The last fraction of a fractional conjecture
František Kardoš, Daniel Král’, Jean-Sébastien Sereni

To cite this version:

HAL Id: hal-00495646
https://hal.science/hal-00495646
Submitted on 28 Jun 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The last fraction of a fractional conjecture

František Kardoš∗ Daniel Král† Jean-Sébastien Sereni‡

Abstract

Reed conjectured that for every $\varepsilon > 0$ and every integer Δ, there exists g such that the fractional total chromatic number of every graph with maximum degree Δ and girth at least g is at most $\Delta + 1 + \varepsilon$. The conjecture was proven to be true when $\Delta = 3$ or Δ is even. We settle the conjecture by proving it for the remaining cases.

1 Introduction

Fractional graph theory has led to many elegant and deep results in the last three decades, broadening the range of applications of graph theory and providing partial results and insights to many hard problems. In this paper, we are interested in fractional total colorings of graphs. Total colorings form an extensively studied topic—see the monograph by Yap [11]—with the total coloring conjecture of Behzad [1] and Vizing [10] being one of its grails.

Conjecture 1 (total coloring conjecture). The total chromatic number of every graph with maximum degree Δ is at most $\Delta + 2$.

∗Institute of Mathematics, Faculty of Science, University of Pavol Jozef Šafárik, Jesenná 5, 041 54 Košice, Slovakia, and Institute for Theoretical Computer Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic. Partially supported by the Slovak Science and Technology Assistance Agency under contract APVV-0007-07. E-mail: frantisek.kardos@upjs.sk.

†Institute for Theoretical Computer Science, Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 118 00 Prague, Czech Republic. E-mail: kral@kam.mff.cuni.cz. The Institute for Theoretical Computer Science (ITI) is supported by the Ministry of Education of the Czech Republic as project 1M0545. This research has been supported by grant GAČR 201/09/0197.

‡CNRS (LIAFA, Université Denis Diderot), Paris, France, and Department of Applied Mathematics (KAM), Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic. E-mail: sereni@kam.mff.cuni.cz.
The most important partial result toward the total coloring conjecture to date is the following theorem proved by Molloy and Reed [7] in 1998.

Theorem 2. The total chromatic number of every graph with maximum degree Δ is at most $\Delta + 10^{26}$.

As is often the case, the fractional analogue of Conjecture 1 turns out to be easier to approach. Kilakos and Reed [5] proved in 1993 the following fractional analogue of the total coloring conjecture.

Theorem 3. The fractional total coloring number of every graph with maximum degree Δ is at most $\Delta + 2$.

The graphs achieving the bound given in Theorem 3 have been identified by Ito, Kennedy, and Reed [2]: they are the complete graphs of even order and the complete bipartite graphs with equal part sizes. Inspired by these results, Reed [8] conjectured the following.

Conjecture 4. For every $\varepsilon > 0$ and every integer Δ, there exists g such that the fractional total chromatic number of every graph with maximum degree Δ and girth at least g is at most $\Delta + 1 + \varepsilon$.

Conjecture 4 was proven to be true when $\Delta \in \{3\} \cup \{4, 6, 8, 10, \ldots\}$ by Kaiser, King, and Král’ [3] in the following stronger form.

Theorem 5. Let $\Delta \in \{3\} \cup \{4, 6, 8, 10, \ldots\}$. There exists g such that the fractional total chromatic number of every graph with maximum degree Δ and girth at least g is $\Delta + 1$.

The purpose of our work is to settle Conjecture 4 by proving that it also holds for odd values of Δ. Our main theorem reads as follows.

Theorem 6. For every $\varepsilon > 0$ and every odd integer $\Delta \geq 5$, there exists an integer g such that the fractional total chromatic number of every graph with maximum degree Δ and girth at least g is at most $\Delta + 1 + \varepsilon$.

The approach we use also yields a proof for the case where Δ is even, and thus a full proof of Conjecture 4. However, we restrict ourselves to the case of odd $\Delta \geq 5$, since a stronger result, Theorem 5, has been established [3]. Kaiser, King, and Král’ [3] conjectured that the statement of Theorem 5 also holds for odd values of Δ.

Conjecture 7. Let $\Delta \geq 5$ be an odd integer. There exists g such that the fractional total chromatic number of every graph with maximum degree Δ and girth at least g is $\Delta + 1$.

However, we were not able to settle this stronger conjecture.
2 Definitions and notation

Let us start by defining the relevant concepts. For $X \subseteq \mathbb{R}$, we define $\mu(X)$ to be the Lebesgue measure of X. If G is a graph, then $V(G), E(G),$ and $\Delta(G)$ are its vertex-set, edge-set, and maximum degree, respectively. The total graph $T(G)$ of G is the graph with vertex-set $V(G) \cup E(G)$, where two vertices are adjacent if and only if the corresponding elements of G are adjacent or incident. In other words, $xy \in E(T(G))$ if and only if

- $x, y \in V(G)$ and $xy \in E(G)$; or
- $x, y \in E(G)$ and x and y share a vertex in G; or
- $x \in V(G), y \in E(G)$, and y is incident to x in G.

A total independent set of G is an independent set of $T(G)$. Let $\Phi(G)$ be the set of all total independent sets of G.

Consider a function $w : \Phi(G) \rightarrow [0, 1]$, and let $x \in V(T(G))$. We define $w[x]$ to be the sum of $w(I)$ over all $I \in \Phi(G)$ containing x. The mapping w is a fractional k-total coloring of G if and only if

- $\sum_{I \in \Phi(G)} w(I) \leq k$; and
- $w[x] \geq 1$ for every $x \in V(T(G))$.

Observe that G has a fractional k-total coloring if and only if there exists a function $c : V(T(G)) \rightarrow 2^{[0,k]}$ such that

- $\mu(c(x)) \geq 1$ for every $x \in V(T(G))$; and
- $c(x) \cap c(y) = \emptyset$ for every edge $xy \in E(T(G))$.

Notice that the second condition is the same as to require that $\mu(c(X) \cap c(Y)) = 0$ whenever x and y are adjacent in $T(G)$, since we consider only finite graphs. The fractional total chromatic number of G is the infimum of all positive real numbers k for which G has a fractional k-total coloring. As is well known, the fractional total chromatic number of a finite graph is always a rational number, and the infimum is actually a minimum.

A mapping $w : \Phi(G) \rightarrow [0, 1]$ such that $\sum_{I \in \Phi(G)} w(I) = 1$ is a weighted total coloring of G. If in addition $w[x] \geq \alpha$ for every $x \in V(T(G))$, then w is a weighted α-total coloring of G. Observe that every fractional k-total coloring yields a weighted $\frac{1}{k}$-total coloring w of G. Conversely, one can derive a fractional $\frac{1}{\alpha}$-total coloring from a weighted α-total coloring of G. There are many equivalent definitions of a fractional coloring of a graph, and we
refer to the book by Scheinerman and Ullman [9] for further exposition about fractional colorings (and, more generally, fractional graph theory).

We now introduce some additional notation. Two functions \(f, g : X \to Y \) agree on \(Z \subseteq X \) if the restrictions of \(f \) and \(g \) to \(Z \) are equal. Let \(G \) be a graph and \(v \in V(G) \). For a spanning subgraph \(F \) of \(G \), the degree of the vertex \(v \) in \(F \) is \(\deg_F(v) \). A spanning subgraph of \(G \) with maximum degree at most 2 is a sub-2-factor of \(G \). An \(\ell \)-decomposition of \(G \) is a partition of the edges of \(G \) into \(\lceil \ell/2 \rceil \) sub-2-factors, one of which is required to be a matching if \(\ell \) is odd.

Given a connected graph \(G \), an edge-cut \(F \) of \(G \) is a subset of edges such that the removal of \(F \) disconnects \(G \). Note that removing a minimal edge-cut splits \(G \) into exactly two connected components. An edge-cut \(F \) is cyclic if every connected component of \(G - F \) contains a cycle. A graph is cyclically \(k \)-edge-connected if it has more than \(k \) edges and no cyclic edge-cut of size less than \(k \).

We also use the following terminology [4]. Let \(H \) be a subgraph of a connected graph \(G \). A path \(P \) of \(G \) is an \(H \)-path if both end-vertices of \(P \) belong to \(H \) but no internal vertex and no edge of \(P \) belongs to \(H \). Given an integer \(d \), the subgraph \(H \) is \(d \)-closed if the length of every \(H \)-path is greater than \(d \). The \(d \)-connector of \(H \) in \(G \) is the smallest \(d \)-closed subgraph of \(G \) that contains \(H \). The neighborhood \(N(H) \) of \(H \) is the subgraph of \(G \) spanned by all the edges of \(G \) with at least one end-vertex in \(H \). We end this section by citing a lemma of Kaiser et al. [4, Lemma 8] about connectors.

Lemma 8. Let \(d > \ell \geq 1 \). Suppose that \(H \) is a subgraph of \(G \) with at most \(\ell \) edges and no isolated vertices. If the girth of \(G \) is greater than \((d + 1)\ell \), then the neighborhood of the \(d \)-connector of \(H \) is a forest.

3 The cyclically \(\Delta \)-edge-connected case

We find a fractional \((\Delta + 1 + \varepsilon)\)-total coloring of a given cyclically \(\Delta \)-edge-connected graph \(G \) with odd maximum degree \(\Delta \geq 5 \) in the following way: first, we decompose \(G \) into a matching and a set of sub-2-factors, then we search for suitable weighted colorings corresponding to the factors and combine them into a weighted \(\frac{1}{\Delta + 1 + \varepsilon} \)-total coloring of \(G \).

To find the decomposition, we use the following proposition [4, Proposition 1].

Proposition 9. Every cyclically \(\Delta \)-edge-connected graph with maximum degree \(\Delta \) has a \(\Delta \)-decomposition.

For the next step, we need the following lemma.
Lemma 10. Fix a positive real number ε and a positive integer $\Delta \geq 4$. There is an integer g such that for every graph G with maximum degree Δ and girth at least g, and for every sub-2-factor F of G such that $\Delta(G-F) \leq \Delta - 2$, there exists a weighted total coloring w of G such that

- $\forall v \in V(G), \ w[v] \geq \frac{1}{\Delta + \varepsilon}$; and
- $\forall f \in E(F), \ w[f] \geq \frac{\Delta - 1}{2(\Delta + \varepsilon)}$.

Actually, Lemma 10 is implicit in [3]. More precisely, the following is proven. An independent set I of $T(G)$ is full if every vertex of G either belongs to I or is incident in G to an edge that belongs to I. We define $\Phi'(G)$ to be the set of all full independent sets of $T(G)$.

Lemma 11 ([3, Lemma 18]). Let $\Delta \geq 4$. For every $\varepsilon_0 > 0$, there exist $g \in \mathbb{N}$ and $\alpha, \beta, \gamma \in \mathbb{R}^+$ satisfying $(\Delta - 2)\alpha + \beta + 2\gamma = 1$, $\alpha < \varepsilon_0$, such that for every graph with maximum degree Δ and girth at least g, and every 2-factor F of G, there exists a function $w : \Phi'(G) \to [0,1]$ such that for every $x \in V(G) \cup E(G)$

$$w[x] = \begin{cases}
\beta & \text{ if } x \in V(G), \\
\gamma & \text{ if } x \in E(F), \\
\alpha & \text{ otherwise.}
\end{cases}$$

Our formulation of the lemma slightly differs from the original: in Lemma 18, the parameter α is upper-bounded by $4/3 \ell$, with ℓ depending only on the girth of G; hence, it suffices to take g sufficiently large to obtain the inequality stated in Lemma 11. We also note that the function w is a weighted total coloring of G, up to setting $w(I) := 0$ for every $I \in \Phi(G) \setminus \Phi'(G)$. Indeed, let x be a vertex of G of degree Δ, and let $e_1, e_2, \ldots, e_\Delta$ be the edges incident to x in G. Then it follows from the definition of a full independent set that $\sum_{I \in \Phi'(G)} w(I) = w[x] + \sum_{i=1}^{\Delta} w[e_i] = \beta + 2\gamma + (\Delta - 2)\alpha = 1$.

Before proving Lemma 10 from Lemma 11, we explain in this paragraph how the proof of Lemma 18 of [3] can be slightly modified to ensure that β can be chosen to be $\frac{1}{\Delta + \varepsilon}$. As a crucial observation, Kaiser, King, and Král’ [3, Proposition 19] proved that in Lemma 11 (Lemma 18 in [3]), the parameter β can be chosen to be any value from the interval $(\varepsilon_0, Q(1))$ for a function Q defined in [3]. A more careful upper bound of one of the parameters in the proof of their Proposition 19 allows us to ensure that β can be chosen to be $\frac{1}{\Delta + \varepsilon}$: it suffices to prove that $Q(1) \geq \frac{1}{2}$. For $\Delta \in \{4,5,6\}$ it can be checked directly, and for $\Delta \geq 7$ we have

$$Q(1) = \frac{1 - F(1)^2}{2} \quad \text{where} \quad F(1) \leq 1 - \frac{1}{\Delta - 2}.$$
Since it holds that
\[1 - \frac{1}{\Delta - 2} \leq \sqrt{1 - \frac{2}{\Delta}}, \]
the inequality \(Q(1) \geq \frac{1}{\Delta} \) follows.

We are now ready to explain how to derive Lemma 10 from Lemma 11.

Proof of Lemma 10. Set \(\varepsilon_0 := \frac{\varepsilon}{(\Delta - 2)(\Delta + \varepsilon)} \), and let \(g, \alpha, \beta, \gamma \) be the constants given by Lemma 11. As we just saw, we may assume that \(\beta = \frac{1}{\Delta + \varepsilon} \). Let \(G \) be a graph with maximum degree \(\Delta \) and girth at least \(g \), and let \(F \) be a sub-2-factor of \(G \). We first build an auxiliary graph \(\hat{G} \) as follows.

Set \(k := \sum_{v \in V(G)} (2 - \deg_F(v)) \). We view \(G \) as the subgraph of the multigraph \(G' \) obtained by adding to \(G \) a new vertex \(v_0 \) and, for each \(v \in V(G) \), adding \(2 - \deg_F(v) \) edges between \(v_0 \) and \(v \). Thus, \(\deg_{G'}(v_0) = k \) and every other vertex of \(G' \) has degree at most \(\Delta \), since \(\Delta(G - F) \leq \Delta - 2 \). Let \(H \) be a \(k \)-regular graph of girth at least \(g \). The existence of such a graph is well known; consult, e.g., the book by Lovász [6, Solution of Problem 10.12].

Replace every vertex \(x \) of \(H \) by a copy \(G_x \) of \(G \) and identify the \(k \) edges incident with \(x \) in \(H \) with the \(k \) edges of \(G' \) incident with \(v_0 \). Let \(\hat{G} \) be the obtained graph. For \(x \in V(H) \), let \(F_x \) be the set of edges of \(G_x \) corresponding to the edges of \(G \) that are in \(F \). Define \(\hat{F} \) to be the union of \(\bigcup_{x \in V(H)} F_x \) and the edges corresponding to those of \(H \); thus \(\hat{F} \) is a 2-factor of \(\hat{G} \).

By the construction, \(\hat{G} \) has maximum degree \(\Delta \) and girth at least \(g \). Thus, Lemma 11 ensures the existence of a weighted total coloring \(w \) of \(\hat{G} \) such that \(\alpha \leq \varepsilon_0 \), the weight of the vertices is \(\beta = \frac{1}{\Delta + \varepsilon} \), and the weight of the edges in \(\hat{F} \) is
\[
\gamma = \frac{1}{2} \left(1 - (\Delta - 2)\alpha - \beta \right) \geq \frac{1}{2} \left(1 - \frac{\varepsilon}{\Delta + \varepsilon} - \frac{1}{\Delta + \varepsilon} \right) = \frac{\Delta - 1}{2(\Delta + \varepsilon)}.
\]
This yields the conclusion since \(\hat{G} \) contains \(G \) as a subgraph and \(\hat{F} \) contains \(F \).

We conclude the section by proving Theorem 6 restricted to cyclically \(\Delta \)-edge-connected graphs of maximum degree \(\Delta \).

Lemma 12. Let \(\Delta \) be an odd integer and \(\varepsilon \) a positive real. There exists \(g \) such that the fractional total chromatic number of every cyclically \(\Delta \)-edge-connected graph with maximum degree \(\Delta \) and girth at least \(g \) is at most \(\Delta + 1 + \varepsilon \).

Proof. We may assume that \(\Delta \geq 5 \). Set \(k := \lfloor \Delta/2 \rfloor \) and \(\varepsilon' := \varepsilon/2 \). Let \(g \) be large enough so that Lemma 10 holds for the fixed values of \(\Delta \) and \(\varepsilon' \).
By Proposition 9, the graph G has a Δ-decomposition M, F_1, F_2, \ldots, F_k where M is a matching. In particular, $\Delta(G - F_i) \leq \Delta - 2$ for $i \in \{1, \ldots, k\}$. For every $i \in \{1, 2, \ldots, k\}$, let w'_i be a weighted total coloring of G given by Lemma 10 applied to G and F_i with respect to Δ and ε'. Further, let w'_0 be the weighted total coloring of G that assigns 1 to the set M and 0 to every other total independent set of G. Finally, set $w_i := \frac{2k+1}{2k(k+1)} \cdot w'_i$ for $i \in \{1, 2, \ldots, k\}$ and $w_0 := \frac{1}{2k+2} \cdot w'_0$.

A weighted $1/(\Delta + 1 + \varepsilon)$-total coloring $w : \Phi(G) \rightarrow \mathbb{R}$ is defined by setting $w := \sum_{i=0}^{k} w_i$. Note that w is a weighted total coloring of G since it is a convex combination of weighted total colorings of G.

It remains to show that $w[v]$ is at least $1/2k + 2 + \varepsilon$ for every $v \in V(T(G))$. Let $v \in V(G)$. Then, $w_i[v] \geq \frac{1}{\Delta + \varepsilon'} = \frac{2}{2(2k+1) + \varepsilon}$ for each $i \in \{1, 2, \ldots, k\}$, and hence

$$w[v] \geq \sum_{i=1}^{k} w_i[v] \geq k \cdot \frac{2k+1}{2k(k+1)} \cdot \frac{2}{2(2k+1) + \varepsilon}$$

$$= \frac{1}{(k+1) \cdot (2 + \frac{\varepsilon}{2k+1})} \geq \frac{1}{2k + 2 + \varepsilon}.$$

Now, let $e \in E(G)$. If $e \in M$, then $w[e] \geq w_0(M) = \frac{1}{2k+2}$. Otherwise, there exists a unique $i \in \{1, 2, \ldots, k\}$ such that $e \in E(F_i)$. Then,

$$w[e] \geq w_i[e] \geq \frac{2k+1}{2k(k+1)} \cdot \frac{2k}{2(2k+1 + \varepsilon')} = \frac{1}{(k+1) \cdot (2 + \frac{\varepsilon}{2k+1})} > \frac{1}{2k + 2 + \varepsilon}.$$

This concludes the proof. \square

4 The general case

We start with an auxiliary lemma regarding recoloring of trees. The lemma essentially states that given a fractional total coloring of the leaves of a sufficiently deep tree along with their incident edges, one can extend the coloring to an almost optimal fractional total coloring of the tree that agrees with the precoloring.

Lemma 13. Fix $\varepsilon > \varepsilon' > 0$ and a positive integer Δ. There exists an integer d such that the following holds:
• For every tree T rooted at a leaf r, with maximum degree Δ and depth d,

• for every fractional $(\Delta + 1 + \varepsilon')$-total coloring c_0 of T with colors contained in $[0, \Delta + 1 + \varepsilon']$, and

• for every pair of disjoint sets $X, Y \subset [0, \Delta + 1 + \varepsilon]$ each of measure 1, there exists a fractional $(\Delta + 1 + \varepsilon)$-total coloring c of T such that

1. $c(r) = X$ and $c(rr') = Y$, where r' is the unique neighbor of r in T; and

2. c agrees with c_0 on all leaves and edges incident with leaves that are at distance d from r.

Proof. The idea of the proof is as follows. We shall partition $[0, \Delta + 1 + \varepsilon]$ into blocks, and, starting from the root, we use the extra room $(\Delta + 1 + \varepsilon)$ to permute the original blocks one step at a time.

Without loss of generality, we may assume that T is Δ-regular, i.e., every vertex of T has degree either 1 or Δ, and all leaves are at distance d from r. Set $\delta := \varepsilon - \varepsilon'$, $s := \lceil \delta \frac{\Delta + 1 + \varepsilon}{\delta} \rceil$, and $d := 2s + 1$. We partition the vertices and edges of T into levels regarding their distance (in the total graph of T) from r. More precisely, the root r has level 0, and for every $i \geq 0$, the level of a vertex at distance i (in T) from r is $d - i$. Thus, the leaves of T distinct from r have level 0. The level of an edge that joins a vertex of level i with a vertex of level $i + 1$ is i.

Let π be a measure-preserving bijection of $[0, \Delta + 1 + \varepsilon]$ such that $\pi(c_0(r)) = X$ and $\pi(c_0(rr')) = Y$. Such a bijection exists since $\mu(c_0(r)) = \mu(c_0(rr')) = \mu(X) = \mu(Y) = 1$ and $c_0(r) \cap c_0(rr') = \emptyset = X \cap Y$. Let I_1, \ldots, I_s be a partition of $[0, \Delta + 1 + \varepsilon']$ into sets of measure δ, except I_s which may have a smaller measure; let $I_0 = (\Delta + 1 + \varepsilon', \Delta + 1 + \varepsilon]$. We set $K_k := \pi(I_k)$ for $k \in \{1, \ldots, s\}$.

Let π_0 be the identity mapping of $[0, \Delta + 1 + \varepsilon]$. We use a finite induction to define a sequence π_1, \ldots, π_{2s} of measure-preserving bijections of $[0, \Delta + 1 + \varepsilon]$ such that for each k, the bijections π_{2k} and π agree on the sets I_1, \ldots, I_k. The definition may be better digested with a look at Figure 1.

Let $k \in \{0, \ldots, s - 2\}$ and assume that π_{2k} is a measure-preserving bijection of $[0, \Delta + 1 + \varepsilon]$ such that

$$\forall i \in \{1, \ldots, k\}, \quad \forall t \in I_i, \quad \pi_{2k}(t) = \pi(t).$$

Let $J_k := \pi_{2k}(I_0)$, so $J_0 = I_0$.

In the odd step, we fix a measure-preserving bijection $\sigma_{2k+1} : J_k \to K_{k+1}$ which exchanges J_k and K_{k+1} without changing their intersection (that is,
Figure 1: An illustration of the actions of the bijections π_{2k+1} and π_{2k}. The colors in K_{k+1} are not used on level $2k+1$, and the colors in J_{k+1} are not used on level $2k+2$. Moreover, π_{2k} and π agree on $I_1 \cup \cdots \cup I_k$.

the restriction of σ_{2k+1} to $J_k \cap K_{k+1}$ is the identity mapping). The measure-preserving bijection π_{2k+1} of $[0, \Delta + 1 + \varepsilon]$ is defined by

$$\pi_{2k+1}(t) := \begin{cases}
\sigma_{2k+1}(\pi_{2k}(t)) & \text{if } t \in \pi_{2k}^{-1}(J_k) = I_0, \\
\sigma_{2k+1}^{-1}(\pi_{2k}(t)) & \text{if } t \in \pi_{2k}^{-1}(K_{k+1}), \\
\pi_{2k}(t) & \text{otherwise.}
\end{cases}$$

For $i \in \{1, \ldots, k\}$, if $t \in I_i$ then $t \notin \pi_{2k}^{-1}(K_{k+1})$ since $\pi_{2k}(t) = \pi(t) \in K_i$, and $t \notin I_0$ since $I_0 \cap I_i = \emptyset$. Therefore,

$$\forall i \in \{1, \ldots, k\}, \quad \forall t \in I_i, \quad \pi_{2k+1}(t) = \pi_{2k}(t) = \pi(t).$$

Note that $\pi_{2k+1}(I_0) = K_{k+1}$. Let $J_{k+1} := \pi_{2k+1}(I_{k+1})$. Since π_{2k+1} is a bijection, $J_{k+1} \cap K_i = \emptyset$ for all $i \in \{1, \ldots, k+1\}$.

In the even step, we first define a measure-preserving bijection exchanging J_{k+1} and K_{k+1}: let $\sigma_{2k+2} : J_{k+1} \rightarrow K_{k+1}$ be defined by the condition $\sigma_{2k+2}(\pi_{2k+1}(t)) = \pi(t)$ for every $t \in I_{k+1}$. Next, the measure-preserving bijection π_{2k+2} of $[0, \Delta + 1 + \varepsilon]$ is defined by

$$\pi_{2k+2}(t) := \begin{cases}
\sigma_{2k+2}(\pi_{2k+1}(t)) & \text{if } t \in I_{k+1}, \\
\sigma_{2k+2}^{-1}(\pi_{2k+1}(t)) & \text{if } t \in I_0, \\
\pi_{2k+1}(t) & \text{otherwise.}
\end{cases}$$

It follows directly from the definition of π_{2k+2} that

$$\forall i \in \{1, \ldots, k+1\}, \quad \forall t \in I_i, \quad \pi_{2k+2}(t) = \pi(t).$$
Notice that \(\pi_{2k+2}(I_0) = J_{k+1} \).

When \(k = s - 1 \), the set \(K_{k+1} = K_s \) can have measure smaller than \(\delta \). We partition \(J_{s-1} := \pi_{2s-2}(I_0) \) into two sets \(J'_{s-1} \) and \(J''_{s-1} \) such that \(\mu(J'_{s-1}) = \mu(K_s) \). We then continue in the same manner and define a measure-preserving bijection \(\pi_{2s-1} \) that agrees with \(\pi \) on all the sets \(I_i \) with \(i \in \{1, \ldots, s - 1\} \) and \(\pi_{2s-1}(I_0) = K_s \cup J''_{s-1} \). Finally, we define a measure-preserving bijection \(\pi_{2s} \) that agrees with \(\pi \) on \([0, \Delta + 1 + \varepsilon']\).

Let us now define a coloring \(c : V(T) \cup E(T) \to 2^{[0, \Delta + 1 + \varepsilon]} \) as follows:

\[
c(x) := \begin{cases}
\pi_i(c_0(x)) & \text{if } x \text{ has level } i \in \{0, \ldots, 2s\}, \\
X & \text{if } x = r.
\end{cases}
\]

Since \(\pi_i \) is measure-preserving for \(i \in \{0, \ldots, 2s\} \) and \(c_0 \) is a fractional total coloring of \(T \), we have \(\mu(c(x)) \geq 1 \) for all \(x \in V(T) \cup E(T) \). To prove that \(c \) is a fractional \((\Delta + 1 + \varepsilon)\)-total coloring of \(T \) it suffices to prove that \(c(x) \cap c(y) = \emptyset \) if \(x \) and \(y \) are adjacent or incident in \(T \). The levels of \(x \) and \(y \) can differ by at most 1. If the levels of \(x \) and \(y \) are the same, then \(c_0(x) \cap c_0(y) = \emptyset \) since \(c_0 \) is a fractional total coloring of \(T \). Hence,

\[
c(x) \cap c(y) = \pi_i(c_0(x)) \cap \pi_i(c_0(y)) = \emptyset.
\]

Let \(x \) be a vertex or an edge of level \(i \), and let \(y \) be a vertex or an edge adjacent to \(x \) of level \(i + 1 \), with \(i \in \{0, \ldots, 2s - 1\} \). Since \(c_0(x) \cap c_0(y) = \emptyset \), we have \(\pi_i(c_0(x)) \cap \pi_i(c_0(y)) = \emptyset \) as well. Since \(c_0 \) uses only colors from the interval \([0, \Delta + 1 + \varepsilon']\), we also have \(\pi_i(c_0(x)) \cap \pi_i(I_0) = \emptyset \). The bijection \(\sigma_i \) interchanges (some of the) colors from \(\pi_i(I_0) \) (not used in the level \(i \)) with some of the other colors, and hence, \(c(y) = \pi_{i+1}(c_0(y)) \subseteq \pi_i(c_0(y)) \cup \pi_i(I_0) \). Therefore,

\[
c(x) \cap c(y) \subseteq (\pi_i(c_0(x)) \cap \pi_i(c_0(y))) \cup (\pi_i(c_0(x)) \cap \pi_i(I_0)) = \emptyset.
\]

If \(x \) has level \(2s \) and \(y \) has level \(2s + 1 \), then \(y = r \) and \(c(y) = X = \pi(c_0(r)) \). On the other hand, \(c(x) = \pi_{2s}(c_0(x)) = \pi(c_0(x)) \). Therefore, the sets are disjoint. To conclude, notice that \(c(x) = c_0(x) \) for all vertices and edges of level 0 and that \(c(rr') = \pi_{2s}(c_0(rr')) = \pi(c_0(rr')) = Y \).

We are now ready to prove Theorem 6.

Proof of Theorem 6. Fix \(\varepsilon' \in (0, \varepsilon) \). Let \(d \) be large enough so that Lemma 13 holds for the values of \(\Delta, \varepsilon' \), and \(\varepsilon \). Set \(d_0 := 2d + 2 \), and let \(g \) be greater than \((d_0 + 1) \cdot \Delta \) and such that Lemma 12 holds for \(\Delta \) and \(\varepsilon' \).

We proceed by induction on \(|E(G)|\), the conclusion being trivial when \(|E(G)| \leq \Delta \). Now, if \(G \) is cyclically \(\Delta \)-edge-connected, then Lemma 12 yields
the result (since $\varepsilon > \varepsilon'$). So, we assume that G is not cyclically Δ-edge-connected. Let F be a (minimal) cyclic edge-cut of G such that $|F| < \Delta$, and $G - F$ is composed of two connected components A and B such that $|B|$ is minimized.

Let F' be the d_0-connector of F in the subgraph G_X of G induced by $B \cup F$. We now show that the subgraph G_A of G induced by $A \cup N(F')$ has less edges than G. By Lemma 8, we know that $N(F')$ is a forest. On the other hand, B contains a cycle and hence $|E(N(F')) \setminus F| < |E(B)|$. Hence, G_A has less edges than G, maximum degree at most Δ, and girth at least g. Therefore, there exists a fractional $(\Delta + 1 + \varepsilon')$-total coloring c_A of G_A: if the maximum degree of G_A is Δ, then this follows from the induction hypothesis, and otherwise it follows from Theorem 3.

Let G_B be the graph obtained from G by contracting A into a single vertex w and then subdividing $[g/2]$ times each edge incident with w; thus the distance between w and B in G_B is greater than $[g/2]$. Hence, the girth of G_B is at least g. Since G_B contains more than Δ edges, G_B is cyclically Δ-edge-connected because any cyclic edge-cut of G_B yields a cyclic edge-cut of G of at most the same order, and whose removal splits G into two components, one of which is smaller than B. Consequently, Lemma 12 ensures the existence of a fractional $(\Delta + 1 + \varepsilon')$-total coloring c_B of G_B.

Let \mathcal{E} be the set of edges xy of G with $x \in \mathcal{V}(F')$ and $y \in \mathcal{V}(B) \setminus \mathcal{V}(F')$; i.e., xy is in $N(F')$ but not in F'. For every $e = xy \in \mathcal{E}$ with $x \in \mathcal{V}(F')$, let $T_0(y)$ be the subgraph of $G_X - \mathcal{V}(F')$ induced by the vertices at distance at most d from y. Let $T(e)$ be the graph obtained from $T_0(y)$ by adding x and the edge $e = xy$. Observe that $T(e)$ is a tree because the girth g of G is greater than $2d + 2$. Moreover, if $e' = x'y' \in \mathcal{E}$ is distinct from e (and $x' \in \mathcal{V}(F')$), then $T(e)$ and $T(e')$ are vertex-disjoint unless $x = x'$, and then x is the unique common vertex of $T(e)$ and $T(e')$, because F' is d_0-closed.

Now, for every edge $e = xy \in \mathcal{E}$, we apply Lemma 13 to the tree $T(e)$ with $c_0 := c_B, r := x, X := c_A(x), \text{ and } Y := c_A(e)$. This yields a fractional $(\Delta + 1 + \varepsilon)$-total coloring c_e of $T(e)$, which agrees with c_B on all the leaves and edges incident to a leaf that are at distance d from x, if any.

The property of disjointness of the trees ensures that c_B along with all the colorings c_e for $e \in \mathcal{E}$ yield a fractional $(\Delta + 1 + \varepsilon)$-total coloring c' of the subgraph B' of G spanned by $B - F'$ and \mathcal{E}.

Since $G_A \cup B' = G$ and the colorings c_A and c' agree on all the edges in \mathcal{E} and all the vertices of F' that are incident to an edge in \mathcal{E}, we obtain a fractional $(\Delta + 1 + \varepsilon)$-total coloring of G, as wanted. \qed
References

