 1 to the set M and 0
to every other total independent set of G. Finally, set wi := 2k+1

2k(k+1)
· w′

i for

i ∈ {1, 2 . . . , k} and w0 := 1
2k+2

· w′

0.
A weighted 1/(∆ + 1 + ε)-total coloring w : Φ(G) → R is defined by

setting w :=
∑k

i=0 wi. Note that w is a weighted total coloring of G since it
is a convex combination of weighted total colorings of G.

It remains to show that w[x] is at least 1
∆+1+ε

= 1
2k+2+ε

for every x ∈

V (T (G)). Let v ∈ V (G). Then, wi[v] >
1

∆+ε′
= 2

2(2k+1)+ε
for each i ∈

{1, 2, . . . , k}, and hence

w[v] >

k∑

i=1

wi[v]

> k ·
2k + 1

2k(k + 1)
·

2

2(2k + 1) + ε

=
1

(k + 1) ·
(
2 + ε

2k+1

)

>
1

2k + 2 + ε
.

Now, let e ∈ E(G). If e ∈ M , then w[e] > w0(M) = 1
2k+2

. Otherwise, there
exists a unique i ∈ {1, 2, . . . , k} such that e ∈ E(Fi). Then,

w[e] > wi[e] >
2k + 1

2k(k + 1)
·

2k

2(2k + 1 + ε′)
=

1

(k + 1) ·
(
2 + ε

2k+1

) >
1

2k + 2 + ε
.

This concludes the proof.

4 The general case

We start with an auxiliary lemma regarding recoloring of trees. The lemma
essentially states that given a fractional total coloring of the leaves of a
sufficiently deep tree along with their incident edges, one can extend the
coloring to an almost optimal fractional total coloring of the tree that agrees
with the precoloring.

Lemma 13. Fix ε > ε′ > 0 and a positive integer ∆. There exists an integer
d such that the following holds:
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• For every tree T rooted at a leaf r, with maximum degree ∆ and depth
d,

• for every fractional (∆ + 1 + ε′)-total coloring c0 of T with colors
contained in [0 , ∆ + 1 + ε′], and

• for every pair of disjoint sets X, Y ⊂ [0 , ∆ + 1 + ε] each of measure 1,

there exists a fractional (∆ + 1 + ε)-total coloring c of T such that

1. c(r) = X and c(rr′) = Y , where r′ is the unique neighbor of r in T ; and

2. c agrees with c0 on all leaves and edges incident with leaves that are at
distance d from r.

Proof. The idea of the proof is as follows. We shall partition [0 , ∆+1+ε] into
blocks, and, starting from the root, we use the extra room (∆+1+ε′ , ∆+1+ε]
as a space to permute the original blocks one step at a time.

Without loss of generality, we may assume that T is ∆-regular, i.e., every
vertex of T has degree either 1 or ∆, and all leaves are at distance d from
r. Set δ := ε − ε′, s :=

⌈
∆+1+ε′

δ

⌉
, and d := 2s + 1. We partition the vertices

and edges of T into levels regarding their distance (in the total graph of T )
from r. More precisely, the root r has level d, and for every i > 0, the level
of a vertex at distance i (in T ) from r is d − i. Thus, the leaves of T distinct
from r have level 0. The level of an edge that joins a vertex of level i with a
vertex of level i + 1 is i.

Let π be a measure-preserving bijection of [0 , ∆+1+ε] such that π(c0(r)) =
X and π(c0(rr

′)) = Y . Such a bijection exists since µ(c0(r)) = µ(c0(rr
′)) =

µ(X) = µ(Y ) = 1 and c0(r) ∩ c0(rr
′) = ∅ = X ∩ Y . Let I1, . . . , Is be a

partition of [0 , ∆ + 1 + ε′] into sets of measure δ, except Is which may have
a smaller measure; let I0 = (∆ + 1 + ε′ , ∆ + 1 + ε]. We set Kk := π(Ik) for
k ∈ {1, . . . , s}.

Let π0 be the identity mapping of [0 , ∆+1+ε]. We use a finite induction to
define a sequence π1, . . . , π2s of measure-preserving bijections of [0 , ∆ + 1 + ε]
such that for each k, the bijections π2k and π agree on the sets I1, . . . , Ik. The
definition may be better digested with a look at Figure 1.

Let k ∈ {0, . . . , s − 2} and assume that π2k is a measure-preserving
bijection of [0 , ∆ + 1 + ε] such that

∀i ∈ {1, . . . , k}, ∀t ∈ Ii, π2k(t) = π(t) .

Let Jk := π2k(I0), so J0 = I0.
In the odd step, we fix a measure-preserving bijection σ2k+1 : Jk → Kk+1

which exchanges Jk and Kk+1 without changing their intersection (that is,
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I1 I2 Ik Ik+1 Is I0

K1 K2 Kk Jk

Kk+1

K1 K2 Kk Jk+1 Kk+1

Jk

K1 K2 Kk Kk+1 Jk+1

π2k

π2k+1

π2k+2

σ2k+1

σ2k+2

Figure 1: An illustration of the actions of the bijections π2k+1 and π2k. The
colors in Kk+1 are not used on level 2k + 1, and the colors in Jk+1 are not
used on level 2k + 2. Moreover, π2k and π agree on I1 ∪ · · · ∪ Ik.

the restriction of σ2k+1 to Jk ∩ Kk+1 is the identity mapping). The measure-
preserving bijection π2k+1 of [0 , ∆ + 1 + ε] is defined by

π2k+1(t) :=






σ2k+1(π2k(t)) if t ∈ π−1
2k (Jk) = I0,

σ−1
2k+1(π2k(t)) if t ∈ π−1

2k (Kk+1),

π2k(t) otherwise.

For i ∈ {1, . . . , k}, if t ∈ Ii then t /∈ π−1
2k (Kk+1) since π2k(t) = π(t) ∈ Ki, and

t /∈ I0 since I0 ∩ Ii = ∅. Therefore,

∀i ∈ {1, . . . , k}, ∀t ∈ Ii, π2k+1(t) = π2k(t) = π(t) .

Note that π2k+1(I0) = Kk+1. Let Jk+1 := π2k+1(Ik+1). Since π2k+1 is a
bijection, Jk+1 ∩ Ki = ∅ for all i ∈ {1, . . . , k + 1}.

In the even step, we first define a measure-preserving bijection exchang-
ing Jk+1 and Kk+1: let σ2k+2 : Jk+1 → Kk+1 be defined by the condition
σ2k+2(π2k+1(t)) = π(t) for every t ∈ Ik+1. Next, the measure-preserving
bijection π2k+2 of [0 , ∆ + 1 + ε] is defined by

π2k+2(t) :=






σ2k+2(π2k+1(t)) if t ∈ Ik+1,

σ−1
2k+2(π2k+1(t)) if t ∈ I0,

π2k+1(t) otherwise.

It follows directly from the definition of π2k+2 that

∀i ∈ {1, . . . , k + 1}, ∀t ∈ Ii, π2k+2(t) = π(t) .
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Notice that π2k+2(I0) = Jk+1.
When k = s − 1, the set Kk+1 = Ks can have measure smaller than

δ. We partition Js−1 := π2s−2(I0) into two sets J ′

s−1 and J ′′

s−1 such that
µ(J ′

s−1) = µ(Ks). We then continue in the same manner and define a
measure-preserving bijection π2s−1 that agrees with π on all the sets Ii with
i ∈ {1, . . . , s − 1} and π2s−1(I0) = Ks ∪ J ′′

s−1. Finally, we define a measure-
preserving bijection π2s that agrees with π on [0 , ∆ + 1 + ε′].

Let us now define a coloring c : V (T ) ∪ E(T ) → 2[0,∆+1+ε] as follows:

c(x) :=

{
πi(c0(x)) if x has level i ∈ {0, . . . , 2s},

X if x = r.

Since πi is measure-preserving for i ∈ {0, . . . , 2s} and c0 is a fractional
total coloring of T , we have µ(c(x)) > 1 for all x ∈ V (T ) ∪ E(T ). To prove
that c is a fractional (∆ + 1 + ε)-total coloring of T it suffices to prove that
c(x) ∩ c(y) = ∅ if x and y are adjacent or incident in T . The levels of x
and y can differ by at most 1. If the levels of x and y are the same, then
c0(x) ∩ c0(y) = ∅ since c0 is a fractional total coloring of T . Hence,

c(x) ∩ c(y) = πi(c0(x)) ∩ πi(c0(y)) = ∅ .

Let x be a vertex or an edge of level i, and let y be a vertex or an edge
adjacent to x of level i + 1, with i ∈ {0, . . . , 2s − 1}. Since c0(x) ∩ c0(y) = ∅,
we have πi(c0(x)) ∩ πi(c0(y)) = ∅ as well. Since c0 uses only colors from the
interval [0 , ∆ + 1 + ε′], we also have πi(c0(x)) ∩ πi(I0) = ∅. The bijection σi

interchanges (some of the) colors from πi(I0) (not used in the level i) with
some of the other colors, and hence, c(y) = πi+1(c0(y)) ⊆ πi(c0(y)) ∪ πi(I0).
Therefore,

c(x) ∩ c(y) ⊆ (πi(c0(x)) ∩ πi(c0(y))) ∪ (πi(c0(x)) ∩ πi(I0)) = ∅ .

If x has level 2s and y has level 2s+1, then y = r and c(y) = X = π(c0(r)).
On the other hand, c(x) = π2s(c0(x)) = π(c0(x)). Therefore, the sets are
disjoint. To conclude, notice that c(x) = c0(x) for all vertices and edges of
level 0 and that c(rr′) = π2s(c0(rr

′)) = π(c0(rr
′)) = Y .

We are now ready to prove Theorem 6.

Proof of Theorem 6. Fix ε′ ∈ (0 , ε). Let d be large enough so that Lemma 13
holds for the values of ∆, ε′, and ε. Set d0 := 2d + 2, and let g be greater
than (d0 + 1) · ∆ and such that Lemma 12 holds for ∆ and ε′.

We proceed by induction on |E(G)|, the conclusion being trivial when
|E(G)| 6 ∆. Now, if G is cyclically ∆-edge-connected, then Lemma 12 yields
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the result (since ε > ε′). So, we assume that G is not cyclically ∆-edge-
connected. Let F be a (minimal) cyclic edge-cut of G such that |F | < ∆, and
G − F is composed of two connected components A and B such that |B| is
minimized.

Let F ′ be the d0-connector of F in the subgraph GX of G induced by
B ∪ F . We now show that the subgraph GA of G induced by A ∪ N(F ′) has
less edges than G. By Lemma 8, we know that N(F ′) is a forest. On the
other hand, B contains a cycle and hence |E (N(F ′)) \ F | < |E(B)|. Hence,
GA has less edges than G, maximum degree at most ∆, and girth at least g.
Therefore, there exists a fractional (∆ + 1 + ε)-total coloring cA of GA: if the
maximum degree of GA is ∆, then this follows from the induction hypothesis,
and otherwise it follows from Theorem 3.

Let GB be the graph obtained from G by contracting A into a single
vertex w and then subdividing ⌊g/2⌋ times each edge incident with w; thus
the distance between w and B in GB is greater than ⌊g/2⌋. Hence, the girth
of GB is at least g. Since GB contains more than ∆ edges, GB is cyclically
∆-edge-connected because any cyclic edge-cut of GB yields a cyclic edge-cut of
G of at most the same order, and whose removal splits G into two components,
one of which is smaller than B. Consequently, Lemma 12 ensures the existence
of a fractional (∆ + 1 + ε′)-total coloring cB of GB.

Let E be the set of edges xy of G with x ∈ V (F ′) and y ∈ V (B) \ V (F ′);
i.e., xy is in N(F ′) but not in F ′. For every e = xy ∈ E with x ∈ V (F ′), let
T0(y) be the subgraph of GX − V (F ′) induced by the vertices at distance
at most d from y. Let T (e) be the graph obtained from T0(y) by adding x
and the edge e = xy. Observe that T (e) is a tree because the girth g of G
is greater than 2d + 2. Moreover, if e′ = x′y′ ∈ E is distinct from e (and
x′ ∈ V (F ′)), then T (e) and T (e′) are vertex-disjoint unless x = x′, and then
x is the unique common vertex of T (e) and T (e′), because F ′ is d0-closed.

Now, for every edge e = xy ∈ E , we apply Lemma 13 to the tree T (e)
with c0 := cB, r := x, X := cA(x), and Y := cA(e). This yields a fractional
(∆ + 1 + ε)-total coloring ce of T (e), which agrees with cB on all the leaves
and edges incident to a leaf that are at distance d from x, if any.

The property of disjointness of the trees ensures that cB along with all
the colorings ce for e ∈ E yield a fractional (∆ + 1 + ε)-total coloring c′ of
the subgraph B′ of G spanned by B − F ′ and E .

Since GA ∪ B′ = G and the colorings cA and c′ agree on all the edges in
E and all the vertices of F ′ that are incident to an edge in E , we obtain a
fractional (∆ + 1 + ε)-total coloring of G, as wanted.
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