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ABSTRACT: Protein physicochemical properties must undergo complex changes during 
evolution, as a response to modifications in the organism environment, as a result of the proteins 
taking up new roles or because of the need to cope with the evolution of molecular interacting 
partners. Recent work has emphasized the role of stability and stability/function trade-offs in 
these protein adaptation processes. Here, on the other hand, we report that combinations of a 
few conservative, high-frequency-of-fixation mutations in the thioredoxin molecule lead to 
largely independent changes in both, stability and the diversity of catalytic mechanisms revealed 
by single-molecule atomic-force spectroscopy.  Furthermore, the changes found are 
evolutionary significant, as they combine typically hyperthermophilic stability enhancements 
with modulations in function that span the ranges defined by the quite different catalytic 
patterns of thioredoxins from bacterial and eukaryotic origin. These results suggest that 
evolutionary protein adaptation may use, in some cases at least, a potential of conservative 
mutations to originate a multiplicity of evolutionary-allowed mutational paths leading to a 
variety of protein modulation patterns. Besides, they support the feasibility of using of
evolutionary information to achieve protein multi-feature optimization, an important 
biotechnological goal. 

INTRODUCTION

Proteins must undergo adaptive changes during evolution when, for instance, the environment 
surrounding the organism is altered or when they are recruited for new roles [1, 2]. While these 
changes must involve modulation in several protein properties, recent work has mostly 
emphasized the role of protein stability in molecular evolution [3-6]. A common argument is 
that most mutations affect stability, while only a few are likely to affect function. Furthermore, 
experimental studies show that most mutations are destabilizing and, consequently, 
accumulation of a few mutations may compromise the so-called “protein fitness”, due to the 
concomitant sharp decrease in stability. In addition, it is often assumed that the evolution of 
biological function is “limited” or “constrained” by the destabilizing effects of mutations, as 
stability and function are generally presumed to trade-off. As a well-known example, mutations 
conferring TEM-1-lactamase with resistance against third-generation antibiotics were found to 
be destabilizing [7]. Molecular evolution that is determined by trade-off and sign-epistasis [8] 
effects may be expected to be constrained to follow a few mutational paths (since mutations are 
bound to occur in a rather specific temporal order to avoid deleterious intermediate 
combinations). In fact, the possibility of “re-winding” the molecular tape of life has been 
suggested [9].

Here, we explore a point of view which differs from that often found in recent literature 
and summarized in the above paragraph. We reason that, since adaptations to new situations are 
common during evolution, many proteins are poised to change their properties efficiently, at 
least within certain evolutionary-relevant ranges; this should be particularly the case for proteins 
involved in several molecular tasks, which may have to cope with evolutionary changes in many 
interaction partners. We thus propose a mechanism for efficient adaptation based on a set of 
mutations with the following features:

a) the mutations in the set have a high-frequency of fixation during evolution. That is, 
they belong to the class of mutations that would be loosely described in various contexts as 
“conservative”, “non-disruptive”, “neutral”, “nearly-neutral” or “quite”.  We use the term 
“conservative” in this work, but we specifically refer to mutations with non-negative 
coefficients in substitution matrices (such as Dayhoff’s PAM250 [10]) and, consequently, with
high-frequency of fixation during evolution;

b) both, stability-related and function-related properties are modulated by the mutations 
in the set, with no strong bias for stability versus function;

c) the effects of the several mutations in the set are roughly independent and, therefore, 
strong trade-off and sign-epistasis effects do not occur;
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d) as a result, a diversity of mutational pathways leading to a variety of patterns of
complex modulation become available to Darwinian evolution, thus leading to efficient protein 
adaptation within some evolutionary significant range of protein properties values.

In this work, we provide experimental support for the above proposal by showing that 
combinations of a few conservative mutations in the thioredoxin molecule lead to large, 
independent and evolutionary-meaningful changes in stability and the complex patterns of 
catalysis revealed by single-molecule atomic-force spectroscopy. Actually, thioredoxin provides 
an excellent model system to investigate the issues we have raised above for the three following 
reasons: 

1) Thioredoxins [11] are present in all known organisms and, consequently, these 
enzymes exist for organisms that thrive in widely different environments. Temperature 
environment, for instance, is particularly relevant and we may expect thioredoxins from 
psychrophilic, mesophilic, thermophilic and hyperthermophilic organisms to show quite 
different thermal stabilities. 

2) Thioredoxins catalyze the reduction of target disulfide bonds, regulating a multitude 
of cellular processes [11]. A recent proteomic analysis [12] has identified 80 proteins associated 
with thioredoxin and has involved thioredoxin in at least 26 cellular processes in E. coli; 
furthermore, additional functions and protein targets for thioredoxin have been reported in 
eukaryotes [13]. Clearly, a high potential for adaptation is to be expected in the case of 
thioredoxin, a protein which must cope with evolutionary changes in a multitude of interaction 
partners and the associated functional roles. 

3) Recent single-molecule work [14, 15] has indeed revealed a diversity of reduction 
mechanisms in thioredoxin with evolutionary-differentiated patterns of catalysis showing a 
well-defined correlation with the domains of life. These studies indicate the evolutionary ranges 
of variation of the chemistry of thioredoxin catalysis, thus providing a clear reference 
framework for the assessment of the evolutionary significance of mutation-induced 
modulations. Single-molecule atomic force microscopy (AFM) allows the application of a 
calibrated force to a disulfide bonded substrate making it possible the study of the catalytic 
mechanisms with sub-Angstrom precision. When the substrate is stretched at low forces, all 
thioredoxins share a Michaelis-Menten-type reduction mechanism. On the other hand, at high-
forces there are clear-cut differences between thioredoxins of eukaryotic and bacterial origin. In 
the former case, disulfide-bond reduction occurs through an electron-transfer reaction (SET), 
while thioredoxins of bacterial origin exhibit in addition a simple nucleophilic substitution 
(SN2), thus showing a rate increase at high force which is absent in eukaryotic thioredoxins. It is 
relevant that the high-force SN2 mechanism is equivalent to that observed in disulfide-bond 
reduction with chemicals, such as dithiothreitol, glutathione or cysteine [16, 17]. The presence 
of this simple chemical SN2 mechanism in bacteria may be related to their ability to survive in 
extreme conditions [15]. On the other hand, the simple chemical SN2 mechanism would appear 
detrimental in eukaryotic cells and thioredoxins from eukaryotic origin seem to have been 
naturally selected to depress this pathway of reduction. A structural interpretation in terms of 
the narrowing of the substrate binding-groove in eukaryotic thioredoxins has been advanced 
[15].

EXPERIMENTAL

See “Supporting Information” for a detailed description.
The sequence alignment used has been previously described in detail [18, 19]. Briefly, 

BLAST2 [Gish W. (1996-2003) http://blast.wust1.edu] was used to search the sequence of E. 
coli thioredoxin as query in the UniProt/TrEMBL database with default search options. 
Resulting sequences were aligned using the Smith-Waterman algorithm. Those belonging to 
proteobacteria and with a sequence identity with the query higher than 0.25 were used to 
calculate the ratios of frequencies of occurrence given in figure 1A. Information from references 
20 and 21 was used to examine the temperature range for growth and the optimal growth 
temperature for the 100 proteobacteria from which sequences are included in the alignment. All 
these microorganisms are mesophiles, with the only exception of two psychrophiles. The 
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librariy of thioredoxin variant sequences was constructed by using gene assembly mutagenesis
[22]. Thermal stability was determined by differential scanning calorimetry [18, 23]. Single-
molecule atomic force microscopy experiments were carried out as recently described [14, 15]. 
Very briefly, we used as protein substrate a polypeptide made of eight repeats of the I27 domain 
of human cardiac titin with engineered cysteines. A custom-built atomic force microscope 
controlled by an analogue proportional-integral-derivative feedback system [24] was employed 
to follow the reduction catalyzed by thioredoxin of individual disulfide bonds under a stretching 
force applied to the substrate.

RESULTS

Modulations in stability and evolutionary-significant patterns of thioredoxin catalysis can
be achieved by combinations of a few conservative mutations

To investigate how evolutionary relevant changes in thioredoxin properties may be achieved, 
we have determined a number of high-frequency-of-fixation mutations using an alignment of a 
hundred sequences derived [18] from a database BLAST search with the E. coli thioredoxin 
sequence as query. It is very important to note from the outset, that the alignment used contains 
exclusively sequences of proteins from proteobacteria.  All proteins in the alignment are thus of 
bacterial origin and, furthermore, they happen to belong to mesophilic organisms or (in a few 
cases) to psychrophilic organisms. That is, thioredoxins from thermophilic or hyperthermophilic 
organisms are not represented in the alignment used. Despite of this, the three highest-frequency 
mutations in the alignment lead to stability enhancement (an increase in denaturation 
temperature of about 10 degrees with respect to the wt E. coli protein), as shown in previous 
work [18]. The corresponding triple-mutant variant (referred to as V3) is the starting point of 
the analysis reported here. Using V3 as a background, we have constructed a combinatorial 
library using the next 8 high-frequency mutations (Figure 1A). This library contains 256 
variants from which 23 were randomly selected and subjected to single-molecule determination 
of the reduction rates at 75 pN (a low force at which the Michaelis-Menten mechanism is the 
major contribution) and 500 pN (a high force which reveals the contribution of the “simple 
chemical” SN2 mechanism). The surprising result (figure 1B) is that the library variants show a 
considerable variability in the high-force and low-force rates, actually spanning the range 
defined by the quite different catalysis patterns of thioredoxins from bacterial and eukaryotic 
origin. We have also assessed the thermodynamic stability (equilibrium denaturation 
temperature measured by scanning calorimetry) for the library variants: again a large variability 
is found although a trend to stability enhancement is clearly apparent (figure 2A and 2B). This 
trend may reflect a threshold evolutionary limit for stability, which would lead to statistical 
preferences for stabilizing mutations in the alignment [25]. Nevertheless, the important point to 
note at this point is that a small number of mutations determine simultaneous modulations in 
stability and complex patterns of catalysis. It must be also be emphasized that these modulations 
are observed in variants extracted from a combinatorial library, a procedure that, in fact, 
reproduces the situations found during thioredoxin evolution: note that the mutations we use are 
conservative, high-frequency ones and, as a result, they appear combined very often during 
evolution. In fact, the distribution in the alignment used of combinations of the mutations 
selected is close to the binomial one (figure 2C).

The modulations found in stability and different pathways of catalysis are largely
independent of each other

The modulations found in stability and catalysis appear to be largely independent of each other, 
as is qualitatively shown by the fact that the plots of property vs. property for the library 
variants (figures 1B, 2A and 2B) are essentially scattergrams that show little correlation. Note 
that non-independence between two properties (because of the existence of trade-offs or because 
of the two properties reflecting a common underlying feature) would result in correlated plots. 
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Therefore, the absence of clear correlations in the experimental property vs. property plots 
(figures 1B, 2A and 2B) reveals the important result that the several properties can be to a 
significant extent modulated in an independent manner by suitable combinations of conservative 
mutations.

To further quantify the independency between the studied properties we have carried 
out a Principal Component Analysis (pca), a mathematical procedure to identify the directions 
along which sample variation is maximal and to reduce the dimensionality of data sets [26]. In a 
first step, we applied pca to the three two-property sets that can be derived from our data (i.e., 
low-force rate vs. denaturation temperature, high-force rate vs. temperature and high-force rate 
vs. low-force rate). For two properties that are strongly correlated, pca should reveal one major 
component together with a very minor one, indicating that the dimensionality of the set can be 
reduced to one. However, for our three two-property sets (Figure 3A, 3B and 3C), the 
contributions of the first and second component appear both significant, supporting very weak 
correlations and, therefore, efficient independent modulation. In a second step, we performed a 
pca analysis with the whole three-property set and figure 3D shows the percentage of data 
variance explained by the resulting three principal components. While the first and second 
components dominate, even the third one makes a significant contribution (about 10% of the 
variance). 

A wide variety of patterns of protein modulation become in principle possible. For 
instance: combination of hyperthermophilic stability enhancement with eukaryotic 
signature of catalysis

The fact that stability-related and catalysis-related properties can be modified in an independent 
manner implies that different patterns of protein modulation are in principle possible. This is 
evident in the wide variety of property combinations for the studied library variants shown in 
figures 1B, 2A and 2B. Clearly, the set of mutations we study has a high potential for protein 
multi-feature modulation, as is dramatically illustrated by the combination of stability 
enhancement and eukaryotic signature of catalysis we describe below.

The library variants were prepared with a His-tag for ease of purification. Previous 
studies have shown a negligible effect of His-tags on reduction rates measured by single-
molecule AFM and results reported here indicate only a small effect on stability. Still, we 
deemed convenient to carry out a detailed analysis of a particularly interesting library variant 
(referred to as trx*) prepared without the tag. Trx* is a variant of E. coli thioredoxin with the 
following mutations: A22P, I23V and P68A (i.e., the V3 background) plus D10A, Q50A, G74S, 
E85Q and A87V (see “Supporting Information” for further details). A comparison between trx* 
and wt trx from E. coli (without His-tags in both cases) is shown in figure 4. Trx* has a 
denaturation temperature of 108 �C (about 20 degrees higher than that for E. coli wt) and a very 
slow unfolding rate (about 15000 times slower than that for E. coli wt). Furthermore, in single-
molecule experiments, it shows an enhanced low-force reduction rate and a diminished high-
force rate, indicating a depressed simple SN2 mechanism. In fact, the pattern of catalysis for trx* 
approaches that of a eukaryotic thioredoxin (see also figure 1B). The combination of high 
stability and eukaryotic pattern of catalysis in trx* is a particularly suggestive one, since, in 
most cases, eukaryotic organisms are not thermophiles [27].

Specific patterns of protein properties modulation may be likely achieved through many 
mutational paths

The fact that a certain combination of mutations leads to a pattern of protein properties that 
enhances fitness does not necessarily imply that such a pattern is accessible through Darwinian 
evolution. Evolutionary accessibility requires that a mutational path exists that leads to the 
desired combination without involving deleterious intermediate combinations. However, the 
protein multi-property modulations described in this work are based on conservative mutations, 
which are not likely to show strong trade-off or sign-epistasis effects. This is clearly supported 
by: 1) the analysis of the combinatorial library data in terms of an independent-mutation-effect 
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model which yields small values for the mutation effects on activity and catalysis (see figure S4 
in Supporting Information ; 2) strong trade-off effects would cause residue co-evolution (for 
instance, if a mutation improves function while it decreases strongly stability, it will occur 
during evolution coupled with mutations that strongly increase stability). However, we have 
carried out a covariance analysis of the alignment used (figure S3 in Supporting Information) 
which indicates that co-evolution between the positions included in our library is not significant; 
3) the principal component analyses shown in figure 3 do not reveal strong correlations. 
Accordingly, we may expect that, for each specific modulation pattern, a significant number of 
evolutionary-allowed mutational paths exist. This idea is illustrated by the simple calculation we 
describe below: 

Assume that, over some evolutionary time-span, changes in organism environment and 
biological function are taking place in such a way that increased fitness is brought about by a
thioredoxin enzyme of high stability, enhanced rate of catalysis through the “specific” 
Michaelis-Menten mechanism and depressed rate of catalysis through the “chemical-like” SN2 
type of mechanism. This multi-property modulation is in fact achieved by the five mutations 
D10A, Q50A, G74S, E85Q and A87V present in the trx* variant described in the preceding 
section. Five mutations can occur in 5!=120 different temporal arrangements. The question is 
how many of these 120 mutational paths are evolutionary allowed, in the sense that they do not 
involve deleterious intermediate combinations (i.e., combinations involving strongly decreased
fitness). We have assumed a simple linear model for the relation between protein fitness (f) and 
the values of the properties under consideration:


















3

3

2

2

1

1

3
1

P
P

P
P

P
Pf  (1)

where P1, P2 and P3 refer to the values of the denaturation temperature (a measure of stability), 
the rate of disulfide reduction in single-molecule AFM experiments at low force (a measure of 
the contribution of the Michaelis-Menten mechanism) and the rate at high force (a measure of 
the “chemical” SN2 mechanism). The changes labelled δPi are the value of the property Pi with 
respect to the “starting” value (the value when none of the 5 mutations has occurred) and Pi
stands for the total change: the final value of the property (when the 5 mutations have occurred) 
minus the starting values. Equation 1 leads to fitness values which are arbitrarily scaled between 
0 (no mutations) and 1 (the five mutations are present). More importantly, equation 1 assumes
that fitness increases linearly as the properties approach their final (5-mutations) values and that 
the three properties under consideration contribute equally to fitness (same weight in the fitness 
equation). Equation 1 allows us to calculate a fitness value for each node in any of the 120 
mutational paths, provided that the mutation effects on the properties are known. For the 
illustrative purposes of this calculation, we have estimated these effects from the least-squares 
fit of a linear model to the experimental data (see Supporting Information). The resulting fitness 
value versus number-of-accumulated-mutations profiles are shown in figure 5 for all the 120 
mutational paths. Clearly, most of the paths involve increases in fitness with no deleterious 
intermediate combinations (i.e., no combinations with decreased fitness with respect the initial 
value). Furthermore, even those paths that involve a decrease in fitness at some node, do so by a 
only a comparatively small amount. It is also worth noting again that the five mutations 
involved in the calculation are derived from an statistical analysis of a sequence alignment; that 
is, these mutations occur with high frequency during thioredoxin evolution. In the case of the 
Q50A (which cannot be achieved by a single-base substitution) the mutation likely occurs over 
an evolutionary time-scale through glutamate as an intermediate amino-acid: QEA; 
actually the three amino acids involved in this sequence occur with high frequency at position 
50 of the alignment used (the number of occurrences are 11 for Q, 20 for E and 23 for Q).

Finally, we must emphasize that the calculation described above and shown in figure 5
is based on an artificial and hypothetical fitness function and is meant only for illustration. In 
particular, the actual relation between fitness in vivo and stability/reduction-rates may be much 
more complex than that suggested by equation 1. This notwithstanding, our illustrative 
calculation does provide some support for the notion that conservative mutations may contribute 
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significantly to evolutionary protein adaptation, since, not only they may originate a variety of 
patterns of multi-property modulation but, in addition, it is likely that a multiplicity of 
mutational paths leading to each modulation pattern are accessible to Darwinian evolution.

DISCUSSION

Overall, we have shown evolutionary significant modulation in protein properties related to 
stability and catalysis on the basis of a small number of mutations.  The mutations used are 
fixed frequently during evolution, as deduced not only from alignment analysis (figure 1A), but 
also from their non-negative coefficient values in the PAM250 substitution matrix, which range 
from zero (D/A, Q/A and A/V substitutions) to 7 (Y/F substitution). Still, the modulations found 
by combining these mutations take thioredoxin properties clearly away from the values expected 
for the proteins in the sequence alignment used as a starting point. We thus obtain a eukaryotic 
signature in catalysis, while all sequences in the alignment are of bacterial origin and we obtain 
typically thermophilic/hyperthermophilic stability enhancement, while the sequences in the 
alignment belong to mesophilic or psychrophilic organisms. Furthermore, the combinatorial 
library screened is very small (256 variants), only about 20 variants were analyzed and 
significant modulations are found in essentially all of them. Clearly, in vitro selection plays no 
role in the results obtained and we conclude that we have simply tapped a fundamental strategy 
for protein adaptation during evolution. A plausible interpretation of this strategy is summarized 
below:

Mutations that are fixed often during evolution (the kind of mutations that are usually 
labelled as conservative, neutral, nearly-neutral, quite, etc…) can actually modulate a variety of 
relevant protein properties.  These mutations are non-disruptive and are not expected to involve 
strong trade-offs or sign-epistasis effects [7, 9].  Different combinations of these high-frequency 
mutations will thus be available. For instance, combinations of the mutations included in our 
combinatorial library do occur in the alignment used with a distribution which does not depart 
dramatically from the binomial one (see figure 2C). The general implication is that natural 
selection may operate on many different mutation combinations, a wide variety of patterns of 
protein modulation become available to Darwinian evolution and the protein will easily cope 
with new situations. For instance, the variant of E. coli thioredoxin we have termed trx* 
displays a thermophilic/hyperthermophilic stability enhancement and a typically eukaryotic 
signature of catalysis. This combination of features may perhaps occur rarely in natural 
thioredoxins (since eukaryotic organisms are not usually thermophiles), but still thioredoxins 
should easily achieve this modulation pattern during evolution provided it brings about an 
adaptive advantage. 

Of course, stability and pattern of catalysis in single-molecule AFM are just the “tip of 
the iceberg” (two important biophysical features we can assess in in vitro experiments). Many 
other features (related to the multitude of roles and interactions of thioredoxin in vivo) may be 
expected to be modulated by high-frequency mutations. This suggests the possibility of protein 
multi-feature optimization, an important biotechnological goal [28] which is not easily achieved 
with traditional methods. Thus, for instance, consensus approaches (based on sequence-
alignment statistics) have been mostly used to enhance a single protein feature (stability in most 
cases, with some notable exception [29]) and studies on both, stability and catalysis usually 
emphasize trade-offs (mutations that enhance activity often have deleterious effects on 
stability).  Certainly, multi-feature optimization has been reported in the literature, but it seems 
to require screening of large libraries or extensive prior knowledge on the effects of the 
mutations employed [30]. By contrast, the results reported here suggest that screening of very 
small combinatorial libraries designed using sequence-alignment information could easily lead 
to simultaneous modulation/optimization of several relevant protein properties.  
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FIGURE LEGENDS

Figure 1
Single-molecule analysis of thioredoxin catalysis using a combinatorial library of 
conservative mutations. (A) Statistical analysis of an alignment of a hundred sequences 
derived from a database search using the E. coli sequence as query. All sequences in the 
alignment belong to proteins from proteobacteria. Mutations are selected on the basis of the 
fnonwt/fwt ratio, where fwt is the number of occurrences in the alignment of the residue present in 
the query sequence (that of wt thioredoxin from E. coli) and fnon-wt is the number of occurrences 
of the highest-frequency residue which is not the query-sequence amino acid. The three
mutations with the three highest values of the ratio (shown in black) provide the background for 
a combinatorial library based on the 8 mutations with the next highest values of the ratio (shown 
in green). (B) Rates of disulfide-bond reduction by thioredoxin determined by single-molecule 
atomic force spectroscopy. Measurements for 23 variants from the combinatorial library (shown 
in green) were carried out upon application of low and high mechanical force (75 and 500 pN). 
The behaviour of wild-type thioredoxins of bacterial and eukaryotic origin (taken from [15]) is 
shown in blue and red, respectively. Trx* is a library variant with an unusually high stability 
and an eukaryotic signature of catalysis (see text and figure 3).

Figure 2
Disulfide-reduction rates and denaturation temperatures for thioredoxin variants from 
the combinatorial library. (See text and figure 1 for details on library design). (A, B) Plots of 
high-force rate and low-force rate vs. denaturation temperature. Denaturation temperatures are 
given with reference to the wt protein [i.e., ΔTm=Tm(variant)-Tm(wt)]. Error bars are not shown 
when they are smaller than the size of the data point. These plots (as well as the plot of high-
force rate vs low-force rate in Fig. 1B) show large scatter and little correlation, indicating a 
significant degree of independent modulation of the three properties.  (C) Distribution in the 
alignment used as starting point of the analysis (fig. 1A) of combinations of the mutations 
included in the combinatorial library. The fraction of combinations with a given number of 
library mutations (relative frequencies) is plotted vs. that number of mutations. For comparison, 
a binomial distribution with p=q=1/2 is also shown.

Figure 3
Principal component analysis of thioredoxin multi-protein modulation. (A-C), pca analyses 
of two-property sets. Prior to the analysis, data are normalized to the (-1,1) interval. The 
directions of the two principal components are shown in red and the length of the lines is 
proportional to the component contribution to the variance of the data. (D), results of the pca 
analysis of the three-property set (denaturation temperature, high-force rate, low-force rate).  
The percentages of the data variance explained by each of the three principal components are 
shown. In all cases, pca analyses were carried out in the Matlab or XLminer enviroments.  

Figure 4
Very high stability and eukaryotic pattern of catalysis for a variant of E. coli thioredoxin.
(See text and figure 1 for details on library design). This variant, termed trx*, is compared with 
the wild-type E. coli protein (labelled wt). For the sake of this comparison, both proteins were 
prepared devoid of a His-tag. (A) Scanning calorimetry thermograms showing that the 
denaturation temperature of trx* is about 20 degrees higher than that for the wild-type protein. 
(B) Chevron plots of folding-unfolding rate showing a hugely enhanced kinetic stability for trx* 
(unfolding rate is about 15000-times slower in the case of trx* as compared with wt). See 
“Supporting Information” for further details about chevron plot analysis. (C) Disulfide-
reduction rate vs. applied mechanical force for wt and trx*, as determined from single-molecule 
atomic force spectroscopy experiments. Trx* shows a clearly eukaryotic pattern of catalysis, 
with the chemical SN2 mechanism clearly depressed.

Biochemical Journal Immediate Publication. Published on 06 May 2010 as manuscript BJ20100386
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

01
00

38
6

Ac
ce

pt
ed

 M
an

us
cr

ip
t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2010 The Authors Journal compilation © 2010 Portland Press Limited



- 10 -

Figure 5
Fitness profiles for the 120 mutational paths leading to a variant with the five mutations 
related to the multi-property modulation observed in trx* (figure 4). The calculations 
shown are meant for illustration and are based upon linear model for the relation between 
protein fitness and the property values (equation 1). Open symbols indicate the nodes for which 
library variants (Table S1 in “Supporting information) were actually prepared (note that 23 
library variants- out of a total of 256- were prepared, leading to a coverage of about 10%). The 
initial and final nodes (0 and 5 mutations, respectively) correspond to the V3 and trx* variants.
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Figure 1

Biochemical Journal Immediate Publication. Published on 06 May 2010 as manuscript BJ20100386
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

01
00

38
6

Ac
ce

pt
ed

 M
an

us
cr

ip
t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2010 The Authors Journal compilation © 2010 Portland Press Limited



- 14 -

Figure 2
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Figure 3
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Figure 4
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Figure 5
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