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Abstract

Recent experimental developments showed that the use of the radiation pres-
sure, induced by a continuous laser wave, to control fluid-fluid interface defor-
mations at the microscale, represents a very promising alternative to electric
or magnetic actuation. In this article, we solve numerically the dynamics and
steady state of the fluid interface under the effects of buoyancy, capillarity, op-
tical radiation pressure and viscous stress. A precise quantitative validation is
shown by comparison with experimental data. New results due to the nonlin-
ear dependence of the optical pressure on the angle of incidence are presented,
showing different morphologies of the deformed interface going from needle-like
to finger-like shapes, depending on the refractive index contrast. In the tran-
sient regime, we show that the viscosity ratio influences the time taken for the
deformation to reach steady state.

1 Introduction

Optical waves are an interesting and promising alternative to pure electric [1] and mag-
netic fields [2] to produce mechanical stress on fluid interfaces and deform them.
When focused light propagates through an interface separating two fluids of different
refractive indices, photon momentum, which linearly depends on the refractive index, ex-
periences a jump at the interface. This momentum jump induces a radiation pressure on
the interface that acts towards the fluid of lowest optical index whatever the direction of
propagation of the optical wave.
This surprising invariance property was first evidenced in the experiments of Ashkin
and Dziedzic [3]. Their work was an attempt at giving an experimental answer to
the Abraham-Minkowski controversy about light momentum’s expression in a dielectric.
The controversy arises due to Abraham’s and Minkowski’s predictions disagreeing as to
whether the momentum carried by an electromagnetic field is increased (Minkowski) or
decreased (Abraham) by the presence of a refractive medium. Ashkin and Dziedzic con-
cluded that light momentum was consistant with the Minkowski formalism (see [4] for a
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recent review on light momentum).
The deflection of the interface towards the less refractive fluid was later confirmed by
Zhang & Chang [5] who used a pulsed laser wave to deform a water droplet and observed,
immediately after the pulse, an oscillation of the interface leading to an emission of mi-
crodroplets at the rear of the drop at large pulse energy. More recently, Casner & Delville
[6] used the soft interface separating two near-critical liquid phases in order to reduce
by several orders of magnitude the effect of interfacial tension and thus to significantly
enhance the amplitude of interface deformations. Stationary deformations of large aspect
ratio were observed [7] as illustrated in Figure 1.
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Figure 1: Nonlinear variation of the height h (scaled by the beam radius ω0 = 7.5µm) of the deformed
interface versus the incident beam power P . The laser wave propagates upwards. The pictures corresponds
to P = 265, 372 and 478mW . Interfacial tension is σ = 5 10−7N/m, refractive index contrast is n2−n1 =
0.012 and density contrast is ρ1 − ρ2 = 24.7 kg/m3.

The radiation pressure effects open interesting perspectives for applications in many
different fields:
(i) interface rheology first, with measurements of surface and interfacial tension at small
scale [8; 9], and microrheology characterization [10; 11]
(ii) adaptive optics and holography with light actuation of reconfigurable fluid lenses
[3; 12; 13] and interface relief gratings [14]
(iii) droplet cavity lasing [15]
(iv) surface relief micropatterning by extending electrical field approaches [16] to optics.

While experiments have highlighted a rich phenomenology, the complete understanding
of the physics of interface deformation induced by an optical wave is still in its infancy.
This task is indeed made difficult by the coupling between the shape of the interface
and the optical radiation pressure distribution as well as the dependence of the interface
shape on buoyancy, capillarity, viscosity and optical properties of the fluids. While some
effort has been dedicated to the description of buoyancy effects on equilibrium interface
deformations of small amplitude [17] (i.e. linear regime where the deformation’s height
varies linearly with the beam power), very few studies have gone one to describe large
amplitude deformations [18; 19].
The aim of this paper is to investigate numerically the statics and dynamics of these large
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deformations for a wide range of refractive index contrasts, from very soft interfaces (near-
critical systems σ ∼ 10−4mN/m) to more usual pairs of fluids (water/air for instance, σ ∼
10− 100mN/m ). In essence, it is shown that the underlying physics can be explained by
the nonlinear dependence of the radiation pressure on Snell-Descartes angles of refraction.
It is further shown that the transient shape of the deformation exhibits a transition at
characteristic time which depends on the viscosity ratio.
Our analysis is organized as follows. The physical model for interface deformation is
presented in section 2. In section 3, we first validate the computation algorithm through
a successful comparison with experimental results. Finally an analysis of the refractive
index contrast and viscous effects is performed showing new important features in both
the unsteady and steady states in the nonlinear regime of deformation, i.e. when the
equilibrium hump height has a nonlinear variation with the excitation amplitude.

2 Governing equations and numerical resolution

2.1 Physical model

We investigate the deformation of a initially horizontal stationary liquid-liquid interface,
induced by the optical radiation pressure due to a continuous Gaussian laser beam of
power P and radius (also called beam waist) ω0. Physical properties of the liquids (de-
noted 1 for the bottom and 2 for the top) are their refractive indices n1, n2, viscosities µ1,
µ2 and densities ρ1, ρ2. The interfacial tension is denoted by σ. The fluids are enclosed
in a cylindrical cell of radius R ≫ ω0 and total height H ≫ ω0.
Considering axisymmetry along the beam propagation axis z, cylindrical coordinates
(er, eα, ez) with origin O located at the intersection of the beam axis with the initial
flat interface are chosen for this study. A point x is thus referenced by the space coordi-
nates (r, α, z). The configuration is summarized in figure 2.

Figure 2: Configuration and notations considered for simulations illustrated using an experimental liquid-
liquid interface deformation driven by a focused laser wave propagating upward. n2 − n1 = 0.011,
ρ1−ρ2 = 22 kg/m3, σ = 3.6 10−7N/m; ω0 = 5.3µm ; P = 240mW . SI , SC1 and SC2 respectively denote
the interface and the solid walls in fluids 1 and 2.
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2.1.1 The optical radiation pressure

We consider the fluids as two non-absorbing dielectric media with different refractive in-
dices n, separated by an interface of arbitrary shape. The indices i and t refer to incidence
and transmission, and θi and θt are, respectively, the Snell incident and transmission an-
gles (see figure 2). They can be expressed as θi = arctan(dz

dr
) and θt = arcsin((1−δ) sin θi)

where δ = n2−n1

n2
is the relative index contrast and z = z(r) is the interface equation. Since

the photon momentum depends on the refractive index, light momentum is not conserved
when the beam crosses the interface separating these two dielectrics. The resulting dis-
continuity in momentum gives birth to the radiation pressure applied to the interface. If
t and n refer to the tangent and normal directions to the interface at the location where
the light impinges the interface, ν0 represents the optical wave frequency, h0 the Planck
constant and c the light speed in vacuum, the photon momentum balance can be deduced
from the fact that :
(i) an incident photon gives the momentum (n1h0ν0/c)(sin θit+ cos θin) to the interface,
(ii) a reflected photon carries the momentum (n1h0ν0/c)(sin θit− cos θin) away from the
interface and (iii) a transmitted photon picks the momentum (n2h0ν0/c)(sin θtt+cos θtn)
to the interface. By denoting N the number of photons impinging on the interface per
unit time and unit interfacial area and R(θi, θt) and T (θi, θt) = 1− R(θi, θt) the classical
Fresnel coefficients of reflection and transmission of electromagnetic energy for circularly
polarized beams are given by [20]:

T (θi, θt) =
2(1− δ) cos θi cos θt

((1− δ) cos θi + cos θt)2
+

2(1− δ) cos θi cos θt
(cos θi + (1− δ) cos θt)2

. (1)

We can express the momentum variation dQ of the incident beam on an interface element
of area dS during the time dt as dQ = dQt + dQn, i.e.:

dQ = dQt + dQn = [n1 sin θi − (Rn1 sin θi + Tn2 sin θt)]
Nh0ν0

c
dSdtt

+[n1 cos θi − (−Rn1 cos θi + Tn2 cos θt)]
Nh0ν0

c
dSdtn (2)

Since n1 sin θi = n2 sin θt then dQt = 0. There is no momentum transfer parallel to the
interface. Consequently, one has

dQ = dQn = n1 cos θi

(

1 +R−
tan θi
tan θt

T

)

Nh0ν0
c

dSdtn. (3)

Classically, the laser intensity I is defined as I = N0h0ν0, where N0 is the flux of photons
through the beam section. Since the laser wave incidence angle on the interface is θi, one
gets N = N0 cos θi. We deduce that the optical radiation force acting on the interface per
unit area dS, when the laser wave propagates from the less to the more refractive fluid,
Π−+, is normal to the interface and given by

Π−+(r) = n1 cos
2 θi

(

1 +R−
tan θi
tan θt

T

)

I(r, z)

c
n (4)

where Π−+ is the radiation pressure.
When the beam is weakly focused, the z dependence of the beam radius can be neglected,
yielding :

I(r, z) ≈ I(r) =
2P

πω2
0

e−2(r/ω0)2 . (5)
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Figure 3: Variation of the radiation pressure normalized by its value at normal incidence, versus the
incidence angle for different values of the relative index contrast δ = n2−n1

n2

.

In figure 3, we have represented Π−+(θi) normalized by Π−+(θi = 0), the radiation pres-
sure at normal incidence, versus the incidence angle θi for different values of the relative
index contrast δ = n2−n1

n2
= 0.01, 0.02 and 0.4.

First, we can see that the normalized radiation pressure decreases with θi and vanishes
at tangential incidence (θi = 90◦). Second, Π−+(θi) is independent of the incidence angle
when θi < 20◦, a situation that corresponds to the regime of quasi-normal incidence. For
θi > 20◦, Π−+(θi) decreases significantly beyond a certain value of θi which increases as
δ decreases. Physically, this illustrates that the radiation pressure, i.e. the momentum
jump of photons at the interface, is less sensitive to the incidence angle when the two
fluids tend to refractive index matching (δ → 0). As detailed below, the coupling between
radiation pressure and interface deformation (tan θi =

dz
dr

), is the major physical feature
that explains both the dynamics and statics of the interface deformation.

2.1.2 Governing equations

Since the Reynolds number associated with the flows under consideration is always small
compared to unity (Re = Uω0ρ

µ
≃ 10−3, µ ≃ 10−3Pa.s, ρ ≃ 103kg/m3, ω0 ≃ 10µm and

U ≃ 10−4m/s a characteristic velocity of the flow), both fluids obey the mass conservation
and Stokes equations.
Their dynamics are coupled through stress balance in addition to the continuity of ve-
locity at the interface denoted SI . The motion of the interface is described following a

Lagrangian approach. Using w0 as a reference length, U0 =
2σ

µ1 + µ2

as a reference velocity

and pi0 =
µiU0

ω0
, i = 1, 2 as a reference pressure in fluid i, the axisymmetric dimensionless

boundary value problem can thus be expressed as

∇.ui = 0 ; i = 1, 2 (6)

0 = −∇pi +∆ui ; i = 1, 2 (7)
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2

1 + ζ
(ζT1 · n−T2 · n) = (κ(r) + Π(r)−Bo z)n ; x on SI (8)

u1 = u2 on SI ; u1 = 0 on SC1 ; u2 = 0 on SC2 (9)

dx

dt
= u(x) on SI (10)

ui, pi are respectively the dimensionless velocity and pressure in each fluid while
Ti = −piI+ (∇ui +

t ∇ui) is the dimensionless stress tensor and ζ = µ1/µ2 the viscosity

ratio. κ(r) =
1

r

d

dr

r dz
dr

√

1 + dz
dr

2
is twice the mean curvature of the axisymmetric interface in

cylindrical coordinates, Π(r) = ω0

σ
Π−+(r) is the dimensionless radiation pressure where

Π−+ is given by equation (4) and Bo = (ρ1 − ρ2)gω
2
0/σ is the gravitational Bond number

which quantifies the relative magnitude of buoyancy to capillary effects for small defor-
mation amplitude. A detailed investigation dedicated to the gravitational effects, was
proposed in a previous work, for small deformation amplitudes [17; 21]. Since Bo is typi-
cally in the range 10−3..10−1 for fluids commonly encountered, buoyancy can reasonably
be neglected compared to the other forces and will not be discussed in the present paper.
In order to quantify effects of the laser wave on the interface deformation, it is convenient
to define the optical to Laplace pressure ratio. This ratio π0 taken at r = 0 (θi = θt = 0),
is defined as:

π0 = |Π(r = 0)| =
4P

πcω0σ

n1(n2 − n1)

(n2 + n1)
(11)

and can be considered as the optical Bond number.

2.2 Integral formulation and algorithm

Since solutions to the Stokes problem can be formulated in terms of Green’s functions [22],
we rewrite the governing equations as a system of integral equations over the boundaries
of the computational domain. Once boundary conditions on the interface SI and solid
boundaries SC1 and SC2 in contact with fluid 1 and 2 are used (see Figure 2), the two-phase
Stokes problem can be written in the following compact form:

1 + ζ

2
u(x) =

∫

SI

U.n(κ(ry) + Π(ry)− Bo z(ry))dSy+ (12)

(1− ζ)

∫

SI

n.K.udSy + ζ

∫

SC1

U.(T1.n)dSy −

∫

SC2

U.(T2.n)dSy.

Here, U and K are Green’s kernels for velocity and stress respectively and are given
by [22]:

U(d) =
1

8π
(
1

d
I+

dd

d3
), (13)

K(d) = −
3

4π
(
ddd

d5
), (14)

where d = x− y, y(ry, zy) is the integration point. In Eq. (12), the first term in the right
hand side describes the flow contribution from interfacial tension, radiation pressure and
gravity, whereas the second term accounts for shear rates contrast on the interface. This
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term vanishes when ζ = 1. The third and fourth terms account for shear occurring on
SC1 and SC2 as a result of the no-slip boundary condition.

Velocities on the interface as well as stress over all the boundaries SI , SC1 and SC2

are determined by solving the discrete form of this equation using a Boundary Element
Method (BEM). Details on the BEM applied to two-phase axisymmetric flow can be found
in the review by Tanzosh et al. [23] on the solution of free surface flow using this tech-
nique. The BEM reveals to be an excellent tool to solve interfacial flow problems with
high resolution as reported in the analysis of flow involving electric and magnetic fields
[2] or buoyancy [24; 25].
The solution requires first the discretization of all the boundaries SI , SC1 and SC2. Due
to the integral formulation and axial symmetry, the problem is reduced to one dimension
and only line boundaries need to be discretized. In this work, the mesh is made of con-
stant boundary elements, i.e. line segments with centered nodes. Azimuthal integration
of Eq. (12) is performed analytically [26; 27] reducing Eq. (12) to a line integration which
is finally performed using Gauss quadratures [28]. Elliptic integrals resulting from the
azimuthal integration are evaluated using power series expansions [29].
The fluid-fluid interface SI is parameterized in terms of arc length and is approximated
by local cubic splines to remesh the interface during its deformation, so that the curva-
ture can be accurately computed. Distribution and number of points are adapted to the
shape of the interface, so that the concentration of elements is higher in regions where
the variation of curvature of the interface is large. The number of mesh points is about
70 for a typical computation of a small interface deformation. The solid boundaries SC1

and SC2 are meshed using about 40 uniformly distributed points. An increase in the mesh
resolution for the interface and the solid boundaries do not show any change in the results.
The motion of the interface is followed using the kinematic condition (10) which is dis-
cretized using an explicit first-order Euler time scheme. A typical computation begins
with a flat interface at rest. The laser beam is switched on at t = 0, and the interface
deforms towards fluid 1 of smallest refractive index. Computation stops when an equilib-
rium state is reached (v.n|SI

→ 0). The time step is chosen to be about 20 times smaller
than the reference time τ0 =

ω0

U0
.

3 Results

3.1 Comparison with experiments

In this section, we compare numerical predictions to experimental data giving both the
time evolution of the interface and the steady state hump heights and interface shapes for
various laser illuminations and fluid properties.
The experimental fluids correspond to a phase-separated near-critical water-in-oil micellar
mixture contained in a thermo-regulated spectroscopic cell at temperature T , for which
a very low interfacial tension can be achieved. Details on how the solution is prepared
can be found in [6]. Above the critical temperature Tc = 308K, two distinct fluid phases
1 and 2 of different compositions coexist with densities ρ1 > ρ2 and refractive indices
n1 < n2. A vertical upward Gaussian beam from a continuous wave Ar+ laser operating at
wavelength 514.5 nm is then focused at normal incidence onto the flat fluid-fluid interface.
More exhaustive experimental details on the configuration and protocol as well as on the
determination of the sample properties used here were reported earlier [17; 19].
As already demonstrated [30], the thermophysical properties of the fluids can be evaluated
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using asymptotic scaling laws of near critical phenomena [31].
Assuming that the coexistence curve is symmetric versus the critical concentration ϕc,
the micellar concentration in each phase ϕi (i = 1, 2) can be estimated by:

ϕ1 = ϕc +
∆ϕ

2
, (15)

ϕ2 = ϕc −
∆ϕ

2
, (16)

with ϕc = 0.11 and:

∆ϕ = ∆ϕc

(

T − Tc

Tc

)0.325

, (17)

with ∆ϕc = 0.5.

The density of each phase ρi, i = 1, 2 can be written as a function of ϕi:

ρi = ρmicϕi + ρcont(1− ϕi), (18)

where ρmic = 1045 kg.m−3 and ρcont = 850 kg.m−3 are the densities of the micelles and
continuous phases respectively.

Because the average distance between two micelles is small compared to the wavelength
of the laser wave, the mixture can be regarded as homogeneous from the electromagnetic
point of view. Thus, the relative dielectric permittivity ǫi = n2

i of the mixture is [32]:

ǫi(ϕi) = ϕiǫmic + (1− ϕi)ǫcont −
ϕi(1− ϕi)(ǫmic − ǫcont)

2

3(ϕiǫmic + (1− ϕi)ǫcont)
. (19)

along with ǫmic = 1.86 and ǫcont = 2.14, ǫmic and ǫcont being the relative permittivity of
the micelles and the continuous oil phase respectively.
Since concentrations are weak, we use Einstein’s relation to estimate the dynamic viscosity
µi of each phase:

µ1 = µ0

(

1 + 2.5
∆ϕ

2

)

(20)

µ2 = µ0

(

1− 2.5
∆ϕ

2

)

, (21)

with µ0 = 1.269 mPa.s.
Finally, interfacial tension is written as:

σ = σ0

(

T − Tc

Tc

)1.26

, (22)

with σ0 = 10−4 N/m.
Since fluids are assumed to be transparent (the optical absorption is 3 10−4cm−1), the
action of light on the interface can be considered as a pure mechanical stress, allowing us
to discard heat dissipation and thermocapillary effects and to consider all liquid properties
(ρi, µi, ni and σ) as constant and independent of field strength.

Typical values of the fluids properties are given in table 1.
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T − Tc(K) σ(mN/m) n2 − n1 δ ρ1 − ρ2(Kg/m3) µ1 − µ2(Pa.s)
2 1.8 10−4 0.0097 0.0066 19 3.1 10−4

4 4.0 10−4 0.012 0.0083 24 3.9 10−4

6 7.0 10−4 0.014 0.0095 27 4.4 10−4

8 1.0 10−3 0.015 0.010 30 4.9 10−4

10 1.3 10−3 0.016 0.011 32 5.2 10−4

15 2.2 10−3 0.018 0.013 36 6.0 10−4

20 3.2 10−3 0.020 0.014 40 6.5 10−4

Table 1: Typical values of fluid properties for different values of T − Tc

3.1.1 Unsteady regime

One of the first studies of the dynamics of free surface flow induced by the radiation pres-
sure has been performed by Ostrovskaya et al. [33]. It consisted in solving the unsteady,
linearized momentum and mass conservation equations in cylindrical coordinates with a
linearized boundary condition at the free surface. In a recent paper, Wunenburger et al.
[21] generalized this approach to a liquid-liquid interface where the liquids have indenti-
cal viscosities. In particular, it was shown that for small deformation amplitudes (where
h . 1 and π0 . 1), the interface dynamics is accurately described by a linear theory
of overdamped interfacial waves [21]. For linearized radiation and Laplace pressures (i.e.
dz
dr

<< 1), the following expression of the dimensionless time evolution of the interface
hump height was predicted to be:

hlin(t) = z(r = 0, t) =
π0

4

∫

∞

0

e−k2/8 1

1 +Bo/k2
[1− exp

(

−t
1 +Bo/k2

4
k

)

]
dk

k
(23)

This prediction has proven to be accurate when compared to experimental data over a
wide range of fluid properties.
Note that the equilibrium solution can be easily deduced when t → ∞:

h∞,lin =
π0

8
e

Bo

8 E1(
Bo

8
) (24)

where E1(x) is the exponential integral
∫

∞

x
e−k

k
dk.

Comparison of numerical predictions with experimental results of the time evolution of
the hump height for large beam illumination (π0 > 1) is depicted in figure 4. Very good
agreement on hump dynamics and profiles (inset) is illustrated for two sets of experimental
data (T −Tc = 4.5K and T −Tc = 6K) and for different values of the beam illuminations
ranging from π0 ∼ 1.5 to 5.5.
On the same figure, we have represented the time-dependent solution given by the linear
model (Eq. 23) when the optical radiation pressure and capillary terms are linearized.
This linearization strongly underpredicts both the steady hump height (for T −Tc = 4.5K
and π0 = 5.5, h∞,lin = 4 while h = 7.2) and the time necessary to reach 99% of the steady
hump height (τ99,lin = 40 while τ99 = 100). This shows that the complete forms of both
the radiation pressure and capillary pressure terms are necessary to yield an accurate
description of the interface dynamics.
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Figure 4: Time evolution of the interface hump height for ω0 = 4.8µm. Experiments (symbols) are
compared to numerical predictions (continuous lines) and linearized theory hlin(t) (dot-dashed lines).
(Top)T − Tc = 4.5K, δ = n2−n1

n2

= 0.0086 and ζ = µ1

µ2

= 1.37. (Bottom) T − Tc = 6K, δ = 0.0095 and

ζ = 1.42. Time t is dimensionless (reference time is τ0 = ω0

U0

). The inset shows the interface shape at
different times.

3.1.2 Steady state

In figure 5, we compare the experimental results for the stationary interface hump height
h versus π0 to the computed predictions. These data were obtained at T −Tc = 10K and
T − Tc = 3.5K. Experimental profiles of the interface are also compared to the steady
profiles obtained numerically for π0 ranging from 2 to 4.5. These results clearly show that
the numerical resolution gives an excellent prediction of the interface hump height and
profile providing a quatitative validation of our model in both the linear (π0 ∼ 2) and
nonlinear (π0 ∼ 4.5) regime.
Considering the accuracy of our calculations, we now extend the numerical investigation
to a range of values of the relative index contrast δ = n2−n1

n2
and viscosity ratio ζ = µ1

µ2

that goes far beyond the existing experimental data. This will highlight original features
for both the steady state and dynamics of the interface.
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Figure 5: (Top) Numerical and experimental interface steady hump height variation with the optical to
Laplace pressure ratio π0. Dashed lines represent the linear prediction h∞,lin. (Bottom) Steady state
interface profiles for different π0 (ω0 = 5.3µm) (Profiles were arbitrarily shifted in the z-direction). In
all graphs, symbols and continuous lines represent experimental data and numerical solutions respec-
tively.(Left) T − Tc = 10K, δ = n2−n1
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= 0.011. (Right) T − Tc = 3.5K, δ = 0.008.

3.2 Optical effects

The near-critical fluid phases used in the experiments had a relative index contrast varying
from δ = 0.0066 for T − Tc = 2K to δ = 0.015 for T − Tc = 25K featuring a very narrow
range of variation of this parameter. Experimentally, it is possible to reach steady defor-
mations with comparable aspect ratios using other couples of fluids such as Octane/Water
with Span 80 or SDS as surfactants (σ ∼ 10−2mN/m and δ ∼ 0.06). Higher relative in-
dex contrasts δ ∼ 0.35, (Water+Lung surfactants)/Air interface (σ ∼ 10mN/m) can be
achieved, altough a beam power of approximately 10W becomes necessary.
Given these experimental constraints, we investigate the role of δ in the range 10−5 < δ <
0.4 by means of numerical simulations in order to understand its effects on the deforma-
tion in the nonlinear regime.

In figure 6, we have represented the variation of the steady state interface hump height,
h as a function of π0 for several values of δ ranging from 0.01 to 0.4.
As shown above, for sufficiently small values of the optical illumination (π0 < 2), h varies
linearly with π0 and has no dependence on δ.
In the nonlinear regime (π0 > 2), h strongly depends on δ. For any given value of π0, h
is larger when δ decreases. This is due to the fact that, for given π0 and θi, Π(θi) is a
decreasing function of δ (see figure 3).
The inset of figure 6 illustrates this statement. It shows that the value of π0 needed to
reach h = 6 as a function of δ decreases when decreasing δ. However, we can also notice
a saturation of π0 = f(δ). Indeed, when δ is getting very small, the radiation pressure
becomes quasi insensitive to the incidence angles θi (i.e. to the local slope dz

dr
) except
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Figure 6: Interface hump height variation with π0 for different relative index contrasts δ = n2−n1

n2

. The
square symbols are experimental data corresponding to δ = 0.01. (Inset) Variation of π0 needed to reach
h = 6, as a function of δ.

when θi is very close to 90◦.

In figure 7 (a-b-c) we have represented the interface steady profile, for three values of
δ: 10−5, 0.01 and 0.4. The corresponding values of π0 were chosen in order to obtain the
same interface hump height h ≃ 10. It is noteworthy that the shape of the deformation in
the nonlinear regime strongly depends on δ. At relatively large values of δ, (e.g. δ = 0.4
in figure 7a), the center part of the interface adopts a needle-like shape with a sharp tip.
Decreasing δ (e.g. δ = 0.1, see figure 7b) widens and rounds off the tip, showing a bell
shape, while the base of the deformation shrinks. More surprisingly, when the two fluids
have almost the same refractive properties, a stable finger, nearly cylindrical with a round
tip, is obtained (figure 7c). This shape evolution corresponds to what is observed on the
two pictures superimposed on figure 7 and extracted from experiments performed with
near-critical phases. Figure 7d, obtained at T − Tc = 20K (δ ≃ 0.014) and π0 ∼ 5.5
shows that the interface adopts a bell shape while figure 7e, obtained at T − Tc = 2K
(δ ≃ 0.0066) and π0 ∼ 9, shows a nearly cylindrical finger.
These observations can be explained qualitatively by considering the balance of radiation
and Laplace pressures. The finger shape (δ → 0) corresponds to a case where the ra-
diation pressure is almost independent of the incident angle (see figure 3). This means

that Π(r) ≃ π0e
−2r2 . Therefore, as only the capillary force balances the optical radiation

pressure at steady state (we neglect the weak influence of gravity), we have κ(r) ∼ Π(r).
This is confirmed on figure 7-h where the curvature profile shows an excellent agreement
with the gaussian profile (see figure 7h).
The other shapes (δ = 0.1 and δ = 0.4) show that when the radiation pressure strongly
depends on the incidence angle, the profile tends to a needle shape as the maximum of
Π(r) becomes more and more localized toward the tip (r = 0 and θi = 0).
Consequently, one can tune the morphology of stationary nonlinear deformations by sim-
ply changing the refractive index contrast.
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Figure 7: Bottom (a-b-c): Interface steady profiles for δ = 0.4, 0.01 and 10−5. π0 is chosen to keep
h ≃ 10. Bo = 0.003. Central pictures (d-e) were obtained from experiments with Bo = 0.003. Left
picture (d): T − Tc = 20K, δ ≃ 0.014, π0 ∼ 5.5. Right picture (e): T − Tc = 2K, δ ≃ 0.0066 and π0 ∼ 9.
Top (f-g-h): Curvature of steady profile associated to the deformations. The line with (+) symbols is a
gaussian profile.

In the following, we show that the dynamics of the deformation has also a strong depen-
dence on the relative index contrast δ.

In figure 8, the time evolution of the hump height h(t) is plotted for δ ranging from
10−4 to 0.4. We note that the transient regime is significantly longer when δ is closer to
zero, i.e. when the fluids tend to match optically. This is explained in the left inset of this
figure that shows the time variation of the radiation pressure integrated over the interface

|
∫

SI

Π(r, t)ndS| = 2π
∫

R

ω0
0 Π(r, t)rdr reduced by its initial value 2π

∫

R

ω0
0 Π(r, t = 0+)rdr.

This ratio, called F , simply represents the time variation of the net optical force applied
to the interface during the transient deformation. We can notice that this force quickly
reaches its steady state value when δ = 0.4 whereas the transient is much longer for
δ = 0.01. This observation can be explained qualitatively by considering the decrease
of the radiation pressure with the incidence angle θi. As the deformation increases, θi
increases along the interface, therefore the associated radiation pressure applying on the
growing hump decreases locally for δ = 0.4 while it remains quasi unchanged for δ = 0.01.
The characteristic relaxation time of the optical force is smaller when increasing δ. As this
force is the source of momentum transfered to the interface, the dynamics of the interface
follows a similar behaviour with δ.
The right inset shows a characteristic time τ60 chosen arbitrarely at 60% of the equilibrium
hump height as a function of δ. We can clearly see that τ60 increases when δ decreases,
before reaching a saturation. This saturation is related to the weak dependence of Π(r)
on θi at small δ.
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3.3 Viscous effects

By analogy with the analysis of the effects of refraction indices on the deformation, we
now investigate the effect of the viscous ratio ζ = µ1

µ2
on the transient behaviour of the

deformation towards equilibrium. Equation (8) shows that the transient deformation de-
pends on viscosities only through their ratio ζ .
In the case of the near-critical phases used in the experiments reported earlier, ζ was
varying from 1.27 for T −Tc = 2K to ζ = 1.76 for T −Tc = 25K. As ζ was close to unity,
no particular behaviour was observed in the transient regime.
It is however possible to imagine experiments with larger values of ζ . Using viscous
Glucose-Water/Hexadecane or Glucose-Water/Toluene and appropriate surfactants would
enable to obtain a viscosity ratio of ζ ∼ 150 with δ ∼ 0.06 and σ ∼ 10−2mN/m still al-
lowing large scale deformations using a continuous laser beam. A theoretical study would
thus be a very useful predictive tool for the design of realistic future experiments. For
this reason, we investigate the effect of the viscosity ratio in the two limit cases ζ = 200
and ζ = 1/200.

Figure 9 shows the evolution of the interface profile at different times for these two
values of ζ , keeping δ = 0.1, Bo = 0.01 and π0 = 15.
In the case ζ = 1

200
, we can observe a sharp transition from a bell shape (t = 0.65),

characteristic of a small deformation amplitude, to a needle shape (t = 4.7). For ζ = 200,
we observe that the transition towards the needle shape occurs later, the tip of the in-
terface showing a rounded shape between t = 4.7 and t = 7.9. This shape transition can
be further characterized by analyzing the time dependence of the reduced curvature of
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Time evolutions of the corresponding reduced curvature of the curvature
κ(2)(t)

κ(t)
=

d2κ(r,t)
dr2

|r=0

d2z
dr2

|r=0

.
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the curvature at the tip,
κ(2)(t)

κ(t)
=

1
r

d
dr

(

r dκ(r,t)
dr

)

|r=0

κ(r = 0, t)
=

d2κ(r,t)
dr2

|r=0

d2z
dr2

|r=0

shown in figure 9, κ(2)

κ

being an indicator of the spatial variation of the curvature. In fact, a needle shape has a
sharper curvature variation with r than a rounded shape (see figure 7(f) and (h)), which

means that κ(2)

κ
is larger (in magnitude) for the needle shape. We observe in figure 9

that for a given value of ζ , κ(2)(t)
κ(t)

initially increases until reaching a maximum at time τζ
(τ1/200 = 3.3, τ200 = 9.5) before decreasing toward the steady state value . This maximum
is a signature of the change of the shape evolution that switches from a round tip to a
sharp one corresponding to a needle shape.

4 Conclusion

While quantitatively validated with experimental data in the nonlinear regime of deforma-
tion, our numerical resolution, based on a Boundary Element Method, showed that new
morphologies of a soft fluid-fluid interface deformed by a continuous laser wave emerge
when fluids become contrasted. In the nonlinear regime, where the radiation pressure
and the height of the interface strongly depends on the relative refractive index contrast
δ, we showed that the interface shape turns from a needle to a nearly-cylindrical finger
shape. In the transient regime, we predicted that the characteristic time of the defor-
mation increases when decreasing δ before reaching a saturation. These results show the
strong nonlinear coupling between the radiation pressure and the interface deformation
in both transient and steady state. It was shown that the physical feature explaining
these results lies in the dependence of the radiation pressure on the incidence angle. An
original experimental evidence of this dependence can be achieved when the beam axis is
not perpendicular to the initial flat interface. In this configuration, the interface hump is
attracted in the direction of light propagation in the nonlinear regime of deformation (see
figure 10).
Finally, the influence of the viscosity ratio ζ has been investigated for large scale defor-
mations. We showed that the transition time of the interface from its initial bell shape to
the steady shape increases with ζ .
All these results show that the morphology of nonlinear interface deformations driven by
the radiation pressure of a laser wave is even more rich than expected, opening the route
towards future original experiments. Further developments on nonlinear effects, where a
feedback coupling between deformation and propagation emerges, will extend deformation
shapes to self-adapted ones as for liquid optical fibres [34] and nipple-like shapes observed
experimentally [35]. They both involve light guiding within the deformation that modifies
in turn the radiation pressure along the structure. This thorough analysis of optohydro-
dynamics provides the general frame to predict and anticipate further developments of
contactless interface manipulation at the micrometer scale.
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Figure 10: Interface deformation with a tilted laser beam propagating upwards. Top : P = 1W . Bottom
P = 1.7W . n1−n2 = 0.016 and σ = 1.4 10−6N/m. When the beam is tilted, incidence angles on one side
of the deformation (here the left one) are larger than in the other side. When they are sufficiently small
to consider radiation pressure as constant all over the interface, the deformation remains symmetric (Top
picture). When the beam power is increased, the growth of the deformation makes radiation pressure
sensitive to incidence angles and then more efficient on the right than on the left. The deformation is
thus attracted in the beam propagation direction and becomes non-axisymmetric (Bottom picture).
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