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Approximation of Vorob’ev expectation for random closed sets

Philippe Heinrich∗, Radu S. Stoica∗ and Viet Chi Tran∗ †

June 26, 2010

Abstract

Random sets appear in many applications, in particular in image analysis. The issue of a ”mean
shape” often arises since there is no canonical definition. In this paper, we propose a consistent and
ready to use estimator for the Vorob’ev expectation of a random set X . It is a kind of mean closely
linked to quantile-like quantities and built from independent copies of X with spatial discretization.
The convergence is established through the Strong Law of Large Numbers of Kovyazin. The control
of discretization errors is handled with a mild regularity assumption on the boundary of X : a not
too large ’box counting’ dimension. Some examples, including Boolean models, are studied.

Keywords: Stochastic geometry; random closed sets; Vorob’ev expectation; quantile sets.
AMS Classification: 60D05; 60F15; 28A80.

1 Introduction

This paper is motivated by the practical applications in Stoica et al. [7, 8]. These authors used a
marked point process in order to detect and characterize cosmic filaments. Thrown points represent
positions of galaxies’ centers. It is a known fact that the galaxies are not uniformly distributed in
the universe. They exhibit intriguing patterns such as filaments, walls and clusters. Among all these
patterns it appears that the filamentary network is the most relevant feature. To model shapes and
textures of these filaments, marks are defined as interacting randomly oriented cylinders (see Fig-
ure 1). The resulting configuration is a random set X. Spatial heterogeneity implies that coverage
probabilities by filaments, p(x) := P(x ∈ X), strongly depend on the position x. This leads to the
natural question of determining an average shape for the random set X.

Several ways to define the expectation of a random set have been developped (see e.g. Mochanov
[6]). Our investigation through the literature leads us to the Vorob’ev expectation (see e.g. Kovyazin
[3], Molchanov [5, 6], Stoyan and Stoyan [10]), closely related to quantile-like quantities where regions
with high coverage probabilities p(x) are put forward. Despite their very natural definitions, neither
these quantile sets nor the approximations in the previous references are tractable for applications.
The aim of this paper is to derive a consistent (implementable) estimator for the Vorob’ev expecta-
tion, based on independent copies of X and spatial discretizations. Empirically, related statistics had
been computed in [7, 8]. The present paper sheds some light on the theoretical justifications of theses
works. The almost sure (a.s.) consistency of our set-valued estimator (with respect to the volume of
the symmetric difference) is stated in Theorems 2.5 and 3.6. The consistency stems from the Strong
Law of Large Numbers (SLLN) for X, provided its boundary ∂X is not too irregular. For the SLLN,
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Figure 1: Cylinder configuration for the modelling of cosmic filaments from Stoica et al. [7].

we follow the work of Kovyazin [3]. The regularity of the boundary ∂X is ensured if its fractal ’box
counting’ dimension is less than the space dimension. This is required to control the discretization
error.

The paper starts in Section 2 by presenting the quantiles of random closed sets for which consistent
estimators are proposed, well suited for applications. Then, the Vorob’ev expectation is introduced
in Section 3 and an estimation method is given as well. For both these estimators, the convergence is
proved. L1-convergence rates are provided for the estimators of quantiles in Proposition 2.7. At last,
Section 4 of the paper is devoted to the analysis of these estimators for some typical examples of ran-
dom sets, including Boolean models. For the sake of clarity, some proofs are deferred to the Appendix.

Notation: The following list of useful notation will serve as reference for the reader.

• Ev(X) will denote the “Vorob’ev expectation” of a random compact set X ⊂ [0, 1]d.

• X1, . . . ,Xn, . . . is a sequence of independent copies of X,

• p(x) = P(x ∈ X) is the coverage probability of x ∈ [0, 1]d by the random closed set X, and its
empirical counterpart pn(x) is defined by

pn(x) =
1

n

n∑

i=1

1l{x∈Xi},

• Denote by λ the Lebesgue measure on [0, 1]d. F (α) is a decreasing càdlàg function on [0, 1]
defined by

F (α) = λ{x : p(x) > α} and F−(α) = lim
ε→0+

F (α− ε),

• Λn will denote the empirical analogue of Eλ(X), namely

Λn =
1

n

n∑

i=1

λ(Xi),

• For any Borel set B in [0, 1]d and r ∈ 2−N, Br denotes the following grid approximation of B by
disjoint “cells”:

Br =
⊔

x∈rZd∩B

[x, x+ r)d,
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• For two Borel sets A,B in [0, 1]d, set

d(A,B) = λ(A△B),

which defines a pseudo-distance on the Borel σ-field B([0, 1]d).

2 Quantile or α-level sets

2.1 Background and definitions

Let (Ω,A,P) be a probability space, and let us consider [0, 1]d endowed with the Borel σ-field B([0, 1]d)
and the Lebesgue measure λ. Let F be the collection of all closed subsets of [0, 1]d that is endowed
with the σ-algebra generated by the system

{FK : K ∈ F} with FK := {F ∈ F : F ∩K = ∅}.

An application X : Ω 7→ F is said to be a random closed set (actually compact) in [0, 1]d if it is
measurable. Refer to [6] for more details.

For any A,B ∈ B([0, 1]d), define a (classical) pseudo-distance by

d(A,B) = λ(A△B). (2.1)

It can be easily checked that

• d(A,C) ≤ d(A,B) + d(B,C),

• d(A,B) = d(B,A),

• d(A,B) = 0 ⇒ A = B up to a set of Lebesgue measure zero.

Definition 2.1. For α ∈ [0, 1], the α-level set of the random closed set X is defined by

Qα = {x ∈ [0, 1]d : p(x) > α} = {p > α},

where p(x) := P(x ∈ X) is the coverage probability of the point x by the random set X and α ∈ [0, 1].

Note that Q0 = {x ∈ [0, 1]d : p(x) > 0} and Q1 = ∅. The set Qα contains all the points belonging
to X with probability more than α. Therefore, it is equivalently called quantile set. The following
basic facts are proved in Appendix A.1:

Proposition 2.2. Let F : [0, 1] → [0, 1] be the function attached to the quantile set Qα that returns
its corresponding Lebesgue measure

F (α) = λ(Qα) = λ{p > α}.

With the above notations:

(i) The family (Qα)α∈[0,1] is decreasing w.r.t. α,

(ii) For every α ∈ [0, 1), Qα =
⋃

ε>0Qα+ε,

(iii) For every α ∈ (0, 1],
⋂

ε>0Qα−ε = Qα ∪ {p = α} = {p ≥ α},

(iv) The function F is decreasing and càdlàg,

(v) The set of discontinuity points of F is {α : λ{p = α} > 0} and is at most countable.
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Figure 2: The dependence of the volume of Qα sets on the threshold value α is described by the function F .

As an example, Figure 2 shows how the function F may look like. It can be observed that the
plateaus (constant regions) of p make the discontinuities of F while the discontinuities of p provide the
plateaus of F . The jump of F at α0 corresponds to the Lebesgue measure of the points with coverage
probability equal to α0

F−(α0)− F (α0) = λ{x ∈ [0, 1]d : p(x) = α0},

with the notation F−(α0) = limε→0+ F (α0 − ε).
The plateau [α1, α2] of F means that the set of points with coverage probability between α1 and

α2 is Lebesgue-negligible. Hence λ(Qα1
) = λ(Qα) for all α ∈ [α1, α2].

2.2 Approximation of quantile sets

There are several reasons why quantile sets cannot be computed directly for practical applications.
First, the coverage probability P(x ∈ X) is not always available in an analytical closed form. Second,
quantile sets can not be computed for all the points x ∈ [0, 1]d.

All these aspects require the choice of numerical approximation strategies. In the following, the
choices we have opted for are presented. They lead to the construction of a convergent estimator for
quantile sets. At the end of this section a result giving the L1−convergence rate of our estimator is
also presented.

2.2.1 Estimation of the coverage probability

Let X1, . . . ,Xn be n independent realizations of the random set X. A straightforward manner to
estimate p(x) is:

pn(x) =
1

n

n∑

i=1

1l{x∈Xi}. (2.2)

The estimator (2.2) is convergent. More precisely,

Proposition 2.3. if X is a random closed set in [0, 1]d, then

P
(
∀x ∈ [0, 1]d, lim

n→∞
pn(x) = p(x)

)
= 1.

For a proof, see Appendix A.2. A stronger result is available in [5], p.313. Namely, if X is regular
closed (P(X = IntX) = 1) and a.s. continuous (for all x ∈ [0, 1]d, P(x ∈ ∂X) = 0), then

P

(
lim
n→∞

sup
x∈[0,1]d

|pn(x)− p(x)| = 0

)
= 1.

In fact, the a.s. continuity assumption on X here implies that the coverage function p is continuous.
This is a rather restrictive condition as will be shown in some examples in last section of the paper.
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2.2.2 r -discretizations of sets

As stated before, it is necessary to approximate Borel sets of B([0, 1]d) for applications. This can be
obtained by using a set discretization procedure.

Let us consider the cube [0, 1]d discretized by a grid of disjoint cells having the same width r. The
cell width r takes values in 2−N. A natural way to approximate a set A ∈ B(|0, 1]d) is to take the
following union of disjoint cells

Ar :=
⊔

x∈rZd∩A

[x, x+ r)d,

Note the following straightforward property that will be used later:
( ⋂

n≥1

An

)r
=
⋂

n≥1

(An)
r . (2.3)

For any A ∈ B([0, 1]d) and r ∈ 2−N, denote by ∂A the boundary of A and define Nr(∂A) as the number
of cells of that intersect ∂A. Following [2], p.38-39, the upper ’box counting’ dimension of ∂A is given
by

dimB(∂A) := lim sup
r→0

log(Nr(∂A))

− log r
.

In this setting, the next result measures the quality of the approximation by cell discretization of Borel
sets in [0, 1]d.

Proposition 2.4. Assume that 0 < dimB(∂A) < d. Then, for each δ > 0, there exists r(δ) > 0 such
that

0 < r < r(δ) =⇒ d(A,Ar) ≤ rd−dimB(∂A)−δ.

In particular,
lim
r→0

d(A,Ar) = 0.

A proof can be found in Appendix A.3.

Assumption. From now, for the rest of the paper, it is assumed that X is a random closed set such

that there exists κ > 0 satisfying

P
(
dimB(∂X) ≤ d− 2κ

)
= 1. (2.4)

This hypothesis appears naturally whenever approximating quantiles sets or the Vorob’ev expectation
of X and is used to control the discretization error.

2.2.3 Estimation of quantile sets

The proposed estimator for quantile sets Qα is

Qn,r
α = (Qn

α)
r with Qn

α = {x ∈ [0, 1]d : pn(x) > α}. (2.5)

For given n and r, the construction of (2.5) is obtained by computing pn(x) on the points x ∈ rZd of
the r−discretization of [0, 1]d and by taking the union of the cells attached to the points x ∈ rZd for
which the threshold criterion pn(x) > α is satisfied.

Theorem 2.5. Let X be a random compact set on [0, 1]d such that (2.4) is satisfied and λ{p = α} = 0.
Then, its corresponding estimator Qn,r

α is consistent: with probability one, one has

lim
r→0
n→∞

d
(
Qn,r

α , Qα

)
= 0.
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Proof of Theorem 2.5. By the triangular inequality,

d
(
Qn,r

α , Qα

)
≤ d

(
Qn,r

α , Qn
α

)
+ d
(
Qn

α, Qα

)
. (2.6)

The first term of the r.h.s. of (2.6) tends to zero with r, as says Proposition 2.4 provided the upper
’box counting’-dimension of ∂Qn

α is less than d. And this is indeed true: pn is locally constant on the
complementary of

⋃
1≤i≤n ∂Xi and thus one has

∂Qn
α ⊂

⋃

1≤i≤n

∂Xi.

Monotonic and stability properties (see [2]) of the upper ’box counting’-dimension yields

dimB (∂Qn
α) ≤ dimB


 ⋃

1≤i≤n

∂Xi


 = max

1≤i≤n
dimB (∂Xi) ≤ d− 2κ (2.7)

where the last inequality comes from assumption (2.4). Thus, with probability one, there exists a
random r(κ) > 0 such that

0 < r < r(κ) =⇒ d
(
Qn,r

α , Qn
α

)
≤ rκ. (2.8)

Note that thanks to the last upper bound (2.7), r(κ) does not depend on α ∈ [0, 1].
The second term of the r.h.s. of (2.6) can be bounded by using the following result (proved in

Appendix A.4):

Lemma 2.6. Let (αn,r)(n,r)∈N×2−N be a sequence of random variables in [0, 1] having an a.s. non
random limit α ∈ [0, 1]. Then, with probability one,

lim
n→∞
r→0

d(Qn
αn,r

, Qα) = λ{p = α}.

If λ{p = α} = 0 and αn,r = α for all (n, r), one gets

lim
n→∞

d
(
Qn

α, Qα

)
= 0.

This completes the proof of Theorem 2.5. �

When α ∈ [0, 1] is fixed, an L1-convergence rate can be reached:

Proposition 2.7. Let X be a random compact set on [0, 1]d such that (2.4) is satisfied together with
λ{p = α} = 0. Then, for all ε > 0,

E d
(
Qn,r

α , Qα

)
≤ rκ + 2e−2nε2 + F (α− ε)− F (α + ε).

Proof of Proposition 2.7. From (2.6) and (2.8),

E d
(
Qn,r

α , Qα

)
≤ rκ + E d

(
Qn

α, Qα

)
. (2.9)

Moreover,

d(Qn
α, Qα) = λ

{
pn > α, p ≤ α

}
+ λ

{
pn ≤ α, p > α

}

≤ λ
{
x ∈ [0, 1]d : |pn(x)− p(x)| ≥ |p(x)− α|

}
.

Taking expectation and using Fubini’s theorem and Bernstein’s inequality, one gets

E d
(
Qn

α, Qα

)
≤

∫

[0,1]d
P{|pn(x)− p(x)| ≥ |p(x)− α|}λ(dx)

≤

∫

{|α−p|≥ε}
2e−2n|α−p(x)|2λ(dx) +

∫

{|α−p|<ε}
λ(dx)

≤ 2e−2nε2 + F (α− ε)− F (α+ ε).

�
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3 Vorob’ev expectation

The Vorob’ev expectation is based on the quantile sets. It consists in choosing a relevant level α to
define a ”mean shape”. Its mathematical definition following [3, 6, 10, 11] is given below.

Definition 3.1. Let us define the Vorob’ev threshold as

αv = inf{α ∈ [0, 1] : F (α) ≤ Eλ(X)}. (3.1)

A Vorob’ev expectation of X is a Borel set Ev(X) such that

Qαv ⊂ Ev(X) ⊂
⋂

ε>0

Qαv−ε with λ(Ev(X)) = Eλ(X).

Note that, since F is cÃ dlÃ g, one has

F (αv) ≤ Eλ(X) ≤ lim
ε→0+

F (αv − ε).

The intuition is as follows. From the definition, Q1 = ∅ while Q0 = {p > 0} may be equal to [0, 1]d.
Between these two extremes, it might be possible to choose a set which ”would look like” a typical
realization of X and would consists in points with the highest coverage probability. The idea of
Vorob’ev [11] is to choose the largest α for which the volume F (α) of Qα is close to Eλ(X) i.e. the
expected volume of X.
The next result states that the Vorob’ev expectation minimizes the expected symmetric difference-
distance with X.

Proposition 3.2. For any B ∈ B([0, 1]d), we have:

λ(B) = Eλ(X) =⇒ Ed(X,Ev(X)) ≤ Ed(X,B).

This result is for instance proved in [6], Theorem 2.3. p.177. It is the random set counterpart of
the classical result for real random variables, stating that for a r.v. ξ, the expectation Eξ minimizes
the function m 7→ E

(
(ξ −m)2

)
.

Remark 3.3. The behaviour of the Vorob’ev expectation can be easily explained on Figure 2:
If Eλ(X) > F−(α0) then F is strictly decreasing and continuous at αv, which is such that F (αv) =
Eλ(X), hence

Ev(X) = Qαv .

If F (α0) < Eλ(X) ≤ F−(α0), the expectation of X lies in the discontinuity domain of F , so αv = α0

and
Qα0

 Ev(X) ⊂
⋂

ε>0

Qα0−ε.

And finally, if Eλ(X) = F (α1), the expectation of X lies in a plateau of F , thus αv = α1 and

Ev(X) = Qα1
= Qα

for any α ∈ [α1, α2).
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3.1 Approximation of Vorob’ev expectation

This section proposes an estimator for the Vorob’ev expectation and proves its convergence. Note that
our estimators are inspired by the ones proposed by Kovyazin [3], with an additionnal discretization
by the grid rZd ∩ [0, 1]d so that they can be computed in practice. In the proofs, the Kovyazin’s
empirical mean will serve as an intermediary between our estimators and Ev(X).

Vorob’ev expectation, of Definition 3.1, is heuristically close to the α-level set with the α = αv,
the Vorob’ev threshold defined in (3.1). Let us first approximate αv: to do this, we approximate Qα

by Qn,r
α and Eλ(X) by

Λn :=
1

n

n∑

i=1

λ(Xi), (3.2)

and choose
αn,r = inf{α ∈ [0, 1] : λ(Qn,r

α ) ≤ Λn}. (3.3)

Introduce now the empirical Vorob’ev expectation in view of Definition 3.1:

Definition 3.4. The empirical Vorob’ev expectation of X is a Borel set s.t.

Qn,r
αn,r ⊂ X̂n,r ⊂

⋂

ε>0

Qn,r
αn,r−ε with λ(X̂n,r) = Λn. (3.4)

Remark 3.5.

• Note that (3.4) can be written

{pn > αn,r}r ⊂ X̂n,r ⊂ {pn ≥ αn,r}r,

where the last inclusion comes from property (2.3).

• This definition amounts in practice in the following procedure. First, approximate the averaged
Lebesgue measure of the random set X by Λn, which gives the number of cells to select. The later
are chosen according to their estimated coverage, which is given by pn(x) for the cell [x, x+ r)d

with x ∈ rZ ∩ [0, 1]d.

Theorem 3.6. Let us recall the definition of αv and introduce βv:

αv = inf{α ∈ [0, 1] : F (α) ≤ Eλ(X)}, (3.5)

βv =sup{α ∈ [0, 1] : F (α) ≥ Eλ(X)}.

Assume that λ{p = αv} = λ{p = βv} = 0. Then, with probability one,

lim
n→∞
r→0

d
(
X̂n,r,Ev(X)

)
= 0.

Remark 3.7.

• Heuristically, αv and βv are the boundaries of the plateau of F at Eλ(X). If Eλ(X) has one or
zero antecedent by F , then αv = βv. Note that αv ≤ βv.

• If one considers for instance Figure 2, one sees that αv = βv except when Eλ(X) = F (α1) in
which case αv = α1 and βv = α2.
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3.2 Proof of Theorem 3.6

The proof of Theorem 3.6 is divided in two parts in order to disentangle the approximation due to the
SLLN and the discretization error. One uses the triangular inequality with an intermediary set X̂n:

d
(
X̂n,r,Ev(X)

)
≤ d

(
X̂n,r, X̂n

)
+ d
(
X̂n,Ev(X)

)
, (3.6)

where X̂n is the ’Kovyazin’s empirical mean’. It is defined as follows:

Definition 3.8. The Kovyazin’s empirical mean of X is a Borel set X̂n such that

{pn > αn} ⊂ X̂n ⊂ {pn ≥ αn} with λ(X̂n) = Λn,

with the threshold
αn := inf

{
α ∈ [0, 1] : λ{pn > α} ≤ Λn

}
. (3.7)

Remark 3.9. It is worth to note that the preceding definition is similar to the Vorob’ev expectation’s
one given in Definition 3.1. Moreover, the Kovyazin’s empirical mean is the solution - see Appendix
A.5 for a proof - of a minimization problem similar to the one satisfied by the Vorob’ev expectation :

X̂n ∈ arg min
M∈B([0,1]d)
λ(M)=Λn

1

n

n∑

i=1

λ(Xi△M
)
. (3.8)

In the first part of the proof, the convergence of the Kovyazin’s empirical mean towards the
Vorob’ev expectation is shown. The second part uses the Kovyazin’s mean regularities for obtaining
the convergence of the Vorob’ev expectation estimator.

3.2.1 First part: Kovyazin’s convergence of d(X̂n,Ev(X))

Here, the approach of Kovyazin [3] is revisited. However, all these do not make the approximation
X̂n useful in practice since it requires the knowledge of pn(x) for every x ∈ [0, 1]d. This justifies a
further approximation treated in the second part of the proof.

Proposition 3.10. Let αv be defined by (3.5) and assume that λ{p = αv} = 0. One has with
probability one

lim
n→∞

d
(
X̂n,Ev(X)

)
= 0. (3.9)

The proof requires the following lemma (see Appendix A.6 for its proof).

Lemma 3.11. For αv, βv and αn defined by (3.5) and (3.7), respectively, the following holds:

(i) If αv = βv holds, then (αn)n∈N converges almost surely to αv;

(ii) In any case, almost surely,

αv ≤ lim inf
n→∞

αn ≤ lim sup
n→∞

αn ≤ βv. (3.10)

9



Proof of Proposition 3.10. We have

λ
(
X̂n△Ev(X)

)
= λ

(
X̂n
)
+ λ

(
Ev(X)

)
− 2λ

(
X̂n ∩ Ev(X)

)

= λ
(
X̂n
)
− λ

(
Ev(X)

)
+ 2
[
λ
(
Ev(X)

)
− λ

(
X̂n ∩ Ev(X)

)]

= Λn − Eλ(X) + 2λ
(
Ev(X) \ X̂n

)
, (3.11)

where the second line is obtained by adding and substracting λ(Ev(X)) and in the third line, equalities
λ(Ev(X)) = Eλ(X) and λ(X̂n) = Λn are used.

Similarly, one has

λ
(
X̂n△Ev(X)

)
= Eλ(X)− Λn + 2λ

(
X̂n \ Ev(X)

)
. (3.12)

From inclusions (3.1), (3.8) and Proposition 2.2 (iii), one gets

X̂n \ Ev(X) ⊂
{
pn ≥ αn, p ≤ αv

}
and Ev(X) \ X̂n ⊂

{
p ≥ αv, pn ≤ αn

}
, (3.13)

so that (3.13), (3.11) and (3.12) yield

d
(
X̂n,Ev(X)

)
= λ

(
X̂n△Ev(X)

)
≤ |Eλ(X)− Λn|+ 2mn, (3.14)

with
mn = λ

{
pn ≥ αn, p ≤ αv

}
∧ λ
{
p ≥ αv, pn ≤ αn

}
.

The first term in the r.h.s. of(3.14) converges to zero by the SLLN. It remains to prove to prove
that

lim
n→∞

mn = 0 a.s.

Case αv = βv. Note that

mn ≤ d(Qn
αn , Qαv ) + λ{pn = αn}+ λ{p = αv}︸ ︷︷ ︸

=0

.

Thanks to (i) of Lemma 3.11 and Proposition 2.3, the first term converges to zero by Lemma
2.6 and the second term converges to zero by dominated convergence.

Case αv < βv. Thanks to Markov’s inequality, we shall bound mn with expressions using
∫
[0,1]d |pn −

p|dλ. To this end, we distinguish three possible subcases, but we first note the following:

mn ≤ λ
{
pn ≤ αn, p ≥ αv

}

≤ λ
{
pn ≤ αn, p ≥ βv

}
+ λ

{
αv ≤ p < βv

}

= λ
{
pn ≤ αn, p ≥ βv

}
+ λ{p = αv}︸ ︷︷ ︸

=0

+F (αv)− F−(βv)︸ ︷︷ ︸
=0

. (3.15)

Subcase αn < αv. We can write by using (3.15) together with αn < αv,

mn ≤ λ
{
pn ≤ αv, p ≥ βv

}
≤ λ

{
|pn − p| ≥ βv − αv

}

≤
1

βv − αv

∫

[0,1]d
|pn − p|dλ.

Subcase αn > βv. In a similar way,

mn ≤ λ
{
p ≤ αv, pn ≥ βv

}
≤

1

βv − αv

∫

[0,1]d
|pn − p|dλ.

10



Subcase αv ≤ αn ≤ βv. Here, we write using (3.15) again

(βv − αv)mn ≤ (βv − αn)λ
{
pn ≤ αn, p ≥ βv

}

+(αn − αv)λ
{
pn ≥ αn, p ≤ αv

}

≤

∫

[0,1]d
|pn − p|dλ.

Thus (3.15) is in any case bounded by (βv − αv)
−1
∫
[0,1]d |pn − p|dλ which converges to 0 a.s. by

Proposition 2.3.

The proof of Proposition 3.10 is complete. �

3.2.2 Second part: control of the r-discretization error

In view of (3.6) and in order to obtain the desired result, it remains to prove that limn→∞
r→0

d(X̂n,r, X̂n) =

0 with probability one.
Before computing this limit, a new lemma is needed. This lemma deals with the behaviour of αn,r

for large n and small r and it is analogous to Lemma 3.11.

Lemma 3.12. We have

(i) For a given n ∈ N∗, αn,r converges almost surely to αn as r → 0.

(ii) If αv = βv then αn,r converges almost surely to αv as n → ∞ and r → 0.

(iii) In any case, almost surely,

αv ≤ lim inf
n→∞
r→0

αn,r ≤ lim sup
n→∞
r→0

αn,r ≤ βv. (3.16)

For a proof, see Appendix A.7.

Remark 3.13. Note that (ii) is not a direct consequence of (i) and Lemma 3.11. Indeed, proceeding
in this way would only allow us to obtain the convergence of αn,r to αv by letting first r → 0 then
n → ∞.

Now, let us get back to bound d(X̂n,r, X̂n). Since λ(X̂n) = λ(X̂n,r) = Λn, we have

d(X̂n,r, X̂n) = 2λ(X̂n,r \ X̂n).

From definitions we have {pn > αn} ⊂ X̂n and X̂n,r ⊂ {pn ≥ αn,r}r. Recall the upper bound (2.7)
and let r(κ) be as in (2.8). For all r < r(κ)

1

2
d(X̂n,r, X̂n) ≤ λ ({pn ≥ αn,r}r \ {pn > αn})

≤ λ ({pn ≥ αn,r}r \ {pn ≥ αn,r}) + λ ({pn ≥ αn,r} \ {pn > αn})

≤ rκ + λ{αn,r ≤ pn ≤ αn}. (3.17)

The last inequality uses (2.8) applied to {pn ≥ αn,r} instead of Qn
α.

Besides, by (3.10) and (3.16), for all ε > 0, there exists a random r(ε) > 0 and n(ε) such that for
all r ∈ (0, r(ε)) and all n > n(ε),

αn,r > αv − ε and αn < βv + ε. (3.18)

11



One deduces from (3.18) and (3.17) that for all ε > 0, for all r ∈ (0, r(ε) ∧ r(κ)), for all n > n(ε),

1

2
d(X̂n,r, X̂n) ≤ rκ + λ{αv − ε < pn < βv + ε},

and thus, for all ε > 0,

lim sup
n→∞
r→0

d(X̂n,r, X̂n) ≤ 2 lim sup
n→∞

λ{αv − ε < pn < βv + ε}. (3.19)

Since a.s., pn(x) → p(x) for each x (see Proposition 2.3), one deduces

lim sup
n→∞

1l{αv−ε<pn<βv+ε} ≤ 1l{αv−ε≤p≤βv+ε},

lim sup
n→∞

λ{αv − ε < pn < βv + ε} ≤ λ{αv − ε ≤ p ≤ βv + ε},

so that, from (3.19),

lim sup
n→∞
r→0

d(X̂n,r, X̂n) ≤ 2λ {αv − 2ε < p < βv + 2ε}

≤ 2 [F (αv − 2ε) − F−(βv + 2ε)] .

Now, since F is cÃ dlÃ g, letting ε → 0 yields

lim sup
n→∞
r→0

d(X̂n,r, X̂n) ≤ 2 [F−(αv)− F (βv)] .

It remains to note that

F−(αv)− F (βv) = 0 ⇐⇒ λ{p = αv} = λ{p = βv} = 0.

The proof of Theorem 3.6 is achieved.

4 Some applications examples

The aim of this last section is to depict situations for which the computation and estimation of the
Vorob’ev expectation is appropriate. First, simple one-dimensional random sets are treated. Second,
multi-dimensional random sets are studied. For this part, two types of Boolean models are considered,
homogeneous and non-homogeneous.

4.1 One-dimensional random sets

Let us consider the random set X = [0, ξ] where ξ is a r.v. on [0, 1] with distribution G. In this case,
the coverage function of X is

p(x) = P(x ∈ X) = P(ξ ≥ x) = 1−G−(x). (4.1)

In the following, we present two cases where the Vorob’ev expectation can be explicitely computed.
A third case shows an example for which the assumptions of Theorem 3.6 are not satisfied.

First example. The distribution G is uniform, so G(x) = x and from (4.1), Qα = [0, 1 − α). Since
in this case Eλ(X) = 1/2, then αv = 1/2 and Ev(X) = [0, 1/2]. The assumption λ{p = α} = 0
is satisfied for any α ∈ [0, 1], and Theorems 2.5 and 3.6 apply.

12



Second example. Assume now that G is the mixing of a uniform and a Dirac distributions given
by:

G(x) = γx+ (1− γ)1l 1
2
≤x≤1, (0 < γ < 1).

Here:

p(x) =1− γx− (1− γ)1l 1
2
<x≤1,

F (α) =
(
1−

α

γ

)
1lα< γ

2
+

1

2
1l γ

2
≤α<1− γ

2
+
(1− α

γ

)
1l1− γ

2
≤α.

one has Eλ(X) = 1/2, αv = γ/2 and βv = 1 − γ/2 with the definition of (3.5). We are in a
plateau of the function F . Since Qγ/2(X) = [0, 1/2] is of Lebesgue measure 1/2, we can again
choose Ev(X) = [0, 1/2] = Q1/2(X). Here λ{p = α} = 0 for any α ∈ [0, 1] since the sets {p = α}
are all singletons, so Theorems 2.5 and 3.6 apply.

Third example. If we now consider for γ > 1

G(x) = γx1l0≤x< 1

2γ
+

1

2
1l 1

2γ
≤x<1− 1

2γ
+ (1− γ + γx)1l1− 1

2γ
≤x≤1,

then:

p(x) = (1− γx)1lx< 1

2γ
+

1

2
1l 1

2γ
≤x<1− 1

2γ
+ γ(1− x)1l1− 1

2γ
≤x

F (α) =
(
1−

α

γ

)
1lα< 1

2

+
1− α

γ
1l 1

2
≤α<1.

Here, Eλ(X) = 1/2 falls in the discontinuity domain of the function F . Again, αv = 1/2 but
Q1/2(X) = [0, 1/(2γ)) which is of Lebesgue measure strictly smaller than Eλ(X) = 1/2. In
this case Ev(X) is no longer unique: we can choose for Ev(X) any measurable set of [0, 1] that
contains [0, 1/(2γ)) and that has Lebesgue measure 1/2. One possibility is of course [0, 1/2] but
[0, 1/(2γ)] ∪ [1/2, 1 − 1/(2γ)] is another one. Notice that in any case one should have:

Q1/2(X) =
[
0,

1

2γ

)
⊂ Ev(X) ⊂

[
0, 1−

1

2γ

]
=
⋂

ε>0

Q1/2−ε(X).

Moreover, one has λ{p = α} = 0 for all α ∈ [0, 1] except α = 1/2 = αv. Hence Theorem 3.6 does
not apply in this case. This is not surprising since there is not uniqueness of Ev(X) here.

-

6

0

1

G(x)

1 x
����

����

•

γ
2

1− γ
2

1
2

-

6

0

1

G(x)

1 x
�
�
�
�

�
�
�
�

1
2γ 1− 1

2γ

1
2

Figure 3: Repartition function G for the second (left) and third (right) cases.

Figure 3 shows in the left and right panel, the distribution function G for the second and third
examples, respectively. It can be noticed that for the second example the distribution exhibits an
atom, while for the third one it exhibits a plateau.
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4.2 Multi-dimensional random sets

As an example of multi-dimensional random sets, let us consider the Boolean model [4, 9]. The Boolean
model is constructed in two steps. First, we take a Poisson point process Πµ in Rd and a sequence of
i.i.d compact sets (Ξn)n∈N∗ , which is also independent of Πµ. Second, replace each point xi of Πµ by
the shifted corresponding set xi + Ξi. The Boolean model is the resulting union set, that is

Ξ =
⋃

xi∈Πµ

(xi + Ξi).

The points xi are called germs and the random set Ξ0 is the ‘typical’ grain of the model. The parameter
µ is the intensity of the Poisson point process and it is a locally finite measure on Rd. The Boolean
model is also called the Poisson germ-grain model. In order to obtain non-trivial Boolean models, the
d-th moment of the radius of the circumscribed circle of Ξ0 must be finite.

The distribution of the Boolean model is uniquely determined by its capacity functional (see [4, 9])

TΞ : K 7→ P (Ξ ∩K 6= ∅) = 1− exp
[
Eµ(Ξ̆0 ⊕K)

]
, (4.2)

where K ranges over compact sets in Rd, Ξ̆0 is the symetric of typical grain with respect to the origin
and ⊕ the Minkowski addition.

4.2.1 Stationary case

This type Boolean model may be easily obtained if the intensity parameter of the Boolean model
is proportional to the Lebesgue measure on Rd, that is µ(dx) = mλ(dx) for a given m > 0. In the
following, the considered grains are balls of random radius whose distribution G(dR) satisfies such that∫
RdG(dR) < ∞. Let bd be the volume of the euclidean ball B(0, 1) in Rd. The covering probability

is obtained from (4.2) by taking K = {x}, hence

p(x) = P (x ∈ Ξ) = TΞ({x}),

that gives under the present assumptions

p(x) = 1− exp

[
−mbd

∫
RdG(dR)

]
=: Cm,d.

The preceding calculation stands if one consider the observation of the considered stationary Boolean
model through the finite window [0, 1]d. Hence, we obtain

F (α) = 1l[0,Cm,d)(α).

Thus, αv = Cm,d and Qαv(X) = ∅ while Qαv−ε = [0, 1]d for any ε > 0. In this case, Ev(X) is not
unique and any measurable set with volume Eλ(X) is a possible Vorob’ev expectation. Also, the
assumption λ{p = αv} = 0 does not hold here and neither does Theorem 3.6.

4.2.2 Non-stationary case

This type of Boolean model may be obtained for locally finite intensity measures µ(dx) = m(x)λ(dx)
with a non-constant positive function m(x).

For building this example some additional hypotheses are required. First, assume that the Boolean
model is observed through the window [0, 1]d, hence the measure µ(dx) vanishes outside this window.
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Second, the grains are random balls as described in the previous example with the mention that the
radius probability distribution admits a continous density g with respect to the Lebesgue measure
such that

∀x ∈ [0, 1]d,

∫

[0,1]d
g(|x− y|)

x− y

|x− y|
µ(dy) 6= 0. (4.3)

The coverage probability requires the computation of

φ(x) = Eµ
(
Ξ̆0 ⊕ {x}

)

=

∫

[0,1]d
µ(dy)

∫

R

G(dR)1l|x−y|<R

=

∫

[0,1]d
µ(dy)S(|x− y|)

with S the survival function of G.
The level sets Qα(X) for α ∈ (0, 1) are obtained by solving:

p(x) > α ⇔ exp
(
− φ(x)

)
< 1− α ⇔ φ(x) > ln

( 1

1− α

)
.

For a given y ∈ [0, 1]d and x 6= y, ∇xS(|x− y|) is the integrand of (4.3). Since g is continuous, φ is of
class C1 with derivative (4.3) which does not vanish. Moreover, the boundary ∂Qα(X) coincide with
the set {p = α} and is obtained in solving:

φ(x) = ln
( 1

1− α

)
. (4.4)

Using the implicit function theorem, the boundary of Qα(X) is a C1-manifold of dimension d − 1:
it can be locally parameterized by C1-functions of d − 1 variables. Assumption (2.4) is satisfied and
moreover λ(p = α) = 0. In this case, Theorem 2.5 holds for any α ∈ (0, 1) and Theorem 3.6 applies.

A Auxiliary proofs

A.1 Proof of Proposition 2.2

One only shows that F is càdlàg , the rest being straightforward. One has for α ∈ [0, 1)

Qα =
⋃

n>0

↑ Qα+1/n

so that thanks to the continuity from below of measures (e.g. [1], Th. 10.2), one gets

F (α) = lim
n→∞

↑ F (α + 1/n).

Since F is decreasing, this is enough to get right-continuity. Since F is a decreasing function lower
bounded by 0, it is làg. Besides, for α ∈ (0, 1],

Qα ∪ {p = α} =
⋂

n>0

↓ Qα−1/n

from which one gets
F (α) + λ{p = α} = lim

n→∞
↓ F (α− 1/n).

Again this is enough to guarantee

F (α) + λ{p = α} = lim
ε→0+

F (α − ε).
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A.2 Proof of Proposition 2.3

Assume first that P(X 6= ∅) = 1 and denote by K′ the family of all non-empty compact sets in [0, 1]d.
It is a known fact that the myopic topology makes K′ separable (since [0, 1]d is, consider all finite sets
from (Q ∩ [0, 1])d) and metrizable by the Hausdorff distance (see Molchanov, p.402-407). Recall that
the myopic topology has a sub-base that consists of

K′F = {K ∈ K′ : K ∩ F = ∅}, F closed in [0, 1]d,

and
K′

U = {K ∈ K′ : K ∩ U 6= ∅}, U open in [0, 1]d.

Let µ be the distribution of X on K′ and consider now the empirical measure on K′

µn =
1

n

n∑

i=1

δXi
,

Since, K′ is a separable metric space, it follows from Varadarajan’s theorem (see for example Dudley,
p. 309-314) that

P

(
lim

N→∞
µn = µ

)
= 1.

This means that there exists an event Ω0 of probability one, such that for all ω ∈ Ω0 and for all
bounded continuous functions f on K′, one has

lim
N→∞

∫

K′

fdµn(ω) =

∫

K′

fdµ.

Note that the functions fx(K) = 1lx∈K , x ∈ [0, 1]d, are obviously bounded and continuous on K′ ;
indeed for each closed set C in R, one has that

f−1
x (C) =

{
∅ if 1 /∈ C,(
K′{x}

)c
if 1 ∈ C,

which implies that f−1
x (C) is closed in K′. It remains to note that

∫

K′

fxdµn =
1

n

n∑

i=1

fx(Xi) = pn(x),

∫

K′

fxdµ = µ
(
K ∈ K′ : K ∋ x

)
= P(X ∩ {x} 6= ∅) = p(x),

to achieve the proof under the additionnal assumption P(X 6= ∅) = 1. But this can be relaxed by

considering X̃ = X ∪ {0}, X̃i = Xi ∪ {0} so that the corresponding coverage functions satisfy

p̃(x) = p(x)1lx 6=0 + 1lx=0, p̃n(x) = pn(x)1lx 6=0 + 1lx=0,

and
p̃n(x) → p̃(x) ⇐⇒ pn(x) → p(x).
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A.3 Proof of Proposition 2.4

Let y ∈ A△Ar. Consider the unique cell C(y) = [x, x + r)d for some x ∈ rZd ∩ [0, 1]d that contains
y. One shows that C(y) necessarily intersects ∂A. Indeed, suppose y /∈ Ar and y ∈ A ; this implies
C(y)∩Ar = ∅, x /∈ A and C(y) contains the segment [x, y] which necessarily crosses ∂A. Suppose now
that y ∈ Ar and y /∈ A ; this implies C(y) ⊂ Ar, x ∈ A and C(y) contains the segment [x, y] which
crosses again ∂A. As a result A△Ar is included in the union of cells that intersect ∂A so that

λ(A△Ar) ≤ Nr(∂A)r
d. (A.1)

Besides let δ > 0 and d′ = dimB(∂A) + δ ; then for all r > 0 small enough,

Nr(∂A) ≤ r−d′ ,

and combining with (A.1) one gets

λ(A△Ar) ≤ rd−d′ → 0.

A.4 Proof of Lemma 2.6

Note first these immediate equalities

d(Qn
αn,r

, Qα) = λ{pn > αn,r, p ≤ α}+ λ{pn ≤ αn,r, p > α}

= λ{p = α}+ λ{pn > αn,r, p < α}

+ λ{pn ≤ αn,r, p > α}. (A.2)

Consider the second term in the r.h.s. of (A.2) ; note that

sup
n≥n0

r≤r0

λ{pn > αn,r, p < α} ≤

∫
sup
n≥n0

r≤r0

1l{pn>αn,r}1l{p<α}dλ,

and by Proposition 2.3,
lim sup
n→∞
r→0

1l{pn>αn,r} ≤ 1l{p≥α}

so that by the monotone convergence theorem one gets

lim sup
n→∞
r→0

λ{pn > αn,r, p < α} ≤ λ{p ≥ α, p < α} = 0.

Similarly, the third term (A.2) tends to 0 ; one has as before

lim sup
n→∞
r→0

λ{pn ≤ αn,r, p > α} ≤ λ{p ≤ α, p > α} = 0.

To sum up, one gets from (A.2)

lim
n,r

d(Qn
αn,r

, Qα) = λ{p = α}.
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A.5 Proof of (3.8)

General considerations on arbitrary bounded Borel sets A,A′, B give:

(A△B) \ (A′△B) = ((A \ A′) ∩Bc) ∪ ((A′ \A) ∩B),

which are disjoint. Using that for any bounded Borel sets C and D,

λ(C)− λ(D) = λ(C \D)− λ(D \ C), (A.3)

we obtain with C = A△B and D = A′△B that:

λ(A△B)− λ(A′△B) = λ
(
(A△B) \ (A′△B)

)
− λ

(
(A′△B) \ (A△B)

)

= λ((A \A′) ∩Bc) + λ((A′ \ A) ∩B)

− λ((A′ \ A) ∩Bc)− λ((A \ A′) ∩B)

= λ(A \ A′)− λ(A′ \ A)

+ 2
[
λ((A′ \ A) ∩B)− λ((A \ A′) ∩B)

]

= λ(A)− λ(A′)

+ 2
[
λ((A′ \ A) ∩B)− λ((A \ A′) ∩B)

]

by using again (A.3) with C = A and D = A′. Now, taking A = M,A′ = X̂n and B = Xi with M
measurable in [0, 1]d such that λ(M) = λ(X̂n) = Λn, we deduce

λ
(
M△Xi

)
− λ

(
X̂n△Xi

)
= 2

[
λ((X̂n \M) ∩Xi)− λ((M \ X̂n) ∩Xi)

]
,

so that

1

n

n∑

i=1

λ
(
M△Xi

)
−

1

n

n∑

i=1

λ
(
X̂n△Xi

)
=

2

N

n∑

i=1

[
λ((X̂n \M) ∩Xi)− λ((M \ X̂n) ∩Xi)

]
. (A.4)

Since for any measurable set A ⊂ [0, 1]d,

1

n

n∑

i=1

(
λ(A ∩Xi)

)
=

1

n

n∑

i=1

( ∫

[0,1]d
1lXi

1lAdλ
)
=

∫

A
pndλ,

one gets from (A.4):

1

n

n∑

i=1

λ
(
M△Xi

)
−

1

n

n∑

i=1

λ
(
X̂n△Xi

)
≥

∫

X̂n\M
pndλ−

∫

M\X̂n

pndλ

≥ αn
[
λ
(
X̂n \M

)
− λ

(
M \ X̂n

)]

= αn
[
λ
(
X̂n
)
− λ

(
M
)]

= 0. (A.5)

The last inequality holds since from (3.8), on X̂n, one has pn > αn whereas on (X̂n)c, we have pn ≤ αn.
This ends the proof.
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A.6 Proof of Lemma 3.11

For the proof, we follow here the idea of Kovyazin [3], Proposition 4. Let ε > 0 such that F is
continuous at αv − ε and βv + ε and let us define:

γ1 =F (αv − ε)− Eλ(X) (A.6)

γ2 =Eλ(X)− F (βv + ε). (A.7)

From the definitions (3.5) of αv and βv, we clearly have γ1 > 0 and γ2 > 0. We shall show that, almost
surely, one has

lim inf
n→∞

αn ≥ αv − ε. (A.8)

To this end, suppose that, on an event of positive probability, one has

lim inf
n→∞

αn < αv − ε,

then, there exists a (random) strictly increasing sequence (nk)k∈N∗ in N such that for all k, one has
αnk < αv − ε. For Λnk

defined in (3.2), we can then write:

Λnk
= λ(Xnk)

≥ λ{pnk
≥ αnk}

≥ λ{pnk
≥ αv − ε}

= λ{pnk
≥ αv − ε, p > αv − ε}+ λ{pnk

≥ αv − ε, p ≤ αv − ε}

= F (αv − ε)− λ{pnk
< αv − ε, p > αv − ε}

+ λ{pnk
≥ αv − ε, p ≤ αv − ε}

≥ F (αv − ε) + ok(1), (A.9)

where we use Lemma 2.6 in the last inequality and where ok(1) is a quantity that converges to zero
as k tends to infinity. Introducing Λnk

in the definition of γ1, one gets from (A.9)

γ1 ≤ |Λnk
− Eλ(X)| + ok(1),

which by the SLLN would imply γ1 = 0, a contradiction that proves (A.8).
A very similar computation, with γ2 instead of γ1 and βv instead of αv, gives almost surely

lim sup
n→∞

αn ≤ βv + ε.

A.7 Proof of Lemma 3.12

It is very similar to the proof of Lemma 3.11. We split the proof into several steps. In what follows,
consider ε > 0.

Step 1. Let us first prove that lim infr→0 α
n,r ≥ αn − ε. Assume that, on an event of positive

probability
lim inf
r→0

αn,r < αn − ε. (A.10)

Then, there exists a random sequence (rk)k∈N∗ with rk → 0 satisfying αn,rk < αn − ε and

Λn = λ(X̂n,rk) ≥ λ
(
Qn,rk

αn,rk

)
≥ λ

(
Qn,rk

αn−ε

)

≥ λ
(
Qn

αn−ε

)
− d
(
Qn,rk

αn−ε, Q
n
αn−ε

)

= λ{pn > αn − ε} − rκk (A.11)

by applying Proposition 2.4 with A = Qn
αn−ε = {pn > αn − ε} as we did for Qn

α in subsubsec-
tion 2.2.3. But (A.11) implies that Λn ≥ λ{pn > αn − ε} which contradicts the definition (3.7)
of αn. As a consequence, (A.10) can not be true.

19



Step 2. Let us assume that lim infn→∞
r→0

αn,r < αv − ε. Following Step 1 and replacing αn by αv, one

gets on an event of positive probability, a random sequence (nk, rk)k∈N∗ satisfying αnk,rk < αv−ε
with nk → ∞ and rk → 0 and

Λnk
≥ λ{pnk

> αv − ε} − d
(
Qnk,rk

αnk−ε, Q
nk

αnk−ε

)

≥ λ{pnk
> αv − ε} − sup

n
d
(
Qn,rk

αn−ε, Q
n
αn−ε

)
, (A.12)

and since the upper box-dimensions of the ∂Qn
αn−ε’s are (a.s.) bounded by d− κ, one gets from

Proposition 2.4 that
sup
n

d
(
Qn,rk

αn−ε, Q
n
αn−ε

)
≤ rκk . (A.13)

From (A.11), we also have

λ{pnk
> αv − ε} ≥ F (αv − ε) + ok(1). (A.14)

Combining (A.12), (A.13) and (A.14), we obtain

Λnk
≥ F (αv − ε) + ok(1),

which leads to a contradiction on γ1 as in the proof of Lemma 3.11.

Step 3. Let us now assume that, on an event of positive probability,

lim sup
r→0

αn,r > αn + 2ε. (A.15)

Then there exists a random subsequence (rk)k∈N∗ such that rk → 0 and for every k,

αn,rk − ε > αn + ε.

From this and the definition (3.3) of αn,r, one gets

Λn < λ
(
Qn,rk

αn,rk−ε

)
≤ λ

(
Qn,rk

αn+ε

)
≤ λ{pn ≥ αn + ε}+ d

(
Qn,rk

αn+ε, Q
n
αn+ε

)
.

Arguing as for (A.13) and letting k → ∞ contradicts λ{pn ≥ αn + ε} ≤ Λn so that (A.15) can
not be true.

Step 4. Proceeding as in Step 3 with βv instead of αn and using the proof of Lemma 3.11 as in Step
2 completes the proof. �
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