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We calculate the magnetostatic energy of synthetic ferrimagnet (SyF) elements, consisting of two thin
ferromagnetic layers coupled antiferromagnetically through RKKY coupling. We calculate exact formulas as
well as approximate yet accurate ones, which can be used to easily derive energy barriers and anisotropy fields
of SyF. These can be used to evaluate coercivity, thermal stability and other useful quantities.

Synthetic antiferromagnets1,2 consist of two thin fer-
romagnetic films of moments of same magnitude howe-
ver strongly coupled antiferromagnetically thanks to the
RKKY interaction present in an ultrathin metal spacer
layer, typically Ru 0.6 − 0.9 nm-thick3. Hereon we will
consider the more general case of practical use where the
two antiparallel-coupled moments are of different magni-
tude, and name this a synthetic ferrimagnet (SyF). The
purpose of SyFs is to provide (spin-polarized) ferroma-
gnetic layers required in magneto-resistive or spin-torque
devices, while displaying an overall weak moment. As ori-
ginally proposed1,2 the first benefit of weak moments is
to minimize cross-talk of neighboring (e.g. memory bits)
or stacked (e.g. in a spin-valve4) elements through stray-
field coupling. The second benefit is to minimize the effect
of external field through Zeeman coupling, e.g. to streng-
then the pinning in reference layers5 or minimize effects
of the Oersted field in magneto-resistive or spin-torque
oscillator devices.

In practice SyFs are used in the form of elements of
finite lateral size. For single-layer elements shape ani-
sotropy is often used to define an easy axis for the
magnetization direction. For lateral size below typically
100 nm the coercivity and stability of information are
dictated by the energy barrier in the transverse direc-
tion, which is reasonably described by in-plane dema-
gnetizing coefficients through : ∆Ed = (1/2)µ0M

2
s ∆NV .

V is the volume of the element, Ms its spontaneous ma-
gnetization and ∆N is the difference between the two
in-plane demagnetizing coefficients. While analytical ex-
pressions are available for such coefficients in single-layer
flat elements6–11, the evaluation of energy barriers and
dipolar coupling in SyFs has not been discussed beyond
the point-dipole approximation, which however is known
to be very crude in flat elements as dipolar field are very
short-ranged in two dimensions12. In this Letter we re-
port exact analytical expressions for the magnetostatics
of SyFs uniformly-magnetized in each sub-layer. We dis-
cuss the physical meaning of the results, and propose
approximate yet accurate expressions for their straight-

a)Electronic mail: Olivier.Fruchart@grenoble.cnrs.fr

Figure 1. Geometry and notations of a prismatic SyF element
comprising two ferromagnetic layers F1 and F2.

forward evaluation.
Let us first consider SyF prisms and denote F1 and F2

the two ferromagnetic layers (Figure 1). Without loss of
generality, we consider that the magnetization direction
is along z. In the framework of magnetostatic charge and
potential we apply the formulas of Rhodes and Rowlands
expressing the interaction between two parallel charged
surfaces7, and adopt the convenient notation of Fijk func-
tions, the i, j and k-fold indefinite integrals along x, y
and z of the Green function F000 = 1/r13. The only such
function needed here is

F220 =
1

2
[x(v−w)Lx+y(u−w)Ly]−xyPz+

1

6
r(3w−r2)

(1)
with u = x2, v = y2, w = z2, r =

√
u+ v + w, Lx =

(1/2) ln[(r + x)/(r − x)] etc, Px = x arctan(yz/xr) etc,
and Lx = 0 and Px = 0 for x = 0 etc.
The integrated magnetostatic energy of a single pris-

matic element of thickness t is :

Ed =
µ0M

2
s

π

∑

δa,δt,δc∈{0,1}

(−1)δa+δt+δcF220(aδa, tδt, cδc)

(2)
which normalized to (1/2)µ0M

2
s yields the demagneti-

zing coefficient Nz. It can be checked that Eq. (2) coin-
cides with the explicit formula already provided9. Based
on this the integrated magnetostatic energy of the SyF
element may be written :
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Figure 2. Magnetostatic energy of an SyF with c = 2a =
100 nm, M1,2 = 106 A/m, s = 0.7 nm. (a) Sum of the energies
of two prisms without mutual interaction, and when embed-
ded in the SyF geometry. t1 is kept constant at 2.5 nm, while
t2 is varied. (b) Energy of the general SyF. Black lines are mi-
nimum energy line for either constant t1 or t2. The red dotted
line highlights the path for the SyF curve shown in (a).

Ed =
1

2
µ0M

2
1Nz(a, t1, c)at1c+

1

2
µ0M

2
2Nz(a, t2, c)at2c

+
µ0M1M2

π

∑

δ1,δ2,δa,δc∈{0,1}

(−1)δ1+δ2+δa+δc

×F220(aδa, s+ t1δ1 + t2δ2, cδc). (3)

Figure 2(a) shows the magnetostatic energy Ed upon
building a SyF via the progressive thickness increase of
F2 above F1, considering or not the interaction between
the two layers. In the latter case the energy increase
nearly scales with t22, which is understandable because
it is a self-energy (in F2 alone). In the SyF case Ed first
decreases linearly and then increases again. This can be
understood as for low t2 the extra edge charges induced
by an infinitesimal increase δt2 mainly feel the stabili-
zing stray field arising from F1, while for large t2 they
feel more the nearby charges induced by F2 itself. Notice
that, contrary to what could be a first guess, for the SyF
the minimum of Ed(t2) occurs before the cancellation of
moment at t1 = t2. This stems from the same argument
as above, which is that magnetic charges at an edge of F2
are closer one another than to the charges on the nearby
surface of F1, thus for an identical amount contribute
more to Ed.
Figure 2(b) shows the full plot of Ed(t1, t2) for s =

0.7 nm. The above arguments appear general. From this
figure let us outline three take-away messages. 1. As a
rough guideline, for fixed t1 the magnetostatic energy of
a SyF is found for t2 ≈ t1/2. 2. At this minimum Ed is
reduced by only ≈ 20% with respect to a single-layer
element of thickness t1. 3. Ed roughly regains its value
of the single layer at the compensation point, for a true
(Synthetic AntiFerromagnet, SAF, for t2 = t1).
These results shed light on results previously noticed

empirically, however not explained. For instance Wiese

et al. noticed that the effective anisotropy of a SyF ba-
sically scales with the inverse net moment14. This arises
from the similar energy of the SyF along the hard axis
with respect to a single layer, while the Zeeman energy
scales with the inverse net moment. Beyond their use
to evaluate coercivity and energy barriers, the present
expressions may be used e.g. to derive phase diagrams
for vortex versus single-domain in disks15,16, or vor-
tex versus transverse domain walls in stripes made of
trilayers17,18. As an example Tezuka et al. investigated
single-domain versus flux-closure states in micron-sized
prismatic SyFs19. They noticed that there is an optimum

ferromagnetic film thickness at which SyAF can obtain a
single-domain structure : for t1 = 10 nm and s = 0.6 nm a
single-domain state was evidenced for t2 = 4, 6 nm, while
a flux-closure state was evidenced for t2 = 2, 8 nm. This
is in perfect agreement with the energy minima highligh-
ted in Figure 2b. More quantitative arguments about
such phase diagrams for SyFs will be provided in a for-
thcoming paper.
With a view to ease the use of the present accurate

magnetostatics for SyF while eliminating the need for
any numerical evaluation, in the following we derive ap-
proximate yet highly accurate expressions for Ed. Fi-

gure 3a shows that to a very good approximation, Ed
is proportional to the width of the element (along x)
and is independent of its length (along z), already for a
single-layer i.e. with no moment compensation. This ar-
gument reaches a very high accuracy close the compen-
sation t1 = t2 because edges appear as lines of dipoles,
whose stray field quickly decays with distance (∼ 1/r2).
This allows us to boil down Ed to a single line integral
along its edge :

Ed = Eλ

∮

(m.n)2ds (4)

= Eλ

∮ |dx|
√

1 + (∂xf)2
(5)

= Eλ

∫ 2π

0

(r sin θ − ∂θr cos θ)
2

√

(∂θr)2 + r2
dθ (6)

Eq. (4) is the general expression, expressed in the fol-
lowing two lines in cartesian and polar coordinates (Fi-
gure 4a). Eλ is the density of magnetostatic energy per
unit length of edge, a concept once discussed in the case
of single layers20, yet much more accurate here in the
case of lines of dipoles, instead of monopoles. Equations
(4-6) apply to an arbitrary shape (not simply prisms) by
considering the in-plane angle ϕ between magnetization
and the normal to the edge. It can be checked that for
an SAF with F1 and F2 of identical magnetization and
thickness, we have with an accuracy better than 10% for
geometrical parameters relevant for practical cases, i.e.
t1,2 in the range 2− 10 nm and s ∈ 0.5− 1 nm :

Eλ = (1/4)µ0M
2
s t

2 (7)
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Figure 3. (a) Energy of a single layer (full symbols) and
SyF (open symbols) as a function of dot length, i.e. along z,
while a = 100 nm. (b) Energy of a single layer as a function of
width (along x, open symbols), and length (along z, full sym-
bols, same curve as in a), while the other in-plane dimension
is kept constant at 100 nm. The lines are linear fits. For both
plots the parameters are : Mi = 106 A/m, t1 = t2 = 2.5 nm,
s = 0.7 nm.

The meaning of Eq. (7) is straightforward : due to the
very short range of interaction between dipolar lines, the
density of dipolar energy is non-zero only in the vici-
nity of the edges, with a lateral range t. Thus a volume
t2 is concerned with a line density of energy of the order
(1/2)µ0M

2
s , explaining the scaling of Eq. (7). Expressions

for non-compensated cases (including single elements)
may be evaluated numerically. This provides us with ana-
lytical expressions for the magnetostatics of SyFs for the
most usual shapes (Figure 4b).
Using the point-dipole approximation as often found in

literature, the energy gained by coupling F1 and F2 scales
with µ0aEλ(a/t)

3, which obviously is largely incorrect
with an extra scaling (a/t)3 (see Figure 4a). The present
formulas thus provide a major improvement over existing
approaches.
To conclude we derived exact formulas for the magne-

tostatics of prism SyF, and simple yet accurate forms
for SyFs of arbitrary shapes. These extend to SyF
the concept of demagnetizing coefficients to SyF. These
simple forms may be used straightforwardly to derive sca-
ling laws for all aspects of SyF physics pertaining to di-
polar energy such as thermal stability, coercivity, aniso-
tropy field, or phase diagrams for critical size (e.g. single-
domain versus vortex, transverse versus vortex wall).
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