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COMPOSITION OPERATORS ON BERGMAN-ORLICZ AND

HARDY-ORLICZ SPACES OF BN

STÉPHANE CHARPENTIER

Abstract. We give embedding theorems for Bergman-Orlicz and Hardy-Orlicz spaces of the ball
and then apply our results to the study of the boundedness and the compactness of composition
operators in this context. As one of the motivations of this work, we show that there exist some
Bergman-Orlicz or Hardy-Orlicz spaces, different from H

∞, on which every composition operator
is bounded.

1. Introduction and preliminaries

1.1. Introduction. The continuity and the compactness of composition operators Cφ, defined
by Cφ (f) = f ◦ φ, on usual analytic functions spaces have been studied in different ways. In
one variable, the Littlewood subordination principle is the main tool to show that every composi-
tion operator is bounded on spaces such as weighted Bergman spaces, Hardy spaces (see [20]) or
Bergman-Orlicz ([15]) and Hardy-Orlicz ([13]) spaces of the disk D. The compactness of composi-
tion operators in one variable can be characterized in terms of Nevanlinna counting function. For
a complete study of these points of view in the one dimensional case, we refer to [20] in particular
for Bergman and Hardy spaces. For the Bergman-Orlicz and Hardy-Orlicz spaces, we refer to
[13, 15, 16]. An other approach for these questions in a general framework is to notice that com-
position operators can be interpreted as embedding operators of usual spaces into Lp (µ) or Lψ (µ)
spaces for some convenient measure µ on the ball (or the closed ball) and then to apply results
about continuity or compactness of such embedding operators to composition operators. One of
the motivation to do this is that methods using Littlewood subordination principle or Nevanlinna
counting function fail to be true in the several variables context. An other interest of this is
that it provides geometric understandings of the phenomena and especially crucial properties of
the defining symbol φ. Moreover, a lot of embedding theorems have been given in the classical
spaces. All these results involve Carleson measures. The first Carleson embedding theorem has
been given by L. Carleson in 1962 ([3],) as a part of his work on the corona problem. He gave
a characterization of measures µ such that inclusion Hp (D) →֒ Lp (µ) holds (the continuity is
automatic because of closed graph theorem.) In [9], L. Hormander generalized this latter to the
strictly pseudo-convex domains of Cn in 1967, while S. Power simplified his proof for the unit
ball in 1985 ([17].) Similar results have been obtained in the context of non-weighted Bergman or
weighted Bergman spaces by several authors such as W. Hasting, D. Stegenga or J. Cima and W.
Wogen. We refer to [8, 21, 4, 5]. Characterization theorems about compactness of such embedding
operators also exist for all these spaces and all these results have then be applied to composition
operators. For classical Hardy and Bergman spaces, these kinds of statement can be found in [7]
as well as a lot of geometric interpretations.

In 2009 and 2010, P. Lefèvre, D. Li, H. Queffélec and L. Rodŕıguez-Piazza gave similar char-
acterizations in Hardy-Orlicz and Bergman-Orlicz spaces of the disk in respectively [13, 15]. As
a motivation for these two papers, the authors recalled that there is a brutal change regarding
compactness of composition operators when we pass from finite values of p to the value p = ∞:
Cφ is compact on H∞ (D) if and only if ‖φ‖∞ < 1 whereas for any 1 ≤ p < ∞, one may find

φ : D → D such that φ (D) ∩ T is not empty, yet Cφ is compact on Hp (D). B. MacCluer and
J. Shapiro even gave an example of a surjective holomorphic φ of D such that Cφ is compact on
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2 COMPOSITION OPERATORS ON BERGMAN-ORLICZ AND HARDY-ORLICZ SPACES

Hp (D) ([12, Example 3.12].) The same ideas also have an interest in the context of Bergman
spaces, and it may appear legitimate to introduce the intermediate Bergman-Orlicz spaces Aψ

and the Hardy-Orlicz spaces Hψ between respectively H∞ and Ap or H∞ and Hp, in order to
understand where this change takes place -if it exists- and eventually to find some class of Orlicz
functions ψ such that composition operators act on the associated Aψ or Hψ somehow as they act
on H∞. However, [16, Theorem 4.1] gives a precise answer to the question of compactness of Cφ
in Hψ (BN ) by proving that the previous result by MacCluer and Shapiro holds in this context.
Moreover, [13, Theorem 5.7] implicitly says that, as soon as ψ grows very fast, if Cφ is bounded

from Hψ (D) into itself, then it is bounded as an operator from Aψ (D) into itself, what let us
think, in a not very satisfactory way, that H∞ also appears really as a singular case in the context
of Bergman-orlicz spaces.

In the several-variables context, this motivation appears to be even more important, since it
concerns continuity and not only compactness. Indeed it is well-known that there even exist some
symbol φ such that Cφ is not bounded on the classical Bergman Ap (BN ) or Hardy H

p (BN ) spaces,
although every Cφ is bounded on H∞. Precisely, in addition to give necessary and sufficient con-

ditions for the continuity and the compactness of composition operators on Aψα (BN ) or H
ψ (BN )

spaces in terms of generalized Carleson measures, it seems to us be interesting to find a precise

growth or regular condition on ψ in order that every composition operator on such Aψα (BN) or
Hψ (BN ) is bounded.

Moreover, up to now, in the specific context of Hardy spaces, it remains possible to consider
composition operators as embedding operators; in one variable, it was made possible due to a
so-called Lindelöf Theorem, while in the classical several variables analytic functions spaces it was
due to the fact that the ball algebra A (BN ), consisting of holomorphic functions in BN continuous
up to the boundary, is dense in Hp (BN ). Nevertheless, it is known that the density of A (BN ) is
more or less specific to the classical Hardy spaces in the sense that this property fails to be true
in ¡¡close to H∞ enough¿¿ Hardy-Orlicz spaces which differs from Hp spaces, in a way which can
be precised: A (BN ) is dense in H

ψ (BN ) if and only if ψ satisfies the ∆2-Condition (see Definition
1.4.) This reason underlines the fact that studying composition operators in terms of embedding
theorem is maybe not so well adapted when we consider spaces smaller than the classical Hardy
spaces. Anyway, even in this context, we can wonder how much useful remains the methods
involved in the embedding theorems to deduce satisfying necessary or sufficient condition for the
boundedness or the compactness of composition operators on Hardy-Orlicz spaces. We notice that
all these questions do not concern Bergman-Orlicz spaces.

Yet, this ∆2-Condition allows to establish embedding theorems and to study composition op-
erators on Hardy-Orlicz or Bergman-Orlicz spaces, by using methods which are quite similar to
that used in the classical Hardy and Bergman spaces framework. In this way, Z. J. Jiang gave
embedding theorems and characterizations of the boundedness and the compactness of composi-
tion operators on Bergman-Orlicz spaces Aψ (BN) when ψ satisfies ∆2-Condition ([10].) As we
could guess, these characterizations are the same than that known for Bergman spaces, and their
applications to composition operators do not provide different results from that obtained in the
classical framework; especially, they give no information for “small” Bergman-Orlicz spaces.

Section 2 and Section 3 are devoted to these questions. The first one deals with general
Bergman-Orlicz spaces. Given two arbitrary Orlicz functions ψ1 and ψ2, we exhibit in Theo-
rem 2.8 and Theorem 2.12 necessary and sufficient conditions on a measure µ on the ball under

which the canonical embedding Aψ1
α (BN ) →֒ Lψ2 (µ) holds (and then is bounded) or is compact.

In general, we do not get characterizations, yet we see that we do when ψ1 = ψ2 satisfies some
convenient regular conditions. Applications are given to composition operators following the ideas
described above, which allow us to positively answer the question: does there exist some Orlicz

function ψ defining Bergman-Orlicz space Aψα (BN ) between H∞ and Apα (BN ) on which every
composition operator is bounded?

In Section 3, we get in a first part results analogous to that obtained in the previous section for
the embeddingHψ1 (BN ) →֒ Lψ2 (µ). This is the purpose of both Theorem 3.14 and Theorem 3.19.
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After we explain why these results can not be directly used to get conditions for the boundedness
or the compactness of composition operators, we see how their proofs can be slightly adapted to
composition operators and then we state characterizations of continuity and compactness of such
operators, if we make some usual regular assumptions on ψ. As for Bergman-Orlicz case, we apply
our results to show that there are some Hardy-Orlicz space Hψ (BN) on which every composition
operator is bounded.

In a last section, we intend to give a brief comparison between the classical framework and the
Orlicz corresponding one.

1.2. Orlicz spaces - Preliminaries. We recall the definition of Orlicz functions and of the
associated Orlicz spaces.

Definition 1.1. A strictly convex function ψ : R+ → R+ is called an Orlicz function if it satisfies
the following properties:

(1) ψ(0) = 0 and ψ is continuous at 0;

(2)
ψ(x)

x
−−−→
x→∞

+∞.

In particular, an orlicz function is non-decreasing.
Let (Ω,P) be a probability space; throughout this paper, Ω will be a ball or a sphere in C

N and
P the normalized Lebesgue measure on it.

Definition 1.2. Let ψ be an Orlicz function. The Orlicz spaces Lψ (Ω) is the space of all (equiv-
alence classes of) measurable complex functions f on Ω for which there is a constant C > 0 such
that

∫

Ω
ψ

(

|f |

C

)

dP <∞.

This space may be normalized by the Luxemburg norm

‖f‖ψ = inf

{

C > 0,

∫

Ω
ψ

(

|f |

C

)

dP ≤ 1

}

,

which makes
(

Lψ (Ω) , ‖.‖ψ

)

a Banach space satisfying:

L∞ (Ω) ⊂ Lψ (Ω) ⊂ L1 (Ω) .

Note that if ψ grows sufficiently fast in order that

ψ(x)

xp
−−−→
x→∞

∞

for every p <∞ then we have

L∞ (Ω) ⊂ Lψ (Ω) ⊂ ∩0<p<∞L
p (Ω) .

Finally, if ψ(x) = xp for every x, then it is easy to verify that

Lψ (Ω) = Lp (Ω) .

We also introduce Mψ (Ω) as the subspace of Lψ (Ω) generated by L∞ (Ω).
In order to give some words about the duality in Orlicz spaces framework, we need to introduce

the complementary function of an Orlicz function. Then let ψ be an Orlicz function and define
Φ : R+ → R+ by

Φ(y) = sup
x∈R+

{xy − ψ(x)} .

We may verify that Φ is also an Orlicz function (see [18], Section 1.3.) In the same book (Theorem
6) it is shown the following general result concerning duality:
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Theorem 1.3. Let (Ω,P) be a probability space and let ψ be an Orlicz function and Φ its com-

plementary Orlicz function. We have
(

Mψ (Ω)
)∗

= LΦ (Ω) in the sense that for every continuous

linear functional x∗ ∈
(

Mψ (Ω)
)∗
, there exists an unique function f ∈ LΦ (Ω) such that for every

g ∈Mψ (Ω) we have

x∗ (g) =

∫

Ω
fgdP.

Moreover ‖x∗‖ = ‖f‖Φ.

This result will be essentially useful to describe the weak-star topology induced on the unit ball
of the upcoming Bergman-Orlicz and Hardy-Orlicz spaces.

We now introduce four classes of Orlicz functions which will appear several times in this paper.
The first one is the so-called ∆2-Condition which is a regular condition satisfied by Orlicz functions
which do not grow faster than xp for x large enough and for some p > 1.

Definition 1.4. Let ψ be an Orlicz function. We say that ψ satisfies the ∆2-Condition if there
exist x0 > 0 and a constant K > 1, such that

ψ (2x) ≤ Kψ (x)

for any x ≥ x0.

For example, x 7−→ xp (1 + log (x)), p > 1, satisfies the ∆2-Condition. Corollary 5, Chapter II
of [18] formalizes what we announced above the last definition:

Proposition 1.5. Let ψ be an Orlicz function satisfying the ∆2-Condition, then there are some
p > 1 and C > 0 such that ψ (x) ≤ Cxp, for x large enough.

The ∇2-class contains the Orlicz functions whose complementary ones satisfy the ∆2-condition.
It is a condition of fast growing:

Definition 1.6. Let ψ be an Orlicz function. ψ belongs to the ∇2-class if its complementary
function belongs to the ∆2-class.

The two last conditions are regular conditions which are satisfied by most of the Orlicz functions
which are interesting for us.

Definition 1.7. Let ψ be an Orlicz function. We say that ψ satisfies the ∇0-Condition if there
exist some x0 > 0 and some constant C ≥ 1, such that for every x0 ≤ x ≤ y we have

ψ (2x)

ψ (x)
≤
ψ (2Cy)

ψ (y)
.

We refer to Proposition 4.6 of [13] to verify that we have the following:

Proposition 1.8. Let ψ be an Orlicz function. Then ψ satisfies the ∇0-Condition if and only if
there exists x0 > 0 such that for every β > 1, there exists a constant Cβ ≥ 1 such that

ψ (βx)

ψ (x)
≤
ψ (βCβy)

ψ (y)

for every x0 ≤ x ≤ y.

The uniform ∇0-Condition is defined as follows:

Definition 1.9. Let ψ be an Orlicz function. We say that ψ satisfies the uniform ∇0-Condition
if and only if there exist x0 > 0 and a constant C ≥ 1 such that for every β > 1 we have

ψ (βx)

ψ (x)
≤
ψ (βCy)

ψ (y)

for every x0 ≤ x ≤ y.

We recall Proposition 4.7 (2) of [13]:
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Proposition 1.10. Let ψ be an Orlicz function. If ψ satisfies uniform ∇0-Condition, then it
satisfies ∇2-Condition.

Let us notice that for any 1 < p <∞ and any a > 0, every function x 7−→ xp or x 7−→ eax − 1
is an Orlicz function which satisfies uniform ∇0, and then ∇2 and ∇0-conditions, according to
the previous proposition. x 7−→ xp belongs to the ∆2-class whereas x 7−→ eax − 1 does not. For a
complete study of Orlicz spaces, we refer to [18]. We can also find precise information in context
of composition operators, such as other classes of Orlicz functions and their link together with, in
[13].

2. Weighted Bergman-orlicz spaces of BN

The purpose of this section is to extend Carleson Theorem for Bergman spaces to the Bergman-
Orlicz framework. Applications will be given to the characterization of continuity and compactness
of composition operators on Bergman-Orlicz spaces in terms of adapted Carleson measures.

2.1. Definitions and classical results. Let α > −1 and let dvα be the normalized weighted
Lebesgue measure on BN

dvα (z) = cα

(

1− |z|2
)α
dv (z)

where dv is the normalized volume Lebesgue measure on BN . The constant cα is equal to

cα =
Γ (n+ α+ 1)

n!Γ (α+ 1)
.

The weighted Bergman-Orlicz spaces of the ball, Aψα (BN ), is defined from the ψ-Orlicz space
associated to the probabilistic measure dvα on BN , L

ψ (BN , v).

Definition 2.1. The weighted Bergman-Orlicz space Aψα (BN ) of the ball is the set of holomorphic
functions f on BN such that there exists a constant 0 < C <∞ such that the integral

∫

BN

ψ

(

|f |

C

)

dvα

is finite.

Endowed with the norm

‖f‖
Aψα

= inf

{

C,

∫

BN

ψ

(

|f |

C

)

dvα ≤ 1

}

,

Aψα (BN ) is a Banach space.
In fact,

Aψα (BN ) = Lψα (BN ) ∩H (BN ) ⊂ A
1
α (BN ) .

For a ∈ BN , we denote by δa the point evaluation functional at point a. The following propo-

sition infers that δa is bounded on every Aψα (BN ) for any a in the ball.

Proposition 2.2. Let α > −1 and let ψ be an Orlicz function. Let also a ∈ BN . Then the point

evaluation functional δa at a is bounded on Aψα (BN ); more precisely, we have

1

4N+1+α
ψ−1

(

(

1 + |a|

1− |a|

)N+1+α
)

≤ ‖δa‖ ≤ ψ
−1

(

(

1 + |a|

1− |a|

)N+1+α
)

.

Proof. First, let ϕa an automorphism of BN such that ϕ (0) = a. Fix f ∈ Aψα (BN ) and set
C = ‖f‖

Aψα
. By the change of variables formula (see for example [22], Proposition 1.13), we get

∫

BN

ψ

(

|f ◦ ϕa|

C

)

dvα =

∫

BN

ψ

(

|f (z)|

C

)

(

1− |a|2

|1− 〈z, a〉|2

)N+1+α

dvα (z) .
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The subharmonicity of ψ

(

|f ◦ ϕa|

C

)

yields

ψ

(

|f (a)|

C

)

≤

∫

BN

ψ

(

|f (z)|

C

)

(

1− |a|2

|1− 〈z, a〉|2

)N+1+α

dvα (z)

≤

(

1 + |a|

1− |a|

)N+1+α

.

Since ψ−1 is non-decreasing, we have

|f (a)| ≤ Cψ−1

(

(

1 + |a|

1− |a|

)N+1+α
)

.

In particular, we have

‖δa‖ ≤ ψ
−1

(

(

1 + |a|

1− |a|

)N+1+α
)

.

Conversely, let us compute δa (Ha) where

Ha (z) =

(

1− |a|2

|1− 〈z, a〉|2

)N+1+α

is the Berezin kernel at a ∈ BN . It is not hard to check that ‖Ha‖∞ =
(

1+|a|
1−|a|

)N+1+α
and that

‖Ha‖L1 = 1 (this is a direct application of the change of variables formula,) hence

‖δa‖ ≥
|Ha (a)|

‖Ha‖Aψα

≥
1

(

1− |a|2
)N+1+α

ψ−1 (‖Ha‖∞)

‖Ha‖∞
(by Lemma 3.9 from [13])

≥
1

(1 + |a|)2(N+1+α)
ψ−1

(

(

1 + |a|

1− |a|

)N+1+α
)

≥
1

4N+1+α
ψ−1

(

(

1 + |a|

1− |a|

)N+1+α
)

.(2.1)

�

We will need to describe the weak-star convergence on the unit ball of Bergman-Orlicz spaces
in terms of uniform convergence on every compact subset of BN :

Proposition 2.3. Let α > −1, let ψ be an Orlicz function and let Φ be its complementary Orlicz

function. On the unit ball of Aψα (BN ), the induced weak-star topology

σ
(

Lψ (BN , dvα) ,M
Φ (BN , dvα)

)

coincides with the uniform convergence on every compact subset of BN .

Proof. First, we observe that both above topologies are metrizable. Indeed, this is well-know for
the topology of uniform convergence on compacta and, for the weak-star topology, this follows
from the fact the Morse-Transue space MΦ (BN ) is separable. Thus we can deal with convergent

sequences. Now, let (fn)n be a sequence in the unit ball Bψ
α of Aψα (BN ) which converges to

f ∈ Bψ
α for the weak-star topology. For a ∈ BN , let Ha (z) =

(

1− |a|2

|1− 〈z, a〉|2

)N+1+α

; ‖Ha‖∞ =
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(

1+|a|
1−|a|

)N+1+α
so that Ha ∈M

Φ and therefore

(fn − f) (a) =

∫

BN

(fn − f)Hadvα −−−→
n→∞

0.

Moreover, since (fn)n is in the unit ball of Aψα (BN), thanks to Proposition 2.2 for example, (fn)n
is bounded on every compact subsets of BN . By Montel Theorem and a compactness argument,
we get that (fn)n converges uniformly on every compact subsets of BN to f .

The proof of the converse is identical to the proof of the second part of (ii), Proposition 5.3, of
[13]. �

2.2. Embedding Theorems for Bergman-Orlicz spaces - Adapted Bergman-Carleson

measures. We will need a version of Carleson theorem for Bergman spaces slightly different
from the traditional one. This is inspired from [15]. Anyway, as for the study of continuity and
compactness of composition operators on Bergman spaces or Hardy spaces of the ball in terms of
Carleson measure, we will need to introduce the objects and notions involved. We first recall the
definition of the non-isotropic distance on the sphere SN , which we denote by d. For (ζ, ξ) ∈ S

2
N ,

it is given by

d (ζ, ξ) =
√

|1− 〈ζ, ξ〉|.

We may verify that the map d is a distance on SN and that it satisfies the triangular inequality
on BN . For ζ ∈ BN and h ∈ ]0, 1], we define the non-isotropic ball of BN by

S (ζ, h) =
{

z ∈ BN , d (ζ, z)
2 < h

}

.

and its analogue in BN by

Sf (ζ, h) =
{

z ∈ BN , d (ζ, z)
2 < h

}

.

Let also us denote
Qf = Sf (ζ, h) ∩ SN .

Next, for ζ ∈ SN and h ∈ ]0, 1], we define

W (ζ, h) =

{

z ∈ BN , 1− |z| < h,
z

|z|
∈ Qf (ζ, h)

}

.

W (ζ, h) is called a Carleson window.
We introduce the following two functions:

̺µ (h) = sup
ξ∈SN

µ (W (ξ, h))

where µ is positive Borel measure on BN . We now set

Kµ,α (h) = sup
0<t≤h

̺µ (t)

tN+1+α
.

µ is said to be a α-Bergman-Carleson measure if Kµ,α is bounded. As

(2.2) tN+1+α ∼ vα (W (ξ, t))

for every ξ ∈ SN , µ is a α-Bergman-Carleson measure if and only if there exists a constant C such
that

µ (W (ξ, h)) ≤ Cvα (W (ξ, h))

for any ξ ∈ SN and any h ∈ (0, 1) (or equivalently any h ∈ (0, hA) for some 0 < hA ≤ 1). Let
us remark that, in the definition of ̺µ and Kµ,α, we may have taken S (ξ, h) instead of W (ξ, h),
since these two sets are equivalent in the sense that there exist two constants C1 > 0 and C2 > 0
such that

S (ξ, C1h) ⊂W (ξ, h) ⊂ S (ξ, C2h) .

Next we may work indifferently with non-isotropic balls or Carleson windows if there is no possible
confusion.
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We have the following covering lemma which will be useful for our version of Carleson theorem:

Proposition 2.4. There exists an integer M > 0 such that for any 0 < r < 1, we can find a
finite sequence {ξk}

m
k=1 (m depending on r) in SN with the following properties:

(1) SN =
⋃

kQf (ξk, r).
(2) The sets Qf (ξk, r/4) are mutually disjoint.
(3) Each point of SN belongs to at most M of the sets Qf (ξk, 4r).

Proof. The proof, using a variant of [22, Lemma 2.22] for the non-isotropic distance at the bound-
ary is quite identical to the one of [22, Theorem 2.23]. That we can take a finite union follows
from a compactness argument. �

From now on, M will always stand for the constant involved in Theorem 2.4. We will now
define a maximal operator associated to a covering of the ball with convenient subsets. Let n ≥ 0
be an integer and denote by Cn the corona

Cn =

{

z ∈ BN , 1−
1

2n
≤ |z| < 1−

1

2n+1

}

.

For any n ≥ 0, let (ξn,k)k ⊂ SN be given by Theorem 2.4 putting r =
1

2n
. For k ≥ 0, we set

T0,k =

{

z ∈ BN \ {0} ,
z

|z|
∈ Qf (ξ0,k, 1)

}

∪ {0} .

Then let us define the sets Tn,k, for n ≥ 1 and k ≥ 0, by

Tn,k =

{

z ∈ BN \ {0} ,
z

|z|
∈ Qf

(

ξn,k,
1

2n

)}

.

We have both
⋃

n≥0

Cn = BN

and
⋃

k≥0

T0,k = BN ;

⋃

k≥0

Tn,k = BN \ {0} , n ≥ 1.

For (n, k) ∈ N
2, we finally define the subset ∆(n,k) of BN by

∆(n,k) = Cn ∩ Tn,k.

We have

∆(0,k) = (W (ξ0,k, 1) ∩ C0) ∪ {0} ;

∆(n,k) = W

(

ξn,k,
1

2n

)

∩ Cn, n ≥ 1.

The ∆(n,k)’s satisfy the following properties:

(1)
⋃

(n,k)∈N2 ∆(n,k) = BN .

(2) For every (n, k), ∆(n,k) is a subset of the closed Carleson window W

(

ξn,k,
1

2n

)

and by

construction, we can find a constant C̃ > 0, independent of (n, k) such that

vα

(

W

(

ξn,k,
1

2n

))

≤ C̃vα
(

∆(n,k)

)

.
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(3) Given 0 < ε < 1/2, if Cεn denotes the corona defined by

Cεn =

{

z ∈ BN , (1 + ε)

(

1−
1

2n

)

≤ |z| < (1 + ε)

(

1−
1

2n+1

)}

,

then each point of BN belongs to at most M of the sets ∆ε
(n,k)’s defined by

∆ε
(0,k) = (W (ξ0,k, 1 + ε) ∩ Cε0) ∪ {0} ;

∆ε
(n,k) = W

(

ξn,k, (1 + ε)
1

2n

)

∩Cεn, n ≥ 1.

This comes from the construction and the previous covering proposition. In particular, we
have

∑

(n,k)∈N2

vα

(

∆ε
(n,k)

)

≤Mvα (BN ) =M.

For any f ∈ Aψα (BN ), we define the following maximal function Λf :

(2.3) Λf =
∑

n,k≥0

sup
∆(n,k)

(|f (z)|)χ∆(n,k)

where χ∆(n,k)
is the characteristic function of ∆(n,k). The next proposition says that the maximal

operator Λ : f 7−→ Λf is bounded from Aψα (BN ) to L
ψ
α (BN , vα).

Proposition 2.5. Let ψ be an Orlicz function and let α > −1. Then the maximal operator Λ

defined above is bounded from Aψα (BN ) to Lψα (BN , vα). More precisely there exists B ≥ 1 such

that for every f ∈ Aψα (BN ), we have

‖Λf‖Lψα
≤ 2B ‖f‖

Aψα
.

Proof. Fix f ∈ Aψα (BN ) and set C = ‖f‖
Aψα

. We denote by c(n,k) = sup
∆(n,k)

(|f |) and let τ(n,k) ∈

∆(n,k) be such that
∣

∣f
(

τ(n,k)
)∣

∣ ≥
c(n,k)

2
. Since

ψ ◦ |f |

C
is subharmonic, and by the mean value

property, we have

∫

BN

ψ

(

Λf
2C

)

dvα ≤
∑

n,k≥0

ψ

(
∣

∣f
(

τ(n,k)
)∣

∣

C

)

vα
(

∆(n,k)

)

≤
∑

n,k≥0

vα
(

∆(n,k)

)

vα

(

∆ε
(n,k)

)

∫

∆ε
(n,k)

ψ

(

|f |

C

)

dvα.

Of course,

vα
(

∆(n,k)

)

vα

(

∆ε
(n,k)

) ≤ Dε

where Dε is a positive constant which only depends on ε. Therefore we get,
∫

BN

ψ

(

Λf
2C

)

dvα ≤ Dε

∑

n,k≥0

∫

∆ε
(n,k)

ψ

(

|f |

C

)

dvα.

Now, we have Cεn = ∪k≥0∆
ε
(n,k) and, because of the third property following the construction of

the ∆(n,k)’s, for every n, each point of Cεn belongs to at most M of the sets ∆ε
(n,k). Then, for n

fixed,
∑

k≥0

∫

∆ε
(n,k)

ψ

(

|f |

C

)

dvα ≤M

∫

Cεn

ψ

(

|f |

C

)

dvα.
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Next, we of course have BN ⊂ ∪n≥0C
ε
n and each point of BN belongs to at most 3 of the Cεn’s. It

follows that
∫

BN

ψ

(

Λf
2C

)

dvα ≤ DεM
∑

n≥0

∫

Cεn

ψ

(

|f |

C

)

dvα

≤ B

∫

BN

ψ

(

|f |

C

)

dvα

for some constant B ≥ 1. Now, by convexity, we get
∫

BN

ψ

(

Λf
2BC

)

dvα ≤ 1,

hence
‖Λf‖Lψα

≤ 2B ‖f‖
Aψα

.

�

We state our version of Carleson theorem as follows:

Theorem 2.6. There exists a constants C̃ > 0 such that, for every f ∈ A1
α (BN ) and every

positive finite Borel measure µ on BN , we have

µ ({z ∈ BN , |z| > 1− h and |f (z)| > t}) ≤ C̃Kµ,α (2h) vα ({Λf > t})

for every h ∈ (0, 1/2) and every t > 0.

Proof. The proof is quite identical to the one of [15, Lemma 2.3]. Anyway, we prefer to give the
details. Fix 0 < h < 1 and t > 0. We identify i ∈ N and (n, k) ∈ N

2 thanks to an arbitrary
bijection from N

2 onto N. We will write i←→ (n, k) without possible confusion. Define

I =

{

i←→ (n, k) , sup
∆i

|f | > t

}

and

Ih =

{

i←→ (n, k) , h >
1

2n+1
and sup

∆i

|f | > t

}

.

Denoting by Wi the smallest Carleson window containing ∆i, and by the three remarks done
above about the ∆i’s, we can find some constants C > 0 and C̃ > 0 such that

µ ({z ∈ BN , |z| > 1− h and |f (z)| > t}) ≤
∑

i∈Ih

µ (∆i)

≤
∑

i∈Ih

µ (Wi)

≤ C
∑

i∈Ih

Kµ,α (2h) vα (Wi)

≤ CC̃Kµ,α (2h)
∑

i∈I

vα (∆i) .

The third inequality comes from (2.2) and from the fact that, for every i ∈ Ih, as the radius of

Wi is smaller than
1

2n
, it is then smaller than 2h. Now, as each point of BN belongs to at most

M of the ∆i’s, we have

∑

i∈I

vα (∆i) ≤Mvα

(

⋃

i∈I

∆i

)

≤Mvα ({Λf > t}) .

and
µ ({z ∈ BN , |z| > 1− h and |f (z)| > t}) . Kµ,α (2h) vα ({Λf > t}) .

�



STÉPHANE CHARPENTIER 11

The last lemma gives the following technical result.

Lemma 2.7. Let µ be a finite positive Borel measure on BN and let ψ1 and ψ2 be two Orlicz
functions. Assume that there exist A > 0, η > 0 and hA ∈ (0, 1/2) such that

Kµ,α (h) ≤ η
1/hN+1+α

ψ2

(

Aψ−1
1 (1/hN+1+α)

)

for every h ∈ (0, hA). Then, there exist three constants B > 0, xA > 0 and C1 (this latter does

not depend on A, η and hA) such that, for every f ∈ Aψ1
α (BN ) such that ‖f‖

A
ψ1
α
≤ 1 and every

Borel subset E of BN , we have
∫

E
ψ2

(

|f |

B

)

dµ ≤ µ (E)ψ2 (xA) + C1η

∫

BN

ψ1 (Λf ) dvα.

Proof. Let A, hA and η satisfying the assumptions of the lemma. For f ∈ Aψ1
α (BN ), ‖f‖Aψ1α

≤

1, and E a Borel subset of BN , we begin by writing the following formula, based on Fubini’s
integration:

(2.4)

∫

E
ψ2 (|f |) dµ =

∫ ∞

0
ψ

′

2 (t)µ ({|f | > t} ∩E) dt.

We concentrate our attention on the expression µ ({|f | > t}). We use the upper estimate of
the point evaluation functional obtained in Proposition 2.2 to get that if |f (z)| > t, then since
‖f‖

A
ψ1
α
≤ 1 we have

t < ψ−1
1

(

(

1 + |z|

1− |z|

)N+1+α
)

≤ 2N+1+αψ−1
1

(

(

1

1− |z|

)N+1+α
)

(2.5)

because ψ is a convex function. Inequality (2.5) is now equivalent to the following one:

|z| > 1−

(

1

ψ1

(

t
2N+1+α

)

)1/(N+1+α)

.

Carleson Theorem (Theorem 2.6) then yields that

µ ({|f | > t}) = µ



{|f | > t} ∩







|z| > 1−

(

1

ψ1

(

t
2N+1+α

)

)1/(N+1+α)










≤ C̃Kµ,α











2









1

ψ1

(

t

2N+1+α

)









1/(N+1+α)










vα ({Λf > t}) .(2.6)

Now, the hypothesis of the lemma ensures that, if

1

2N+1+α
ψ1

(

3.2N+α

A
s

)

> 1/hN+1+α
A

i. e. s ≥ xA :=
A

3.2N+α
ψ−1
1

(

(2/hA)
N+1+α

)

, then

(2.7) Kµ,α













2











1

ψ1

(

3.2N+α

A
s

)











1/(N+1+α)












≤
η

2N+1+α

ψ1

(

3.2N+α

A
s

)

ψ2

(

3
2s
) .
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Hence, applying (2.4) to
A

6.4N+α
|f |, together with (2.6) and (2.7), and putting t =

6.4N+α

A
s in

(2.6), we get

(2.8)

∫

E
ψ2

(

A

6.4N+α
|f |

)

dµ ≤

∫ xA

0
ψ

′

2 (s)µ (E) ds

+
ηC̃

2N+1+α

∫ ∞

xA

ψ
′

2 (s)

ψ1

(

3.2N+α

A
s

)

ψ2

(

3
2s
) vα

({

Λf >
6.4N+α

A
s

})

ds.

For the second integral of the right hand side, notice that for an Orlicz function ψ, we have

xψ
′

(x) ≤ Cψ

(

(C + 1) x

C

)

for any C > 0 and any x ≥ 0. Indeed, as ψ
′

(t) is non-decreasing, we have

x

C
ψ

′

(x) ≤

∫ C+1
C

x

x
ψ

′

(t) dt ≤ ψ

(

C + 1

C
x

)

.

Therefore
ψ

′

2 (s)

ψ2

(

3
2s
) ≤

2

s

and (2.8) yields
∫

E
ψ2

(

A

6.4N+α
|f |

)

dµ ≤ ψ2 (xA)µ (E)

+
ηC̃

2N+α

∫ ∞

xA

1

s
ψ1

(

3.2N+α

A
s

)

vα

({

Λf >
6.4N+α

A
s

})

ds.

Using the convexity of the function ψ1, we get
∫

E
ψ2

(

A

6.4N+α
|f |

)

dµ ≤ ψ2 (xA)µ (E)

+
ηC̃

2N+α

3.2N+α

A

∫ ∞

0
ψ

′

1

(

3.2N+α

A
s

)

vα

({

Λf >
6.4N+α

A
s

})

ds

i.e.
∫

E
ψ2

(

A

6.4N+α
|f |

)

dµ ≤ ψ2 (xA)µ (E) +
ηC̃

2N+α

∫ ∞

0
ψ

′

1 (u)vα
({

Λf > 2N+1+αu
})

du

≤ ψ2 (xA)µ (E) +
ηC̃

2N+α

∫

BN

ψ1

(

Λf
2N+1+α

)

dvα

≤ ψ2 (xA)µ (E) +
ηC̃

2.4N+α

∫

BN

ψ1 (Λf ) dvα

and the proof of the lemma is complete. �

In the usual context of Bergman spaces (respectively Hardy spaces,) Carleson’s Theorem (resp.
the adapted one to Hardy spaces) ensures that, given a positive finite Borel measure µ on BN

(resp. BN ,) the inclusion Apα (BN ) ⊂ L
p (µ) (resp. Hp (BN ) ⊂ L

p (µ)) holds (and is continuous) if
and only if µ is an α-Bergman-Carleson measure (resp. a Carleson measure.) The compactness
is characterized in terms of vanishing α-Bergman-Carleson measure (resp. vanishing Carleson
measure.) It first reveals that these characterizations do not depend on the exponent p. In
the context of Bergman-Orlicz (respectively Hardy-Orlicz) spaces, the previous formulation of
Carleson theorem and the technical lemma (see Section 3 for the statement of these results in
the context of Hardy-Orlicz spaces) is sufficiently general to permit us to deduce two conditions,
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respectively sufficient and necessary, for a measure µ to get continuous or compact inclusion of a

Bergman-Orlicz space Aψ1
α (BN ) (resp. Hardy-Orlicz Hψ1 (BN )) into an Orlicz space Lψ2 (BN , µ)

(resp. Lψ2 (SN , µ).)
Recently, Z. J. Jiang showed in [10] that these characterizations in Bergman-Orlicz spaces are

the same as that in Bergman spaces, whenever ψ1 = ψ2 = ψ satisfies the ∆2-Condition. As
Orlicz functions which satisfies ∆2-Condition are nearly x 7−→ xp functions, his proof and the
applications of his results are very similar to the usual ones in the classical Bergman spaces.

In the sequel, we deal with embedding theorems in the general case of two arbitrary Orlicz
functions ψ1 and ψ2, and applying our results to composition operators, we point out original

behaviors of them on Aψα (BN ) (resp. H
ψ (BN )) when ψ1 = ψ2 = ψ grows fast enough, and which

does not occur when ψ satisfies the ∆2-Condition.
We first deal with the existence of such an embedding.

2.2.1. The canonical embedding Aψ1
α (BN ) →֒ Lψ2 (µ). Using Lemma 2.7, we get the following

embedding boundedness theorem in the Bergman-Orlicz spaces framework.

Theorem 2.8. Let µ be a finite positive Borel measure on BN and let ψ1 and ψ2 be two Orlicz
functions. Then:

(1) If inclusion Aψ1
α (BN ) ⊂ Lψ2 (µ) holds and is continuous, then there exists some A > 0

such that

(2.9) ̺µ (h) = Oh→0

(

1

ψ2

(

Aψ−1
1 (1/hN+1+α)

)

)

.

(2) If there exists some A > 0 such that

(2.10) Kµ,α (h) = Oh→0

(

1/hN+1+α

ψ2

(

Aψ−1
1 (1/hN+1+α)

)

)

then inclusion Aψ1
α (BN ) ⊂ L

ψ2 (µ) holds and is continuous.
(3) If in addition ψ1 = ψ2 = ψ satisfies the uniform ∇0-Condition (see Definition 1.9,) then

(2.9) and (2.10) are equivalent.

As we already said in the introduction, embedding Aψ1
α (BN ) ⊂ Lψ2 (µ) is continuous as soon

as it holds. It is just an application of the closed graph theorem.

Proof of Theorem 2.8. 1) For the first part, let us denote by C the norm of the canonical embed-

ding jα : Aψ1
α (BN ) →֒ Lψ2 (µ). Let a ∈ BN , |a| = 1 − h and ξ ∈ SN be such that a = (1− h) ξ.

Let us consider the map

fa =
1

2N+1+α

ψ−1
1

(

1/hN+1+α
)

1/hN+1+α
Ha (z)

=
1

2N+1+α

ψ−1
1

(

1/hN+1+α
)

1/hN+1+α

(

h (2− h)

|1− (1− h) 〈z, ξ〉|2

)N+1+α

Recall that Ha is the Berezin kernel introduced in Proposition 2.2. As we saw in the proof of

Proposition 2.2, f is in the unit ball of Aψ1
α (BN ) and our assumption ensures that

‖jα (f)‖Lψ2 (µ) = ‖f‖Lψ2(µ) ≤ C

so that

(2.11) 1 ≥

∫

BN

ψ2

(

|f |

C

)

dµ.
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Let us minorize the right hand side of (2.11). We just get a minorization of |f | on the non-isotropic
“ball” S (ξ, h). If z ∈ S (ξ, h), then we have

|1− 〈z, a〉| ≤ |1− 〈ξ, a〉|+ |〈ξ, a〉 − 〈z, a〉|

≤ h+ (1− h) |〈ξ, ξ〉 − 〈z, ξ〉|

≤ h+ (1− h) |1− 〈z, ξ〉|

≤ h+ (1− h)h

≤ 2h.

Hence, for any z ∈ S (a, h),

|fa (z)| ≥
1

2N+1+α

ψ−1
1

(

1/hN+1+α
)

1/hN+1+α

(

1

4h

)N+1+α

=
ψ−1
1

(

1/hN+1+α
)

8N+1+α
.

Therefore

1 ≥

∫

BN

ψ2

(

|f |

C

)

dµ

≥

∫

S(ξ,h)
ψ2

(

ψ−1
1

(

1/hN+1+α
)

8N+1+αC

)

dµ

≥ ψ2

(

ψ−1
1

(

1/hN+1+α
)

8N+1+αC

)

µ (Sf (a, h))

which is Condition (2.9) and the first part of the theorem.
2) The second part will need Lemma 2.7. First of all, we know (Proposition 2.5) that there

exists a constant CM ≥ 1 such that, for every f ∈ Aψ1
α (BN ), ‖Λf‖Lψ1α (BN )

≤ CM ‖f‖Aψ1α (BN )

where Λf is the maximal function introduced above (To see that CM ≥ 1, it suffices to check with

f = 1.) Let now f be in the unit ball of Aψ1
α (BN ); it suffices to show that ‖f‖Lψ2 (µ) ≤ C0 for

some constant C0 > 0 which does not depend on f . Let C̃ > 1 be a constant whose value will
be precised later. Condition (2.10) is supposed to be realized, that is there exists some constants
A > 0, hA ∈ (0, 1/2] and η > 0 such that

(2.12) Kµ,α (h) ≤ η
1/hN+1+α

ψ2

(

Aψ−1
1 (1/hN+1+α)

)

for any h ∈ (0, hA). By using convexity of ψ2 and Lemma 2.7 for f/CM (which of course still
satisfies ‖f/CM‖Aψ1α

≤ 1), E = BN , η and hA as in (2.12), there are constants B > 0, xA and

C1 > 0, all independent of f , such that
∫

BN

ψ2

(

|f |

BCM C̃

)

dµ ≤
1

C̃

∫

BN

ψ2

(

|f |

BCM

)

dµ

≤
1

C̃

(

µ (BN )ψ2 (xA) + C1η

∫

BN

ψ1

(

Λf
CM

)

dvα

)

≤
1

C̃
(µ (BN )ψ2 (xA) + C1η) .

Of course, C1 may be supposed to be large enough so that C1η ≥ 1 and up to fix C̃ = µ (BN )ψ2 (xA)+

C1η ≥ 1, we get that ‖f‖Lψ2(µ) ≤ C0 := BCM C̃ which completes the proof of (2) of Theorem 2.8.

3) The proof of this part is based on the following claim:
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Claim. Under the notations of the theorem, if inclusion Aψ1
α (BN ) ⊂ Lψ2 (µ) holds and is contin-

uous, then there exist some A as large as we want and η > 0 such that

(2.13) ̺µ (h) ≤ η
1

ψ2

(

Aψ−1
1 (hA/hN+1+α)

)

for some hA, 0 < hA ≤ 1 and for any 0 < h < hA.

Proof of the claim. Thanks to the first point of the current proof, inequality

(2.14) ̺µ (h) ≤ η
1

ψ2

(

Ãψ−1
1 (1/hN+1+α)

)

holds for some Ã ≥ 0, h̃A, 0 < h̃A ≤ 1, η > 0 and any 0 < h < h̃A. We fix A > 1 and we look for
some constant hÃ,A ≤ 1 such that

(2.15)
1

ψ2

(

Ãψ−1
1 (1/hN+1+α)

) ≤
1

ψ2

(

Aψ−1
1

(

(

hÃ,A/h
)N+1+α

))

for 0 < h < hÃ,A. Now it is easy to verify that Inequality (2.15) is equivalent to

A

Ã
≤

ψ−1
1

(

1/hN+1+α
)

ψ−1
1

(

(

hÃ,A/h
)N+1+α

) ≤
1

hN+1+α
Ã,A

by concavity of ψ−1. Then the claim follows by choosing hÃ,A small enough. �

We come back to the proof of the third point. First, it is clear that Condition (2.10) implies
Condition (2.9). The converse is also true. Indeed, let suppose that ψ belongs to the uniform
∇0-class of Orlicz functions and let A > 0, hA ∈ (0, 1] and η > 0 be such that

̺µ (h) ≤ η
1

ψ (Aψ−1 (1/hN+1+α))

for every h ∈ (0, hA). The previous claim says that we can find B ≥ 1 and 0 < K = KB,A ≤ 1
such that

̺µ (h) ≤ η
1

ψ
(

Bψ−1
(

(K/h)N+1+α
))

for every 0 < h < K. Therefore, we have

Kµ,α (h) = sup
0<t≤h

̺µ (t)

tN+1+α
≤ η sup

0<t≤h

1/tN+1+α

ψ
(

Bψ−1
(

(K/t)N+1+α
))

= η sup
x≥ψ−1((K/h)N+1+α)

1

KN+1+α

ψ (x)

ψ (Bx)

for any 0 < h ≤ K. Let C be the constant induced by the uniform ∇0-Condition satisfied by ψ
and let β be such that B = βC. The claim allows us to take B large enough and therefore to
assume that β > 1. We then have, since ψ satisfies the uniform ∇0-Condition,

ψ
(

βψ−1
(

(K/h)N+1+α
))

(K/h)N+1+α
≤
ψ (Bx)

ψ (x)

for any x ≥ ψ−1
(

(K/h)N+1+α
)

. Hence, for every 0 < h ≤ K,

Kµ,α (h) ≤ η
1/hN+1+α

ψ
(

βψ−1
(

(K/h)N+1+α
)) ≤ η

1/hN+1+α

ψ (βKN+1+αψ−1 (1/hN+1+α))

by concavity of ψ−1, and Condition (2.10) is satisfied. �
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The third point of the previous theorem leads us to define (ψ,α)-Bergman-Carleson measures
on the ball:

Definition 2.9. Let µ be a positive Borel measure on BN and let ψ be an Orlicz function. We
say that µ is a (ψ,α)-Bergman-Carleson measure if there exists some A > 0, such that

(2.16) µ (W (ξ, h)) = Oh→0

(

1

ψ (Aψ−1 (1/hN+1+α))

)

for any ξ ∈ SN .

We notice that (2.16) is equivalent to (2.9). Therefore, it seems to us to be relevant to state
the next corollary:

Corollary 2.10. Let µ be a finite positive Borel measure on BN and let ψ be an Orlicz function

satisfying the uniform ∇0-Condition. Inclusion Aψα (BN ) →֒ Lψ (µ) holds and is continuous if and
only if µ is a (ψ,α)-Bergman-Carleson measure.

2.2.2. Compactness of the canonical embedding Aψ1
α (BN ) →֒ Lψ2 (µ). For the study of compact-

ness, we usually need some compactness criterion.

Proposition 2.11. Let µ be a finite positive measure on BN and let ψ1 and ψ2 be two Orlicz

functions. We suppose that the canonical embedding jµ,α : Aψ1
α (BN ) →֒ Lψ2 (µ) holds and is

bounded. The three following assertions are equivalent:

(1) jµ,α : Aψ1
α (BN ) →֒ Lψ2 (µ) is compact;

(2) Every sequence in the unit ball of Aψ1
α (BN), which is convergent to 0 uniformly on every

compact subset of BN , is strongly convergent to 0 in Lψ2 (µ).
(3) limr→1− ‖Ir‖ = 0, where Ir (f) = f.χ

BN\rBN
.

Proof. 1⇒2) We first assume that jµ,α is compact. Let (fn)n be a sequence in the unit ball

of Aψ1
α (BN ), which is convergent to 0 uniformly on every compact subset of BN . Of course,

jµ,α (fn) converges to 0 everywhere. By contradiction, suppose up to extract a subsequence that
lim infn ‖jµ,α (fn)‖Lψ2 (µ) > 0. By compactness of jµ,α, up to an other extraction, we may assume

that (jµ,α (fn))n strongly converges to some g ∈ Lψ2 (µ) and we must have ‖g‖Lψ2 (µ) > 0. As

convergence in norm in Lψ2 (µ) entails µ-almost everywhere convergence, we get a contradiction.

2⇒1) Conversely, let (fn)n be a sequence in the unit ball of Aψ1
α (BN). In particular, (fn)n is

in the unit ball of A1
α (BN ) and the Cauchy’s formula ensures that (fn)n is uniformly bounded

on every compact subset of BN , so that, up to an extraction, we may suppose that (fn)n is
uniformly convergent on compact subsets of BN to f holomorphic in BN , by Montel’s theorem.

Now, Lebesgue’s theorem ensures that f ∈ Aψ1
α (BN ) and, up to divide by a constant large enough,

we may assume that fn − f , which converges to 0 on every compact subset of BN , is in the unit

ball of Aψ1
α (BN). Therefore, our assumption implies that (jµ,α (fn)− jµ,α (f))n converges to 0 in

the norm of Lψ2 (µ) and jµ,α is compact as expected.

3⇒2) Let (fn)n be in the unit ball of Aψ1
α (BN ) converging to 0 uniformly on every compact

subset of BN . We have

lim sup
n→∞

‖fn‖Lψ2(µ) = lim sup
r→1−

lim sup
n→∞

∥

∥

∥
Ir (fn) + fn.χrBN

∥

∥

∥

Lψ2 (µ)

. lim sup
r→1−

‖Ir‖+ lim sup
r→1−

lim sup
n→∞

∥

∥

∥fn.χrBN

∥

∥

∥

∞

= 0.

2⇒3) By contradiction suppose that (3) is not satisfied so that there exist a constant δ > 0

and a sequence (fn)n in the unit ball of Aψ1
α (BN ) such that

∥

∥

∥I(1− 1
n)

(fn)
∥

∥

∥

Lψ2
≥ δ for every n ≥ 0.
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Up to an extraction, we may suppose that (fn)n converges uniformly on compact subsets of BN

to f ∈ Aψ1
α (BN ). By Lebesgue’s theorem, limn→∞

∥

∥

∥
I(1− 1

n)
(f)
∥

∥

∥

Lψ2
= 0; thus, for n large enough,

‖fn − f‖Lψ2 ≥
∥

∥

∥I(1− 1
n)

(fn − f)
∥

∥

∥

Lψ2
≥ δ/2

which contradicts (2). �

As for the boundedness, Proposition 2.11 and Lemma 2.7 yield the following embedding com-
pactness theorem for Bergman-Orlicz spaces.

Theorem 2.12. Let µ be a finite positive Borel measure on BN , and let ψ1 and ψ2 be two Orlicz
functions. Then:

(1) If embedding Aψ1
α (BN ) ⊂ L

ψ2 (µ) holds and is compact, then for every A > 0 we have

(2.17) ̺µ (h) = oh→0

(

1

ψ2

(

Aψ−1
1 (1/hN+1+α)

)

)

.

(2) If

(2.18) Kµ,α (h) = oh→0

(

1/hN+1+α

ψ2

(

Aψ−1
1 (1/hN+1+α)

)

)

for every A > 0, then Aψ1
α (BN ) embeds compactly in Lψ2 (µ).

(3) If in addition ψ1 = ψ2 = ψ satisfies the ∇0-Condition (see Definition 1.7,) then Conditions
(2.17) and (2.18) are equivalent.

Proof. 1) We suppose that the canonical embedding is compact but that Condition (2.17) failed to
be satisfied. This means that there exist some ε0 ∈ (0, 1) and A > 0, some sequences (hn)n ⊂ (0, 1)
decreasing to 0 and (ξn)n ⊂ SN , such that

µ (S (ξn, hn)) ≥
ε0

ψ2

(

Aψ−1
1 (1/hN+1+α)

) .

Let an := (1− hn) ξn and consider the functions

fn (z) := fan (z) :=
1

2N+1+α

ψ−1
1

(

1/hN+1+α
n

)

1/hN+1+α
n

Han (z)

=
1

2N+1+α

ψ−1
1

(

1/hN+1+α
n

)

1/hN+1+α
n

(

hn (2− hn)

|1− (1− hn) 〈z, ξn〉|
2

)N+1+α

(2.19)

where Han is the Berezin kernel (see Proposition 2.2.) By the second part of Proposition 2.2

(Inequalities (2.1),) every fn lays in the unit ball of Aψ1
α (BN). By (2.19), as ψ1 is an Orlicz

function, (fn)n converges to 0 uniformly on every compact subset of BN . So Proposition 2.11

ensures that (fn)n converges to 0 in norm of Lψ2 (µ).
Now, by the proof of the first part of Theorem 2.8, the following estimation holds:

|Han (z)| ≥

(

1

4hn

)N+1+α

for any z ∈ S (ξn, hn), which gives

|fn (z)| ≥
ψ−1
1

(

1/hN+1+α
n

)

8N+1+α
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for any z ∈ S (ξn, hn); therefore
∫

BN

ψ2

(

8N+1+αA

ε0
|fn|

)

dµ ≥ ψ2

(

A

ε0
ψ−1
1

(

1

hN+1+α
n

))

µ (Sf (ξn, hn))

≥ ψ2

(

A

ε0
ψ−1
1

(

1

hN+1+α
n

))

ε0

ψ2

(

Aψ−1
1

(

1/hN+1+α
n

))

≥ 1

by the convexity of ψ2. This yields ‖fn‖Lψ2 (µ) ≥
ε0

8N+1+αA
for every n, which is a contradiction

and completes the proof of the first part.
2) We now suppose that Condition (2.18) is satisfied. Thanks to the second point of Proposition

2.11, it is sufficient to prove that, for every ε > 0, the norm of the embedding

Ir : A
ψ1
α (BN ) →֒ Lψ2

(

BN \ rBN , µ
)

is smaller than ε for some r0 (ε) and every r such that r0 (ε) ≤ r < 1. Let η ∈ (0, 1) and let

A := A (ε) =
6.4N+α

ε
> 0; Condition (2.18) ensures that there exists hA ∈ (0, 1/2) such that

Kµ,α (h) ≤ η
1/hN+1+α

ψ2

(

Aψ−1
1 (1/hN+1+α)

)

for h ≤ hA. Let now f be in the unit ball of Aψ1
α (BN ) and r ∈ (0, 1). By the proof of Lemma 2.7,

applied to E = BN \ rBN and f , there exist a constant B > 0 given by B =
6.4N+α

A
= ε, and

some constants xA > 0 and C1 > 0, independent of f , such that
∫

BN\rBN

ψ2

(

|f |

ε

)

dµ =

∫

BN\rBN

ψ2

(

|f |

B

)

dµ

≤ µ
(

BN \ rBN
)

ψ2 (xA) + C1η

∫

BN

ψ1 (Λf ) dvα,

where Λf denotes the maximal function of f , defined by (2.3). Now, we choose η such that

C1η

∫

BN

ψ1 (Λf ) dvα ≤
1

2
(which is possible thanks to the fact that ψ1 satisfies ∇2-Condition, and

thanks to Corollary 3.9) and we take r0 ∈ (0, 1) such that µ
(

BN \ rBN
)

ψ2 (xA) ≤
1

2
for every

r ∈ (r0, 1) (note that r0 depends on ε because A depends on ε). We get ‖Ir (f)‖Lψ2(µ) ≤ ε as soon

as r0 < r < 1, what completes the proof.
3) The proof of the third point is essentially contained in that of the third part of Theorem

4.11 of [13]. �

This leads us to the definition of vanishing (ψ,α)-Bergman-Carleson measure on the ball:

Definition 2.13. Let ψ be an Orlicz function and let µ be a Borel positive measure on BN . We
say that µ is a vanishing (ψ,α)-Bergman-Carleson measure if, for every A > 0,

µ (W (ξ, h)) = oh→0

(

1

ψ (Aψ−1 (1/hN+1+α))

)

for any ξ ∈ SN .

We have the next corollary:

Corollary 2.14. Let ψ be an Orlicz function satisfying the ∇0-Condition and let µ be a Borel

positive measure on BN . Then A
ψ
α (BN ) embeds compactly into Lψ (µ) if and only if µ is a vanishing

(ψ,α)-Bergman-Carleson measure.
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2.3. Application to composition operators on weighted Bergman-Orlicz spaces. Theo-
rem 2.8 and Theorem 2.12 allow us to give the following characterization with some constraints
on the Orlicz function ψ:

Theorem 2.15. Let ψ be an Orlicz function and φ : BN → BN be holomorphic. We denote by
µαφ the pull-back measure of φ for the weighted Lebesgue measure vα on BN , namely µαφ (E) =

vα
(

φ−1 (E)
)

for every Borel subset E of BN . Then

(1) If ψ satisfies the uniform ∇0-Condition, then Cφ is bounded from Aψα (BN) into itself if
and only if µαφ is a (ψ,α)-Bergman-Carleson measure.

(2) If ψ satisfies the ∇0-Condition, then Cφ is compact from Aψα (BN ) into itself if and only
if µαφ is a vanishing (ψ,α)-Bergman-Carleson measure.

Proof. Thanks to Corollary 2.10 and Corollary 2.14, it suffices to notice that the continuity (resp.

compactness) of the canonical embedding Iµα
φ
: Aψα (BN ) →֒ Lψ

(

µαφ

)

is equivalent to the bound-

edness (resp. compactness) of Cφ : Aψα (BN )→ Aψα (BN ). This just proceeds from the fact that

‖Cφ (f)‖Aψα(BN )
= inf

{

C > 0,

∫

BN

ψ

(

|f ◦ φ|

C

)

dσ ≤ 1

}

= inf

{

C > 0,

∫

BN

ψ

(

|f |

C

)

dµφ ≤ 1

}

=
∥

∥

∥
Iµα

φ
(f)
∥

∥

∥

Lψ(µαφ)
,

for any f ∈ Aψα (BN ). �

As a particular case of the previous theorem, we state and verify [10, Theorem 3.6 and Theorem
4.3]:

Theorem 2.16. Let ψ be an Orlicz function which satisfies ∆2-Conditions and let φ : BN → BN

be holomorphic. Then

(1) Cφ is bounded from Aψα (BN ) into itself if and only if µαφ is an α-Bergman-Carleson mea-
sure.

(2) Cφ is compact from Aψα (BN ) into itself if and only if µαφ is a vanishing α-Bergman-Carleson
measure.

Proof. It suffices to observe that

1

ψ (Aψ−1 (1/hN+1+α))
≈ hN+1+α

for every A > 0, whenever ψ is an Orlicz function which satisfies the ∆2-Condition (see Remark
2 (a) following Theorem 4.11 in [13].) �

As we said, we are interested in finding where the break of condition for boundedness of Cφ
happens between H∞ (BN) and A

p
α (BN ). More precisely, we can wonder if there are some spaces

different from H∞ (BN ) and smaller than some Apα (BN ) on which every composition operator Cφ
is bounded. In [11], the authors show the following proposition:

Proposition 2.17. Let φ : BN → BN be analytic. Then

(2.20) µαφ (S (ξ, h)) = Oh→0

(

hα+2
)

for every ξ ∈ SN .

In fact, this result is stated for general strongly pseudo-convex domains instead of BN ([11,
Proposition 4].) A comparison of Condition (2.20) and the definition (ψ,α)-Bergman-Carleson
measure with ψ satisfying the uniform ∇0-Condition leads us to define an other class of Orlicz
functions:
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Definition 2.18. Let ψ be an Orlicz function. We say that ψ belongs to the ∆N
α -Condition if

there exist two constants K > 0 and C > 1 such that, for every x > 0 large enough, we have

(2.21) ψ (x)
N+1+α
α+2 ≤ Kψ (Cx) .

This condition is clearly a condition of fast enough growth. For instance, ψ (x) = eax − 1 with
a > 0 satisfies this ∆N

α -Condition. A straightforward computation entails:

Proposition 2.19. Let ψ be an Orlicz function satisfying the ∆N
α -Condition. Then there exist

A > 0 and C > 1 such that

(2.22) Chα+2 ≤
1

ψ (Aψ−1 (1/hN+1+α))

for every h small enough.

In fact, Inequality (2.22) is equivalent to the fact that ψ satisfies the ∆N
α -Condition. Now,

Corollary 2.10, Proposition 2.17 and Proposition 2.19 give the following theorem, which answers to
the question of the existence of some Bergman-Orlicz space, on which every composition operator
is bounded:

Theorem 2.20. Let ψ be an Orlicz function satisfying the ∆N
α ∩ ∇

unif
0 -Condition. Then every

composition operator is bounded from Aψα (BN ) into itself.

We remark that every ψ (x) = eax − 1 for a > 0 belongs to the ∇unif0 ∩∆N
α -Class, so that our

result is not empty.
Let us notice that when N = 1, Theorem 4.6 (adapted to the α-order weighted area measure on

the disk) holds ([15, Theorem 3.1], up to the order α,) then uniform ∇0-Condition is not necessary
and ∆1

α is satisfied by every Orlicz function, and so is Inequality (2.22). Therefore we deduce from
Theorem 2.20 that every composition operator is bounded on every Bergman-Orlicz space of the
unit disk D, which is already known ([13, Proposition 5.4]; note that our proof is different from
that of the latter, which is based on the Littlewood subordination principle.)

3. Hardy-orlicz spaces of BN

Concerning the study of composition operators, as it is usual for Hardy spaces, working with
Hardy-Orlicz spaces need more precautions than working with Bergman-Orlicz spaces; this is
essentially because of the fact that their definition takes more into account the boundary behavior
of holomorphic functions.

3.1. Definitions and classical results. As for the Hardy spaces, we define the Hardy-Orlicz
spaces of the ball from the Orlicz spaces of the sphere:

Definition 3.1. Let ψ be an Orlicz function. The Hardy-Orlicz space Hψ (BN ) of the ball of CN

is the space of analytic functions f : BN → C such that

sup
0<r<1

‖fr‖ψ <∞,

where fr ∈ L
ψ (SN ) is defined by fr (z) = f (rz).

Since Lψ (BN ) ⊂ L1 (BN ), H
ψ (BN ) is contained in H1 (BN). In particular, any f ∈ Hψ (BN),

admits a radial limit f∗ almost everywhere on SN , and we have the following theorem, which can
be generalized from the well-known case ψ(x) = xp:

Theorem 3.2. Let f ∈ Hψ (BN ) and let f∗ be its almost everywhere boundary limit. Then
f∗ ∈ Lψ (SN) and

‖f∗‖ψ = sup
0<r<1

‖fr‖ψ .

If we denote by ‖f‖Hψ := ‖f∗‖ψ, then H
ψ (BN) endowed with the norm ‖.‖Hψ is a Banach space.
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The proof of this result is quite identical to the one variable case which is contained in the
proof of Proposition 3.1 in [13]. When there is no possible confusion, we will indifferently denote
by ‖.‖ψ the norm ‖.‖Hψ on Hψ (BN ). Moreover, Hψ (BN ) can be seen as a subspace of Lψ (SN ).

Contrary to what happens for the Hardy space, the ball algebra A (BN ) is not always dense in
Hψ (BN ), as the following result indicates (from now on, HMψ (BN ) denotes H

ψ (BN )∩M
ψ (BN ).)

Theorem 3.3 (See Theorem 4, Chapter IX of [18] for Ω = BN ). Let ψ be an Orlicz function.
A (BN ) is dense in Hψ (BN) if and only if Hψ (BN) is separable, which in turn is equivalent to
the fact that ψ satisfies the ∆2-Condition. However, HMψ (BN ) is always separable.

The non-separability of Hψ (BN) will cause some problems when we will try to deduce results
on composition operators from embedding theorems.

As for Bergman-Orlicz spaces, the following theorem will be useful to get embedding theorems
in the context of Hardy-Orlicz spaces. Its proof is very similar to that of Proposition 2.3.

Theorem 3.4. On the unit ball of Hψ (BN ), the weak-star topology coincides with the uniform
convergence on every compact subset of BN .

We finish this section by recalling an interpolation theorem which is not general, but which will
be sufficient for our purpose. It is nothing but [13, Proposition 3.5].

Proposition 3.5. Let ψ be an Orlicz function which satisfies the ∇2-Condition (see Definition
1.6.) Then every linear, or sub-linear, operator which is of weak-type (1, 1) and strong type (∞,∞)
is bounded from Lψ into Lψ.

For more complete results concerning interpolation of linear operators between Orlicz spaces,
we refer to Chapter VI of [18].

3.2. Embedding Theorems for Hardy-Orlicz spaces. We begin with an estimation of the
norm of point evaluation linear functional maps acting on Hψ (BN ). We denote by δa the point
evaluation functional at a ∈ BN , so that, for f defined on BN , we have δa (f) = f(a).

First, for a ∈ SN and 0 < r < 1, let us define the function ua,r ∈ H
∞ (BN ) by

ua,r (z) =

(

1− r

1− r 〈z, a〉

)2N

for z ∈ BN . It is indeed clear that ‖ua,r‖∞ = 1 since |ua,r(z)| ≤ 1 for every z ∈ BN and
ua,r (z) −−−→

z→a
1. Moreover, let notice that for every z ∈ BN

|ua,r(z)| =

(

1− r

1 + r

)N

P (ra, z) ,

where

Pw(z) = P (w, z) =

(

1− |w|2

|1− 〈w, z〉|2

)N

for w, z ∈ BN , is the invariant Poisson Kernel. Therefore, it follows that

‖ua,r‖1 =

(

(1− r)2

1− r2

)N

‖Pw‖1 =

(

1− r

1 + r

)N

.

The last inequality is nothing but Cauchy’s formula and the positivity of P (see [22, Subsection
4.1].)

The following proposition says that the point evaluation functional is bounded on Hψ (BN) and
yields lower and upper estimations of its norm.

Proposition 3.6. If a ∈ BN then

1

4N
ψ−1

(

(

1 + |z|

1− |z|

)N
)

≤ ‖δa‖(Hψ(BN ))
∗ ≤ ψ−1

(

(

1 + |z|

1− |z|

)N
)

.
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Moreover,

(3.1) ‖δa‖(HMψ(BN ))
∗ = ‖δa‖(Hψ(BN ))

∗ := ‖δa‖ .

Proof. First, since fr ∈ HM
ψ (BN ) for every f ∈ H

ψ (BN ) and since fr (z) −−−→
r→1

f(z), z ∈ BN , we

have

(3.2) ‖δz‖(HMψ(BN ))
∗ ≥ ‖δz‖(Hψ(BN ))

∗

so that (3.1) is true, as the converse inequality in (3.2) is trivial.
Now, for every f ∈ Hψ, we have

f(z) =

∫

SN

Pz (ζ) f (ζ) dσ (ζ) ,

with Pz ∈ L
∞ (SN ) and ‖Pz‖∞ =

(

1 + |z|

1− |z|

)N

. Set C = ‖f‖ψ; Jensen’s Inequality gives

ψ

(∣

∣

∣

∣

f (z)

C

∣

∣

∣

∣

)

≤

∫

SN

Pz (ζ)ψ

(

|f (ζ)|

C

)

dσ (ζ)

≤

(

1 + |z|

1− |z|

)N

.

Hence

|f (z)| ≤ ‖f‖ψ ψ
−1

(

(

1 + |z|

1− |z|

)N
)

.

For the lower bound, it is sufficient to write

‖δz‖ ≥
|ua,r (z)|

‖ua,r‖ψ

with r = |z| and az = r, and to argue as in the proof of Proposition 2.2. �

Embedding theorems will involve some geometric conditions. We recall the definition of the
non-isotropic distance on the sphere SN , which we denote by d. For (ζ, ξ) ∈ SN , it is given by

d (ζ, ξ) =
√

|1− 〈ζ, ξ〉|.

As in Subsection 2.2, we will use non-isotropic “balls” S (ζ, h) and Sf (ζ, h), the associated “true”

balls Qf (ζ, h) in SN , extending their definition for ζ in the whole closed ball BN , and Carleson
windows W (ζ, h) and Wf (ζ, h) (ζ ∈ SN this time,) the latter being defined by

Wf (ζ, h) =

{

z ∈ BN , 1− |z| < h,
z

|z|
∈ Qf (ζ, h)

}

.

Finally, we define the Korányi approach region D (η) for η ∈ SN by

D (η) =
{

z ∈ BN , d (z, η)
2 < 1− |z|2

}

.

Given f continuous on BN and ξ ∈ SN , the maximal function Nf of f associated to the Korányi
approach regions is defined as follows:

Nf (ξ) = sup
w∈D(ξ)

{|f (w)|} .

The Hardy-Littlewood maximal function Mf of f ∈ L1 (SN ) is given by

Mf (ξ) = sup
δ>0

1

σ (Qf (ξ, δ))

∫

Qf (ξ,δ)
|f | dσ,

for ξ ∈ SN . It is well-known that the sub-linear maximal operator M : f 7−→Mf is of weak type
(1, 1) on SN (see [22], Lemma 4.8) and that it maps L∞ (SN) into itself boundedly. Therefore,
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Proposition 3.5 yields the following result concerning Hardy-Littlewood maximal function on
Hardy-Orlicz spaces, under the ∇2-condition (see Definition 1.6:)

Theorem 3.7. Let ψ be an Orlicz function satisfying the ∇2-condition. Then, the Hardy-
Littlewood maximal operator M maps Lψ (SN) into itself boundedly. More precisely, there exists
a constant Cψ > 0 such that

‖Mf‖ψ ≤ Cψ ‖f‖ψ ,

for every f ∈ Lψ (SN).

Moreover, Nf is dominated by Mf in the “Hardy-Orlicz following sense”:

Theorem 3.8. Let ψ be an Orlicz function. Then there exists a constant C > 0 such that

Nf (ξ) ≤ CMf∗ (ξ)

for every f ∈ Hψ (BN ) and for every ξ ∈ SN , where f
∗ ∈ Lψ (SN ) is the radial limit of f .

Proof. First, f∗ ∈ L1 (SN ) since f ∈ H
ψ (BN ), so f

∗dσ is a finite complex Borel measure on SN

and we can use Theorem 4.10 of [22] to get

NP [f∗] ≤ CMf∗

for some constant C > 0, where

P [f∗] (ξ) =

∫

SN

P (ξ, z) f∗ (z) dσ (z) .

We finish the proof by noticing that

P [f∗] = f,

for example because f ∈ H1 (BN ). �

We get a result similar to Theorem 3.7 for the maximal operator N associated to Korányi
approach regions:

Corollary 3.9. Let ψ be an Orlicz function satisfying the ∇2-condition. Then, the maximal
operator N associated to Korányi approach regions maps Hψ (BN) into L

ψ (SN ) boundedly. More
precisely, there exists a constant Cψ > 0 such that

‖Nf‖Lψ(SN ) ≤ Cψ ‖f‖Hψ(BN )

for every f ∈ Hψ (BN ).

Proof. It is an immediate consequence of Theorem 3.7 and Theorem 3.8, with the fact that
‖f∗‖Lψ(SN ) = ‖f‖Hψ(BN ) for every f ∈ H

ψ (BN ). �

As in the Bergman-Orlicz case, we will need a specific formulation of Carleson’s theorem, but
here for the closed ball. In the case of the disk, we refer to [13, Theorem 4.13]. As usual, we define
two functions involved in this context:

Definition 3.10. For any positive finite Borel measure µ on BN , we set

̺µ (h) = sup
ξ∈SN

µ (Wf (ξ, h))

and

Kµ (h) = sup
0<t<h

µ (Wf (ξ, t))

tN

for h ∈ (0, 1).
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We think that there is no possible confusion to denote in the same way the function ̺µ in
Bergman-Orlicz and Hardy-Orlicz contexts. Usually, we say that µ is, by definition, a Carleson
measure (in the classical Hardy spaces framework) if Kµ (h) is finite for some h ∈ (0, 1). If
f ∈ H1 (BN ), we will identify f∗, the function equal to f in BN and to the boundary radial
limits of f on the full Lebesgue measure subset of SN where these limits exist, with f itself. In
the statement of the following Carleson Theorem, we will not precise on which subset of BN the
function f∗ is well-defined and we will write f (z) for z ∈ BN , by keeping in mind that this has
sense only for z ∈ BN ∪ (SN ∩ Ef ) where Ef is some subset of SN such that σ (SN \ Ef ) = 0. We
think that there is still no possible confusion.

Theorem 3.11. There exist two constants C̃ > 0 and C > 1 such that, for every f ∈ H1 (BN )
and every positive finite Borel measure µ on BN , we have

µ
({

z ∈ BN , |z| > 1− h and |f (z)| > t
})

≤ C̃Kµ (Ch)σ ({Nf > t})

for every h ∈ (0, 1/C) and every t > 0.

We will need a covering lemma:

Lemma 3.12. Let g be a continuous function on BN , a > 0 and h ∈ (0, 1). Then, either
|g (w)| < a in BN \ (1− h)BN or there exist w1, w2, . . . in BN \ (1− h)BN such that:

(1) |g (wi)| ≥ a for every i ≥ 1,
(2) The set

{w ∈ BN , |g (w)| ≥ a} ∩ (BN \ (1− h)BN )

is contained in
⋃

i≥1

S
(

wi, 4
(

1− |wi|
2
))

.

(3) The sets Qf

(

wi,
(

1− |wi|
2
))

, i ≥ 1, are pairwise disjoints.

Proof. The proof of this lemma can be found in [17] in the case h = 1/2. There is nothing to do
to adapt this proof and get the result for any h ∈ (0, 1). �

Proof of Theorem 3.11. We fix t > 0. We may suppose that there exists a ∈ BN \ (1− h)BN
such that |f (a)| > t, with |a| > 1 − h. Then the previous lemma ensures that there exists
(wi)i≥1 ⊂ BN \ (1− h)BN such that

(3.3) µ ({z ∈ BN , |z| > 1− h and |f (z)| > t}) ≤
∑

i≥1

µ
(

S
(

wi, 4
(

1− |wi|
2
)))

.

We must also have

µ ({z ∈ SN , |f (z)| > t}) ≤
∑

i≥1

µ

(

Qf

(

wi, 4
(

1− |wi|
2
))

)

,

since

{z ∈ SN , |f (z)| > t} ⊂
⋃

i≥1

Qf

(

wi, 4
(

1− |wi|
2
))

.

The last inclusion comes from the fact that if z ∈ SN satisfies |f (z)| > t, then we can find r ∈ (0, 1)

as close as possible to 1 such that there is at least one i ≥ 1 such that rz ∈ S
(

wi, 4
(

1− |wi|
2
))

;

letting r tends to 1, we get z ∈ Qf

(

wi, 4
(

1− |wi|
2
))

. So we can rewrite inequality (3.3) for µ

as follows:

(3.4) µ
({

z ∈ BN , |z| > 1− h and |f (z)| > t
})

≤
∑

i≥1

µ

(

Sf

(

wi, 4
(

1− |wi|
2
))

)

.

Moreover, the definitions of the Korányi approach region D (η), η ∈ SN , and of Qf yields

{η ∈ SN , wi ∈ D (η)} = Qf

(

wi, 1− |wi|
2
)

,
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so Nf (η) ≥ t whenever η ∈ Qf

(

wi, 1− |wi|
2
)

. Therefore and since the sets Qf

(

wi, 1 − |wi|
2
)

are pairwise disjoints, we have

(3.5)
∑

i≥1

σ
(

Qf

(

wi, 1 − |wi|
2
))

≤ σ ({Nf ≥ t}) .

Now, the triangle inequality ensures that if we set r = 9
(

1− |wi|
2
)

, then

µ

(

Sf

(

wi, 4
(

1− |wi|
2
))

)

≤ µ

(

Sf

(

wi
|wi|

, r

))

≤ µ

(

Wf

(

wi
|wi|

, C0r

))

for some C0 > 1. By definition of Kµ and as r ≤ 2h, we can find some absolute constant C > 1
(in fact, we can take C = 2C0) such that

(3.6) µ

(

Sf

(

wi, 4
(

1− |wi|
2
))

)

≤ CN0 r
N
µ
(

Wf

(

wi
|wi|

, C0r
))

CN0 r
N

≤ CN0 r
NKµ (Ch) .

Now, by using [22, Lemma 4.6] and by homogeneity of the Lebesgue measure on SN , we get

(3.7) rN . σ

(

Qf

(

wi
|wi|

, r

))

. σ
(

Qf

(

wi, 1− |wi|
2
))

.

Hence, inequalities (3.4), (3.5), (3.6) and (3.7) give that there exist two constants C > 1 and

C̃ > 0 such that

µ
({

z ∈ BN , |z| > 1− h and |f (z)| > t
})

≤ C̃Kµ (Ch)σ ({Nf ≥ t}) .

�

As for the Bergman-Orlicz case, we will need a lemma which is an application of Theorem 3.11.
Its proof follows exactly the same ideas than that of Lemma 2.7; we do not go into details.

Lemma 3.13. Let µ be a finite positive Borel measure on BN and let ψ1 and ψ2 be two Orlicz
functions. Let C ≥ 1 be the constant appearing in Theorem 3.11. Assume that there exist A > 0,
η > 0 and hA ∈ (0, 1/C) such that

Kµ (h) ≤ η
1/hN

ψ2

(

Aψ−1
1 (1/hN )

)

for every h ∈ (0, hA). Then, there exist three constants B > 0, xA > 0 and C1 > 0 (this latter
does not depend on A, η and hA), such that or every f ∈ Hψ1 (BN ) such that ‖f‖ψ1

≤ 1 and every

Borel subset E of BN
∫

E
ψ2

(

|f |

B

)

dµ ≤ µ (E)ψ2 (xA) + C1η

∫

SN

ψ1 (Nf ) dσ.

From this point on, we are able to give the results analogous to Theorem 2.8 and Theorem
3.19, which give a necessary condition and a sufficient condition for the existence (and then the
boundedness) and actually the compactness of the embedding jµ : Hψ1 (BN )→ Lψ2 (µ) for some

finite positive Borel measure µ on BN .

3.2.1. The canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ). The main theorem of this section is the
following:

Theorem 3.14. Let µ be a finite positive Borel measure on BN and let ψ1 and ψ2 be two Orlicz
functions; we suppose that ψ1 satisfies the ∇2-condition. Then:

(1) If inclusion Hψ1 (BN ) ⊂ Lψ2 (µ) holds and is continuous, then there exists some A > 0
such that

(3.8) ̺µ (h) = Oh→0

(

1

ψ2

(

Aψ−1
1 (1/hN )

)

)

.
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(2) If there exists some A > 0 such that

(3.9) Kµ (h) = Oh→0

(

1/hN

ψ2

(

Aψ−1
1 (1/hN )

)

)

then inclusion Hψ1 (BN ) ⊂ L
ψ2 (µ) holds and is continuous.

(3) If in addition ψ1 = ψ2 = ψ satisfies the uniform ∇0-Condition, then (3.8) and (3.9) are
equivalent.

Proof. We just give the sketch of the proof which is quite similar to that of Theorem 2.8.
1) We may consider the map

f = ψ−1

(

1

hN

)

ua,1−h,

where ua,1−h (z) =

(

h

1− (1− h) 〈z, a〉

)2N

for 0 < h < 1 and then proceed as in the proof of the

first part of Theorem 2.8
2) This is an application of Lemma 3.13 and Corollary 3.9, as in Theorem 2.8.
3) The proof of the third part is quite identical to the one of 3) of Theorem 2.8. �

The third part of the previous theorem leads to introduce the ψ-Hardy-Carleson measures:

Definition 3.15. Let µ be a finite positive Borel measure on BN and ψ be an Orlicz function.
We say that µ is a ψ-Carleson measure if there exists A > 0, such that

(3.10) µ (Sf (ξ, h)) = Oh→0

(

1

ψ (Aψ−1 (1/hN ))

)

for every ξ ∈ SN .

We remark that (3.10) is equivalent to (3.8), and we have the following corollary:

Corollary 3.16. Let µ be a finite positive Borel measure on BN and let ψ be an Orlicz function.
Then, if ψ satisfies the uniform ∇0-Condition, then inclusion Hψ (BN ) ⊂ Lψ (µ) holds and is
continuous if and only if µ is a ψ-Hardy-Carleson measure.

Proof. We just have to notice that ∇0-Condition entails ∇2-Condition, which is contained in
Proposition 1.10. �

3.2.2. Compactness of the canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ). For this purpose, we need
some general facts about compactness of operators from Hψ1 (BN ) into Lψ2 (µ). Most of the
criteria have already been given in Paragraph 2.2.2. Anyway, some difficulties appear as we
have to take into account the boundary of BN . In the one-dimensional case, this is a natural
necessary condition that the measure µ must be null on ∂D as soon as the canonical embedding
Hψ1 (D) →֒ Lψ2 (µ) is compact. However we do not know if a similar result is true in the several
variables case. It seems to be interesting to state this question in the following conjecture:

Conjecture 3.17. Let µ be a finite positive measure on BN , ψ1 and ψ2 be two Orlicz functions.
If the canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ) is compact, then µ (SN ) = 0.

We give a necessary and sufficient condition for the canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ)
to be compact under the hypothesis µ (SN ) = 0.

Proposition 3.18. Let µ be a finite positive measure on BN and let ψ1 and ψ2 be two Orlicz
functions. We suppose that the canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ) holds and is bounded.

(1) Consider the two following assertions:
(a) The canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ) is compact;
(b) Every sequence in the unit ball of Hψ1 (BN ), which is convergent to 0 uniformly on

every compact subset of BN , is convergent to 0 in Lψ2 (µ).
Then, if (a) holds and µ (SN ) = 0, then (b) holds. Conversely, if (b) holds, then (a) holds.
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(2) If Hψ1 (BN ) is continuously embedded in Lψ2 (µ) and if limr→1− ‖Ir‖ = 0, where Ir (f) =
f.χ

BN\rBN
, then the canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ) is compact.

Proof. This is the same than that of Proposition 2.11, except that the measure µ is defined on
the closed ball BN ; actually, this difficulty is canceled by the assumption µ (SN ) = 0. �

Thanks to Lemma 3.13 and to Proposition 3.18, we get our main theorem about compactness
of the canonical embedding Hψ1 (BN) →֒ Lψ2 (µ).

Theorem 3.19. Let µ be a finite positive Borel measure on BN such that µ (SN ) = 0, and let ψ1

and ψ2 be two Orlicz functions. We assume that ψ1 satisfies the ∇2-condition. Then:

(1) If inclusion Hψ1 (BN ) ⊂ L
ψ2 (µ) holds and is compact, then for every A > 0 we have

(3.11) ̺µ (h) = oh→0

(

1

ψ2

(

Aψ−1
1 (1/hN )

)

)

.

(2) If

(3.12) Kµ (h) = oh→0

(

1/hN

ψ2

(

Aψ−1
1 (1/hN )

)

)

for every A > 0, then inclusion Hψ1 (BN) ⊂ L
ψ2 (µ) holds and is compact.

(3) If in addition ψ1 = ψ2 = ψ satisfies both ∇0 and ∇2-Conditions then (3.11) and (3.12)
are equivalent.

Remark 3.20. It is not necessary to assume that µ (SN) = 0 in (2). Indeed, for h ∈ (0, 1), if C (h)
denotes the minimal number of non-isotropic balls Qf (ζ, h) which are needed to cover the corona

BN \ (1− h)BN , then we know that there is a constant C independent of h, such that

C (h) ≤
C

hN
.

(This is essentially contained in [19, Lemma 5.2.3].) Therefore, if Condition (3.12) holds, then

µ
(

BN \ (1− h)BN
)

≤ C
̺µ (h)

hN
≤ CKµ (h) −−−→

h→0
0.

Proof. As for Theorem 3.14, we just give a sketch of the proof which is similar to that of Theorem
2.12.

1) We consider the functions

fn (z) = ψ−1
1

(

1

hNn

)

uξn,1−hn (z) =

(

hn
1− (1− hn) 〈z, ξn〉

)2N

,

and then follow the proof of 1) of Theorem 2.12.
2) It is a consequence of Lemma 3.13, Corollary 3.9 and the assumption µ (SN ) = 0.
3) The proof of the third point is essentially contained in the proof of the third part of Theorem

4.11 of [13]. �

The third point of the last theorem leads us to define what one calls vanishing ψ-Carleson
measures:

Definition 3.21. Let µ be a finite positive Borel measure on BN and let ψ be an Orlicz function.
We say that µ is a vanishing ψ-Carleson measure if, for every A > 0,

(3.13) µ (Sf (ξ, h)) = oh→0

(

1

ψ (Aψ−1 (1/hN ))

)

for every ξ ∈ SN .

We now state the following corollary:
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Corollary 3.22. Let ψ be an Orlicz function and let µ be a finite positive Borel measure on BN

such that µ (SN) = 0. If ψ satisfies the ∇0 ∩ ∇2-Condition, then inclusion Hψ (BN ) ⊂ Lψ (µ)
holds and is compact if and only if µ is a vanishing ψ-Carleson measure.

3.3. Application to Composition operators on Hardy-Orlicz spaces. In this section, we
intend to apply the previous results (or at least the ideas) to composition operators. Let φ :
BN → BN be holomorphic. We denote by φ∗ : BN → BN the map which is equal to φ on BN and
which is equal to the boundary limit of φ on SN , i.e. for all ζ ∈ BN and σ-almost every ζ ∈ SN ,
φ∗ (ζ) = limr→1 φ (rζ); we define the pull-back measure µφ on BN induced by φ as the image of
the normalized Lebesgue measure σ on SN :

µφ (E) = σ
(

φ∗
−1

(E) ∩ SN

)

for every Borel subset E ⊂ BN .
We also denote by Cφ the composition operator associated to φ and defined by Cφ (f) = f ◦ φ

for f ∈ Hψ (BN ), with ψ an Orlicz function. In the classical study of composition operators on
Hardy spaces, it is possible, and usually done, to make a link between the embedding operator
jµφ associated to the pull-back measure µφ and the composition operator Cφ. Just first look at
these two expressions:

∥

∥jµφ (f)
∥

∥

Lψ(µ)
= inf

(

C > 0,

∫

BN

ψ

(

|f |

C

)

dµφ ≤ 1

)

= inf

(

C > 0,

∫

SN

ψ

(

|f∗ ◦ φ∗|

C

)

dσ ≤ 1

)

(3.14)

and

(3.15) ‖Cφ (f)‖ψ = inf

(

C > 0,

∫

SN

ψ

(

|(f ◦ φ)∗|

C

)

dσ ≤ 1

)

.

Because of Carleson Theorem for Hardy-Orlicz spaces, it is quite natural to compare (3.14) and
(3.15) and to wonder if these two expressions are equal in order to appeal to the results known con-
cerning embedding operators to solve the questions of continuity and compactness of composition
operators. For that purpose, we can ask the questions:

(1) Is it true that f∗ ◦ φ∗ = (f ◦ φ)∗ as soon as these two expressions have sense?
In the one variable case, Lindelöf Theorem gives a positive answer when f ∈ Hp (D) for
any 1 ≤ p ≤ ∞ (and so when f ∈ Hψ (D),) and therefore it suffices to state the problem of
continuity and compactness of composition operators in terms of embedding theorems for
convenient measures. Nevertheless, it fails to be true in general, whenever the dimension
is greater than 1. There exists a weakened several-variables version of Lindelöf Theorem,
the so-called Cirka’s theorem ([19, Theorem 8.4.4],) yet it is not sufficient for our purpose.
So it leads to ask the following question:

(2) Is inequality

∫

SN

ψ

(

|(f ◦ φ)∗|

C

)

dσ ≤

∫

SN

ψ

(

|f∗ ◦ φ∗|

C

)

dσ true?

A positive answer should still be sufficient to conclude that the boundedness (resp. com-
pactness) of jµ entails the boundedness (resp. compactness) of Cφ. And in an easier way
than answering the first question, it reveals that the answer is yes if f is Hp (BN ), thanks
to the fact that the ball algebra A (BN ) is dense in Hp (BN ). And in fact this is still true
if f is in any Hψ (BN ) in which A (BN ) is dense. As already mentioned, this is precisely
characteristic of the Orlicz function ψ which satisfies the ∆2-Condition (Theorem 3.3.)
Recall that ∆2-Condition constrains the function ψ to verify ψ (x) ≤ Cxp for some p > 1
and C > 0 (Proposition 1.5.) Thus Hψ (BN ) has to contain at most one Hp (BN) and then
this does not give any result for Hardy-Orlicz spaces “close” to H∞ (BN ).

For these reasons, we may see the limit of the possibility to somehow consider composition opera-
tors as embedding operators. Nevertheless, we will see how the proofs of Theorem 3.11 and Lemma
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3.13 permit to give sufficient conditions, stronger than that obtained for embedding operators, for
composition operators to be bounded or compact.

First of all, according to the previous point (2), as a corollary of both Theorem 3.14 and
Theorem 3.19, we have the following result, concerning continuity and compactness of composition
operators, when the Orlicz function ψ satisfied the ∆2-Condition.

Theorem 3.23. Let φ : BN → BN be an analytic map and let µφ be its pull-back measure on BN .
Let also ψ be an Orlicz functions satisfying the ∆2 ∩ ∇2-Condition. Then:

(1) Cφ is continuous on Hψ (BN ) if and only if

(3.16) ̺µ (h) = Oh→0

(

hN
)

.

(2) Cφ is compact on Hψ (BN) if and only if

(3.17) ̺µ (h) = oh→0

(

hN
)

.

Proof. We recall that, for every Orlicz function ψ satisfying the ∆2-Condition,

1

ψ (Aψ−1 (x))
≈ x

for every A > 0 and every x > 0. �

Remark 3.24. In the statement of (2) of the last theorem, we do not assume that µφ (SN ) = 0,
although it is an assumption of Theorem 3.19 (1). In fact, we can proceed as in the proof of
Theorem 3.35 (2) of [7] and notice that this hypothesis is not necessary. More precisely, the proof
of this part lays on the following corollary of the first part of the previous theorem:

Corollary 3.25. Let ψ be an Orlicz function which satisfies the ∆2-Condition. Let φ : BN → BN be
analytic. If Cφ is bounded on Hψ (BN ) into itself, then φ∗ cannot carry a set of positive Lebesgue
measure in SN into a set of Lebesgue measure 0.

Proof. It is similar to that of Corollary 3.38 of [7]; it is not difficult to see where we may use the
∆2-Condition. �

It is interesting to see that, if ψ satisfies the ∆2-Condition, then this corollary together with
the density of A (BN ) in H

ψ (BN ) entails in fact that (f ◦ φ)∗ = f∗ ◦φ∗ almost everywhere on BN ,
for every function f ∈ Hψ (BN ), whenever Cφ is bounded from Hψ (BN ) into itself.

We now state our main general result about composition operators on Hardy-Orlicz spaces of
the ball.

Theorem 3.26. Let φ : BN → BN be an analytic map and µφ its induced pull-back measure on

BN . Let also ψ be an Orlicz function satisfying the ∇2-Condition. Then

(1) If Cφ is bounded from Hψ (BN ) into itself then µφ is a ψ-Carleson measure.

(2) For 0 < r < 1, let us denote by φr the analytic function on BN defined by φr (z) = φ (rz).
If there exists some A > 0 such that

(3.18) sup
0<r<1

Kµφr
(h) = Oh→0

(

1/hN

ψ (Aψ−1 (1/hN ))

)

,

then Cφ is bounded on Hψ (BN ).

(3) If Cφ is compact from Hψ (BN ) into itself then µφ is a vanishing ψ-Carleson measure.
(4) If for every A > 0, we have

(3.19) sup
0<r<1

Kµφr
(h) = oh→0

(

1

ψ (Aψ−1 (1/hN ))

)

,

then Cφ is compact on Hψ (BN).
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Proof. We will refer to the proofs of both Theorem 3.14 and Theorem 3.19 which have just been
sketched. By the way, they are similar to that of both Theorem 2.8 and Theorem 2.12 which have
been detailed.

(1) This is an easy adaptation of the first point of the proof of Theorem 3.14. We suppose that
Cφ is continuous with norm equal to C. Let us consider the function already introduced in the
proof of Theorem 3.14,

f = ψ−1

(

1

hN

)

ua,1−h,

for a ∈ SN and 0 < h < 1. One can show that f ∈ Hψ (BN ), ‖f‖ψ ≤ 1 and

|f (z)| ≥
1

4N
ψ−1

(

1

hN

)

for any z ∈ Sf (a, h). Moreover, f is continuous up to the boundary. Consequently

1 ≥

∫

SN

ψ

(

|(f ◦ φ)∗|

C

)

dσ =

∫

SN

ψ

(

|f ◦ φ∗|

C

)

dσ

=

∫

BN

ψ

(

|f |

C

)

dµ

≥

∫

Sf (a,h)
ψ

(

1

4N
ψ−1

(

1

hN

))

dµ

= µ (Sf (a, h))ψ

(

1

4N
ψ−1

(

1

hN

))

.(3.20)

Hence the first point.
(3) The third point proceeds from the same kind of argument and its proof is somehow contained

in that of the first point of Theorem 3.19 by observing that the functions fn introduced in the
latter proof are continuous up to the boundary.

(2) and (4) We need to pay a little more attention to the proof of the second part of respectively
Theorem 3.14 and Theorem 3.19.

First, we deal with (2); let f be in the unit ball of Hψ (BN ), and let us observe that, for every
C > 0,

∫

SN

ψ

(

|(f ◦ φ)∗|

C

)

dσ = sup
0<r<1

∫

SN

ψ

(

|f ◦ φr|

C

)

dσ

= sup
0<r<1

∫

BN

ψ

(

|f |

C

)

dµφr .(3.21)

In order to avoid any confusion, remark that there is nothing wrong to write f instead of f∗ in the
right hand side of (3.21) since µφr (SN) = 0. Moreover, if we look at the proof of (2) of Theorem
3.14, we notice that Condition (3.18) and an application of Lemma 3.13 give a majorization of
‖f‖Lψ(µφr)

by some constant C0 > 0 which does not depend on r (but just on N , A, η, C and

C̃, the two last constants being the constants involved in our Carleson theorem, Theorem 3.11.)
Then, setting C = C0 in (3.21), we get

∫

SN

ψ

(

|(f ◦ φ)∗|

C0

)

dσ ≤ sup
0<r<1

∫

BN

ψ

(

|f |

C0

)

dµφr ≤ 1

which gives the result.
We turn on (4). It can be treated in a similar way. Nevertheless, we need a specific criterion

of compactness of composition operators on Hψ (BN ). Indeed, for the usual reasons we can not
directly make use of Proposition 3.18 for every Orlicz function ψ. Anyway, the following criterion
is a generalization of the classical one on Hp (BN), 1 ≤ p <∞, and its proof is an easy adaptation
of the one of Proposition 3.18.



STÉPHANE CHARPENTIER 31

Proposition 3.27. Let ψ be an Orlicz function and φ an analytic map from BN into itself. Cφ
is compact on Hψ (BN ) iff, for every sequence (fn)n in the unit ball of Hψ (BN ) converging to 0

uniformly on every compact subset of BN , fn ◦ φ converges to 0 in Hψ (BN ).

We come back to the proof of (4). Let (fn)n be a sequence in the unit ball of Hψ (BN ) which
converges uniformly on every compact subset of BN to 0. Thanks to Proposition 3.27, it suffices
to show that ‖fn ◦ φ‖ψ tends to 0 as n tends to infinity. Set ε > 0.

∫

SN

ψ

(

|(fn ◦ φ)
∗|

ε

)

dσ = sup
0<r<1

∫

BN

ψ

(

|fn|

ε

)

dµφr .

Now, we fix 0 < r < 1 and 0 < r
′

< 1; the value of r
′

will be chosen independently of r later.

∫

BN

ψ

(

|fn|

ε

)

dµφr =

∫

BN\r
′
BN

ψ

(

|fn|

ε

)

dµφr +

∫

r
′
BN

ψ

(

|fn|

ε

)

dµφr .

Similarly to the proof of (2) of Theorem 2.12, by using Lemma 2.7 and Condition (3.19), we can

find some constants xA > 0 and C1, both independent of r and r
′

, such that

sup
0<r<1

∫

BN\r
′
BN

ψ

(

|fn|

ε

)

dµφr ≤ ψ2 (xA) sup
0<r<1

(

µφr

(

BN \ r
′

BN

))

+
1

4
.

Let us come back to Condition (3.19); it implies that

sup
0<r<1

sup
ξ∈SN

(µφr (Wf (ξ, h))) ≤ η (h) .h
N

for some function η which tends to 0 when h tends to 0. If C (h) denotes the minimal number of
non-isotropic balls Qf (ξ, h) which are needed to cover SN , then we know that there is a constant
C independent of h such that

C (h) ≤
C

hN
.

(We already use this in Remark 3.20.) Therefore

sup
0<r<1

(

µφr
(

BN \ hBN
))

≤
C

hN
.η (h) .hN = Cη (h) −−−→

h→0
∞,

and we can find some r
′

such that

ψ2 (xA) sup
0<r<1

(

µφr

(

BN \ r
′

BN

))

≤
1

4
.

Next, since (fn)n tends to 0 uniformly on every compact subset of BN , there exists some n0,

depending only on r
′

(which has been fixed before,) such that for any n ≥ n0
∫

r′BN

ψ

(

|fn|

ε

)

dµφr ≤
1

2

for every 0 < r < 1. Hence, for any n ≥ n0,

∫

SN

ψ

(

|(fn ◦ φ)
∗|

ε

)

dσ = sup
0<r<1

∫

BN

ψ

(

|fn|

ε

)

dµφr ≤
1

2
+

1

2
= 1

which completes the proof. �

We make a remark which will be useful for the next purpose of this section.
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Remark 3.28. 1) Let us have a look on the proof of the first part of the previous theorem. We
can modify the chain rule of inequalities (3.20) in the following way:

1 ≥

∫

SN

ψ

(

|(f ◦ φ)∗|

C

)

dσ = sup
0<r<1

∫

SN

ψ

(

|f ◦ φr|

C

)

dσ

= sup
0<r<1

∫

BN

ψ

(

|f |

C

)

dµφr

≥ sup
0<r<1

∫

Sf (a,h)
ψ

(

1

4N
ψ−1

(

1

hN

))

dµφr

= sup
0<r<1

µφr (Sf (a, h))ψ

(

1

4N
ψ−1

(

1

hN

))

and then we obtain that the continuity of Cφ on Hψ (BN ) not only implies that µφ is a ψ-Carleson
measure but also that there exists some A > 0 such that

(3.22) sup
0<r<1

µφr (Sf (ξ, h)) ≤
1

ψ (Aψ−1 (1/hN ))

for every ξ ∈ SN and any 0 < h < 1.
Let us observe that this fact may have been proved directly by using an easy adaptation of [6,

Lemma 3.2] to the Hardy-Orlicz context (this adaptation just consists in writing the above chain
rule for arbitrary µφβ , β ∈ I, such that Cφβ are all norm-bounded by a constant independent of
β.) Indeed, it is plain that ‖Cφr‖ ≤ ‖Cφ‖ for any 0 < r < 1.

It seems interesting to notice that it is not clear that being a ψ-Carleson measure implies
Condition (3.22).

This remark together with the proof of the third point of Theorem 2.8 shows that if ψ satisfies
the uniform ∇0-Condition, then Condition (3.22) and Condition (3.18) are equivalent. We can
then state the following characterization of the boundedness of composition operators on Hψ (BN )
for ψ satisfying the uniform ∇0-Condition (which implies ∇2-Condition.)

Theorem 3.29. Let ψ be an Orlicz function satisfying the uniform ∇0-Condition. Let also
φ : BN → BN be analytic. Cφ is bounded from Hψ (BN) into itself if and only if there exists a
constant A > 0 such that

(3.23) sup
0<r<1

µφr (Sf (ξ, h)) = Oh→0

(

1

ψ (Aψ−1 (1/hN ))

)

for every ξ ∈ SN .

Remark 3.30. As
1

ψ (Aψ−1 (1/hN ))
≈ hN

for every A > 0 and every h ∈ (0, 1), whenever the Orlicz function ψ satisfies the ∆2-Condition,
we have the following corollary:

Corollary 3.31. Let ψ be an Orlicz function satisfying ∆2 ∩ ∇2-Condition, and let φ : BN → BN

be holomorphic. Cφ is bounded from Hψ (BN) into itself if and only if

(3.24) sup
0<r<1

µφr (Sf (ξ, h)) = Oh→0

(

hN
)

for every ξ ∈ SN .

Note that this corollary holds in particular for x 7−→ xp, 1 < p <∞ (Conditions ∆2 is satisfied
by x 7−→ xp, 1 < p <∞,) yet it is plain that all the previous studies work if ψ (x) = x and we get
the result for the value p = 1.

We also observe that the characterization of the boudedness of Cφ has already been obtained
in Theorem 3.23, in a different way. This proves in particular that

sup
0<r<1

µφr (Sf (ξ, h)) = Oh→0

(

hN
)
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for every ξ ∈ SN holds if and only if

µφ (Sf (ξ, h)) = Oh→0

(

hN
)

for every ξ ∈ SN holds. Surprisingly, we do not know if, given an arbitrary Orlicz function ψ,

sup
0<r<1

µφr (Sf (ξ, h)) = Oh→0

(

1

ψ (Aψ−1 (1/hN ))

)

for some A > 0 and for every ξ ∈ SN holds if and only if

µφ (Sf (ξ, h)) = Oh→0

(

1

ψ (Aψ−1 (1/hN ))

)

for some A > 0 and for every ξ ∈ SN holds.
This corollary, together with Theorem 3.26, yields the following proposition:

Proposition 3.32. Let ψ and ν be two Orlicz functions; assume that ψ satisfies the ∇2-Condition
and that ν satisfies the ∆2 ∩ ∇2-Condition. Let also φ : BN → BN be holomorphic. If Cφ is

bounded from Hν (BN ) into itself, then Cφ is bounded as an operator from Hψ (BN ) into itself.

Proof. It is sufficient to check that if the inequality

sup
0<r<1

Kµφr
(h) ≤ C

holds for some C ≥ 1 and any h small, then the inequality

sup
0<r<1

Kµφr
(h) ≤

1/hN

ψ (Aψ−1 (1/hN ))

holds for A = 1/C and any h small. Now, the convexity of ψ entails

ψ

(

1

C
ψ−1

(

1/hN
)

)

≤
1

ChN

for every h > 0. �

As in the Bergman-Orlicz case, we wonder if there are some Hardy-Orlicz spaces Hψ (BN ),
different from H∞ (BN ) and smaller than some Hp (BN ), on which every composition operator
Cφ is bounded. In [11], the authors explains that Proposition 2.17 can be adapted to the case of

measures µφ on the closed ball BN , and then to the Hardy spaces indirectly.

Proposition 3.33. If φ : BN → BN is analytic, then there exists a constant Bφ such that

(3.25) µφ (Sf (ξ, h)) ≤ Bφ.h

for every ξ ∈ SN and every 0 < h < 1.

If we compare Condition (3.25) to Condition (3.23), we may infer that if ψ grows fast enough,
then (3.23) is always satisfied. Nevertheless, the constant Bφ in Proposition 3.33 a priori depends
on φ, so that it depends on r if we apply it to φr, which is necessary because of (3.23). In fact, the
proof of [11, Proposition 4], which concerns pull-back measures of the weighted Lebesgue measure
on the ball, makes it clear that, if φ (0) = 0, the constant Bφ does not depend on φ. As the proof
of Proposition 3.33 does not appear in [11], we prefer to state and prove the following proposition.

Proposition 3.34. Let φ : BN → BN be holomorphic, such that φ (0) = 0. There exists a constant
B > 0, independent of φ, such that

µφ (Sf (ξ, h)) ≤ B.h

for every ξ ∈ SN and every 0 < h < 1.
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Proof. We fix ξ ∈ SN and 0 < h < 1. We denote by χφ−1(S(ξ,h)) the characteristic function of

φ−1 (S (ξ, h)). The formula of integration by slices (see for example [19, Proposition 1.4.7, (1)])
yields

µφ (S (ξ, h)) =

∫

SN

χ(φ∗)−1(S(ξ,h)) (ζ) dσ (ζ)

=

∫

SN

∫

T

χ(φ∗)−1(S(ξ,h)) (uζ) dλ (u) dσ (ζ) ,

where λ is the Lebesgue measure on the torus T. Let us observe that

χ(φ∗)−1(S(ξ,h)) (uζ) = 1

is equivalent to

(3.26) |1− 〈φ∗ (uζ) , ξ〉| < h.

For every ζ and ξ, we define the function ϕζ,ξ : D → D such that ϕζ,ξ (z) = 〈φ (zζ) , ξ〉 for any
z ∈ D. ϕζ,ξ is holomorphic and satisfies ϕζ,ξ (0) = 0; moreover it is not difficult to verify that
ϕ∗
ζ,ξ (u) = 〈φ

∗ (uζ) , ξ〉 for λ-almost every u ∈ T, where ϕ∗
ζ,ξ is the λ-almost everywhere radial limit

of ϕζ,ξ. Inequality (3.26) is then equivalent to

ϕ∗
ζ,ξ (u) ∈ S (1, h)

where S (1, h) is here the non-isotropic disk of radius h and centered at 1. Now, according to
the Littlewood subordination principle, it is well-known that there exists a constant B > 0,
independent of ζ and ξ, such that

λ
(

(

ϕ∗
ζ,ξ

)−1
(S (1, h))

)

≤ B.h.

This concludes the proof. �

We come back to the existence of some Orlicz function ψ such that there exist some constants
A > 0 and C ≥ 1 such that

(3.27) Ch ≤
1

ψ (Aψ−1 (1/hN ))
.

By a straightforward computation, we can check that Condition (3.27) is equivalent to the exis-
tence of K > 0 and C > 1 such that

ψ (x)N ≤ Kψ (Cx)

for x large enough. This leads us to introduce what we call the ∆N
H -Condition:

Definition 3.35. Let ψ be an Orlicz function. We say that ψ satisfies the ∆N
H -Condition if there

exist two constants K > 0 and C > 1 such that

ψ (x)N ≤ Kψ (Cx)

for every x large enough.

We have the following theorem:

Theorem 3.36. Let ψ be an Orlicz function. If ψ satisfies both uniform ∇0 and ∆N
H-Conditions,

then every composition operator is bounded from Hψ (BN ) into H
ψ (BN ).

Proof. Let φ : BN → BN be holomorphic. As every composition operator Cτ induced by an
automorphism is bounded from Hp (BN ) into itself, 1 < p < ∞, Proposition 3.32 entails that Cτ
is also bounded as an operator from Hψ (BN) into itself (let us recall that ψ satisfies uniform
∇0-Condition and so ∇2-Condition.) Therefore, up to conjugation by automorphism induced
composition operators, we may assume that φ (0) = 0. Now, Condition (3.27) is satisfied because
ψ satisfies ∆N

H -Condition, so Theorem 3.29 and Proposition 3.34 ensure that Cφ is bounded from

Hψ (BN ) into itself. �
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Remark 3.37. 1) Let us remark that every ψ (x) = eax − 1 for a > 0 belongs to the ∇unif0 ∩∆N
H -

Class, so that this latter is not empty.
2) Theorem 3.36 may be proved in a different way, by using Theorem 2.20. Actually, if ψ

satisfies both uniform ∇0-Condition and ∆N
α -Condition, i. e.

(3.28) ψ (x)
N+α+1
α+2 ≤ Kψ (Cx)

for some constants K > 0, C ≥ 1 which may depend on α, then

(3.29) ‖Cφ (f)‖Aψα(BN )
≤ Cα ‖f‖Aψα(BN )

,

for any φ : BN → BN holomorphic. Moreover, we have

(3.30) ‖f‖Hψ(BN ) = lim
α→−1

1

α+ 1
‖f‖

Aψα(BN )
.

Indeed, this formula is known for ψ (x) = xp, 1 ≤ p < ∞, and its proof essentially lays on the
subharmonicity of |f |p for f holomorphic. As ψ (|f |) is also subharmonic because ψ is convex, it
is plain that this proof works as well in the Orlicz context. Now, it is not difficult, yet fastidious,
to check that the constant Cα in (3.29) is bounded by a constant which does not depend on α,
when α ∈ (−1, 0). In addition, the decreasing function N+α+1

α+2 of the variable α ∈ (−1, 0) has

supremum for α = −1, so that (3.28) is satisfied with constant K and C independent of α, as
soon as inequality

ψ (x)N ≤ Kψ (Cx)

holds, which means that ψ satisfies ∆N
H -Condition. Letting α tends to −1 in (3.29), (3.30) then

yields Theorem 3.36.

When N = 1, thanks to Theorem 4.6, ∇unif0 -Condition is not necessary; moreover, thanks to
the factorization of a function f ∈ Hψ (D) (hence in H1 (D)) by a Blaschke product formed from
its zeros and a non-zeros function in Hψ (D) (see the remark which precedes the proof of theorem
4.10 in [13], and [1, Section 7, Theorem 1.1],) it is possible to remove the ∇2-Condition. Finally,
∆1
H -Condition is clearly satisfied by every Orlicz function so that every composition operator is

bounded on every Hψ (D). Remark 3.37 (2) is an other way to prove [13, Proposition 3.12] (the
latter one makes use of the Littlewood subordination principle, as it is usual in the context of the
unit disk.)

4. Some comments

Most of the following remarks hold for both Bergman-Orlicz and Hardy-Orlicz frameworks. For
convenience, we just state them for Bergman-Orlicz or Hardy-Orlicz spaces. If a remark is specific
to one or the other cases, it will be explicitly mentioned.

1) First of all, we start by noticing that inclusion Apα (BN) ⊂ Lp (µ), 1 ≤ p ≤ ∞, implies that

inclusion Aψα (BN ) ⊂ Lψ (µ) holds. More precisely, if µ is a Carleson measure, then µ satisfies
Condition (2.10). This has already been somehow mentioned in Proposition 3.32 for the Hardy-
Orlicz case. The following lemma is the reason for such a fact.

Lemma 4.1. Let ψ be an Orlicz function and let µ be a α-Bergman-Carleson measure on BN .
Then µ satisfies Condition (3.9).

Proof. As µ is a Carleson measure, one can find a constant C ≥ 1 such that Kµ (h) ≤ C for every
h ∈ (0, 1). Now, taking A = 1/C ≤ 1, the convexity of the Orlicz function ψ implies that

ψ
(

Aψ−1
(

1/hN+1+α
))

≤ A/hN+1+α.

Hence

Kµ (h) ≤
1

A
≤

1/hN+1+α

ψ (Aψ−1 (1/hN+1+α))

and Condition (2.10) is fulfilled. �
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We immediately deduce from this lemma and Theorem 2.8 the following proposition, already
stated in [13] in the case of the disk.

Proposition 4.2. Let ψ be an Orlicz function and let µ be a α-Bergman-Carleson measure on

BN . Inclusion Aψα (BN ) ⊂ L
ψ (µ) holds (and is continuous.)

Without difficulties, the previous also holds for the Hardy cases:

Proposition 4.3. Let ψ be an Orlicz function which satisfies the ∇2-Condition and let µ be a
Carleson measure on BN . Inclusion Hψ (BN ) ⊂ L

ψ (µ) holds (and is continuous.)

Let us remark that this last results is actually a consequence of the fact that Hψ is an interpo-
lating space for H1 and H∞ (See [2, Theorem V.10.8].)

Concerning composition operators, we immediately deduce from Theorem 2.16 and Proposi-

tion 4.2 that every bounded composition operator on some Aψα (BN ), with ψ satisfying the ∆2-
Condition, is also bounded on Aνα (BN ), where ν is any Orlicz function. The converse is false
in general since we showed that there are some Orlicz functions ψ such that every composition

operator is bounded on Aψα (BN ), yet it is not the case in Apα (BN ), 1 ≤ p <∞, N > 1. Of course,
this argument does not match in the one variable setting.

2) In the classical Bergman spaces, it is well-known that the boundedness or the compactness
of a canonical embedding Apα (BN ) ⊂ Lp (µ) is proper to the measure µ and does not depend on
the exponent p. More precisely, recall for example that Apα (BN ) ⊂ L

p (µ) holds (and is bounded)
if and only if µ is a Carleson measure, i. e.

µ (W (ξ, h)) ≤ hN+1+α

for every ξ ∈ SN and every 0 < h < 1. It clearly appears that this condition does not depend
on p. In the context of Bergman-Orlicz, the situation is quite different: the fact that inclusion

Aψα (BN ) ⊂ Lψ (µ) holds for one Orlicz function ψ does not systematically entails that inclusion

Aψα (BN ) ⊂ Lψ (µ) holds for every Orlicz function ψ. In fact, it seems that this property of
¡¡independence¿¿ of inclusion of Bergman-Orlicz spaces into Orlicz spaces is proper to the Bergman
spaces Apα (BN ), in the sense that the latter share this property with Bergman-Orlicz spaces
which are “comparable” to Bergman spaces. In fact, we need to be careful by using this word
“comparable” as it has a very precise sense. Precisely, if ψ and υ are two Orlicz functions both

satisfying the ∆2-Condition (see Definition 1.4,) then Aψα (BN) ⊂ Lψ (µ) holds if and only if
Aυα (BN ) ⊂ Lυ (µ) holds. In fact, this directly proceeds from Theorem 2.8, the fact that if ψ
satisfies ∆2-Condition, then ψ satisfies

1

ψ (Aψ−1 (1/hN+1+α))
≈ hN+1+α

which implies that uniform ∇0-Condition is not necessary. In other words, this particular case of
Theorem 2.8 is nothing but Carleson’s Theorem, explicitly stated in [10, Theorem 3.5].

Of course, the same kind of remark can be stated in terms of composition operators, or by
considering Hardy-Orlicz spaces instead of Bergman-Orlicz spaces, or compactness instead of
boundedness.

3) Let ψ be an Orlicz function satisfying the uniform ∇0-Condition. Remark 3.37 (2) shows

that if Cφ is bounded on every Aψα (BN), α ∈ (−1, 0), then Cφ is also bounded on Hψ (BN).
According to the proof of [6, Theorem 3.3], it is plain that, if ψ satisfies the ∆2-Condition, then
the boundedness of Cφ from Hψ (BN) into itself implies the boundedness of Cφ as an operator

from Aψα (BN ) into itself, for every α > −1, and therefore is equivalent to the boudedness of Cφ
on Aψα (BN ) for every α > −1. We can summarize this fact together with the previous one in the
following proposition:

Proposition 4.4. Let φ : BN → BN be holomorphic. If there exists some Orlicz function ψ1

satisfying the ∆2-Condition such that Cφ is bounded from Hψ1 (BN ) into itself, then Cφ is bounded

from any Hardy-Orlicz space Hψ2 (BN ) into itself and from any Bergman-Orlicz space Aψ3
α (BN )
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into itself, α > −1, where ψ2 is an arbitrary Orlicz function, and where ψ3 satisfies the ∆2-
Condition.

It is interesting to state the opposite extreme result, which just comes from both Theorem 2.20
and Theorem 3.36, and the fact that ∆N

H -Condition implies ∆N
α -Condition, for every α > −1.

Proposition 4.5. Let ψ be an Orlicz function satisfying the ∆N
H-Condition. Every holomorphic

self-map φ : BN → BN induces a bounded composition operator from Hψ (BN ) into itself, and

from Aψα (BN ) into itself, for every α > −1.

4) The situation concerning compactness is more involved. Few results are known about this
question in several variables, yet we think that the study of compact composition operators in the
one variable setting may rise questions about both boundedness and compactness when N > 1.
Anyway, as we mentioned in (2) above, we know that whenever ψ and ν are two Orlicz functions
both satisfying the ∆2-Condition, the compactness from Hψ (D) into itself is equivalent to that
from Hν (D) into itself. However, in the one variable setting, the authors of [14] show that for
every ε > 0 and for every 1 ≤ p < ∞, there exists an Orlicz function ψ such that Hp+ε (D) ⊂
Hψ (D) ⊂ Hp (D), and a composition operator Cφ which is compact on Hp (D) and on Hε+p (D),

yet not compact on Hψ (D). Concerning boundedness, we know that this phenomenon cannot
occur, because of Proposition 3.32. Yet, we can wonder if, given two Orlicz functions ψ1, ψ2 and
1 < p <∞ such that Hψ1 (BN ) ⊂ H

p (BN ) ⊂ H
ψ2 (BN ), the boundedness of Cφ on both Hψ1 (BN )

and Hψ2 (BN ) implies the boundedness of Cφ on Hp (BN ). Similar questions may be investigated
about compactness.

In [15], the same authors prove that there are some symbol φ which induces a compact compo-
sition operator from Hψ (D) into itself, yet not compact from Aψ (D) into itself. For any N ≥ 1,
we at least know that this is impossible if ψ (x) = xp according to [6, Theorem 3.3].

Let us now consider the situation on “small” Hardy-Orlicz spaces. As we said in the intro-
duction, for every Orlicz function ψ, there exists a surjective symbol φ : D → D which induces a
compact composition operator on Hψ (D) ([16, Theorem 4.1]. [15, Proposition 4.1] asserts that,
under some fast growth condition (satisfied for example by ex

q
− 1, for q ≥ 1,) every composition

operator which is compact from Hψ into itself is also bounded from Aψ (D) into itself. This does
not say that we cannot find some Orlicz function which defines Bergman-Orlicz spaces on which
a criterion for compactness of Cφ is the same as for H∞, yet it let think that it is unlikely.

5) We make a final remark which directly follows from the most specific difference which appears
when we pass from the one-variable case to the several variables case, with the intention to give
characterization theorems for boudedness and compactness of composition operators. If we come
back to the third points of Theorem 2.8, Theorem 2.12, Theorem 3.14 or Theorem 3.19 and
consider a measure µφ which is the pull-back measure for φ analytic from BN into itself, we can
be a little bit disappointed not to be able to remove the uniform ∇0 and ∇0 conditions. Indeed,
when N = 1, Conditions (2.9) and (2.10) (resp. (2.17) and (2.18)) are equivalent if µ = µφ is a
pull-back measure for an arbitrary holomorphic function φ : D → D. In fact, this comes from a
general result which does not involve the space that we are dealing with, but the special geometry
of the disk together with the geometric properties of holomorphic self-maps of D; this is a kind
of homogeneity of µφ according to the non-isotropic disks of the unit disk, which is not trivial at
all. This is precisely the content of Theorem 4.19 of [13] and of Theorem 3.1 of [15]; we recall its
statement in order to understand why there is rather no hope to give a characterization of the
boundedness of composition operators in a general framework. For convenience, we prefer to state
[13, Theorem 4.19], that is to say for the pull-back measure µφ relative to the Lebesgue measure
dλ on the unit circle, for φ : D→ D.

Theorem 4.6. There exists a constant κ > 0 such that, for every holomorphic function φ : D→ D,
one has

(4.1) µφ (S (ξ, εh)) ≤ κεµφ (S (ξ, h))

for every h ∈ (0, 1 − |φ (0)|), every ξ ∈ T, and every ε ∈ (0, 1].
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Looking at (4.1) from the point of view of composition operators, it appears that the bounded-
ness of composition operators on every Hp (D), 0 < p <∞, or every Hψ (D), ψ an Orlicz function,
is a straightforward consequence of this theorem: fixing some h ∈ (0, 1− |φ (0)|), (4.1) entails that

µφ

(

S
(

ξ, h
′

))

is a big Oh of h
′

when h
′

is small. Thus, such a theorem can not be but specific

to the one-variable case, as we know that there are some holomorphic functions which induce
not-bounded composition operators on Hardy spaces, or on some Hardy-Orlicz spaces of the ball.
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