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Slow and fast scales for superprocess limits of age-structured

populations

Sylvie Méléard∗and Viet Chi Tran†

June 29, 2011

Abstract

A superprocess limit for an interacting birth-death particle system modelling a population
with trait and physical age-structures is established. Traits of newborn offspring are inherited
from the parents except when mutations occur, while ages are set to zero. Because of
interactions between individuals, standard approaches based on the Laplace transform do
not hold. We use a martingale problem approach and a separation of the slow (trait) and fast
(age) scales. While the trait marginals converge in a pathwise sense to a superprocess, the
age dynamics, on another time scale, averages to an equilibrium that depends on traits. The
convergence of the whole process depending on trait and age, only holds for finite-dimensional
time-marginals. We apply our results to the study of examples illustrating different cases of
trade-off between competition and senescence.

Keywords: Interacting particle system ; age-structure ; superprocess ; slow and fast scales ;
trait-structured density-dependent population. MSC: 60J80 ; 60K35 ; 60G57.

1 Introduction

We consider an asexual population in which each individual’s ability to survive and reproduce
is characterized by a quantitative trait, such as for example the body size, or the rate of food
intake. As emphasized by Charlesworth [7], most of these abilities also depend on age. We are
interested in this paper to study the joint effects of age and trait structures in the interplay
between ecology and evolution. Evolution, acting on the trait distribution of the population, is
the consequence of three basic mechanisms: heredity, which transmits traits to new offsprings,
mutation, driving a variation in the trait values in the population, and selection between these
different trait values, which is due to ecological interactions. Some questions on evolution are
strongly related to the age structure. For example, we would like to understand how the age
influences the persistence of the population or the trait’s evolution or which age structure will
appear in long time scales for a given trait. More generally, different life story strategies can be
expressed in term of age.

We are interested in the dynamics of large populations composed of small individuals with
fast births and deaths, and characterized by quantitative traits and by their physical ages. The
physical age of an individual measures the time since its birth. These models describe allometric
demographies with resource constraints: lifetimes and gestation lengths are proportional to
individuals’ biomasses. The latter are all the more small as the population is large. A main
point in our work, biologically and mathematically, is the fact that at each birth, the age is reset
to 0, inducing a large asymmetry between mother and daughters, and a difference of time scales
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between age and trait. When a mutation occurs, the new mutant trait is close to its ancestor’s
one, inducing a slow variation of the trait. Hence the dynamics is governed by two different time-
scaled phenomena. The other main point is that in our model, interactions between individuals
are taken into account, yielding nonlinear mathematical objects.

We start with an individual-centered description of the population dynamics, as point measure-
valued process, taking into account all reproductive and death events, and age. Such models
have been introduced in Méléard and Tran [25] (see also Ferrière and Tran [13]), and generalize
the trait-structured case developed in Champagnat, Ferrière, Méléard [6, 5], and the case with
only age in Jagers and Klebaner [17, 18], Tran [33].
Our aim is to study an approximation of this model under the setting described above. There
are qualitatively different asymptotic behaviors arising from the separation between the fast
age and slow trait time scales. While the trait marginals converge in a pathwise sense to a
superprocess, the age dynamics, on another time scale, stabilizes in an equilibrium that depends
on traits. The convergence of the whole process depending on trait and age, only holds for
finite-dimensional time-marginals.
The literature concerning superprocess limits is huge but at our knowledge, nothing has been
done in the setting we are interested in, with slow and fast variables, and nonlinearity. The
techniques we use are based on martingale properties and generalize to this infinite dimensional
setting the treatment of the slow-fast scales phenomena for diffusion processes, developed by
Kurtz [22], and by Ball et al. [2]. In Champagnat et al. [5, 6], superprocess approximations are
obtained for large density-dependent populations composed of small individuals, only structured
by heritable traits. Evans and Steinsaltz study in [12] the damage segregation at cell fissioning
as an explanation of senescence. Nevertheless in their model there is no interaction between
cells, and at each birth, the age (as damage) is distributed asymmetrically in each daughter cell
following a distribution centered on the mother’s age. Thus this age behaves more as a trait
than the physical (reseting to 0) age, that we consider here. Athreya et al. [1], Bose and Kaj
[3, 4], Dawson et al. [9], Dynkin [10], Fleischmann et al. [14], Kaj and Sagitov [21], Wang [34]
study cases without interaction, with techniques based on Laplace characterizations that do not
hold anymore when interactions between particles are allowed. Our results generalize Athreya et
al. [1], Bose and Kaj [3], where an averaging phenomenon is proved in the case where birth and
death rates do not depend on age. Starting with particles with exponential lifetimes, they show
that in the limit, the age structure stabilizes into an exponential distribution. In our case with
dependence, the lifelength of an individual cannot be governed by an age distribution function
independent of trait, as in e.g. [14, 34], or by a positive continuous additive functional, as in
e.g. [9, 10, 21].

In Section 2, we start by introducing the microscopic trait and age-structured population model
that has been studied in Méléard and Tran [25] and Ferrière and Tran [13]. In Section 3, we
establish a limit theorem for large populations with fast births and deaths.

Our main result is stated in Theorem 3.1 where the averaging phenomenon is obtained. In
Section 4, we consider as an illustration two models where the population is structured by size
and physical or biological age. The physical age measures the time since birth, while the biolog-
ical age is intrinsic to the individual and may depend on its traits. In the population model with
biological age, the survival probability decreases with time and individuals have shorter lives in
average. We see on simulations that this may result in longer persistence for the population.

Notation: For a given metric space E, we denote by D([0, T ], E) the space of right continuous
and left limited (càd-làg) functions from [0, T ] to E. This space is embedded with the Skorohod
topology (e.g. [28, 19]).

If X is a subset of Rd, we denote by MF (X ) the set of finite measures on X , which will be
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usually embedded with the topology of weak convergence. Nevertheless, if X is unbounded, we
will also consider the topology of vague convergence. If we need to differentiate both topological
spaces, we will denote by (MF (X ), w), respectively (MF (X ), v), the space of measures endowed
by the weak (resp. vague) topology. For a measurable real bounded function f , and a measure
µ ∈ MF (X ), we will denote

〈µ, f〉 =
∫

X
f(x)µ(dx).

For ℓ ∈ N, we denote by Cℓ
b(X ,R) the space of real bounded functions f of class Cℓ with bounded

derivatives. In the sequel, the space C0,1
b (X × R+,R) (resp. Cc(X ,R), C1

c (R+,R)) denotes the
space of continuous bounded real functions ϕ(x, a) on X ×R+ of class C1 with respect to a with
bounded derivatives (resp. of continuous real functions on X with compact support, of C1 real
functions on R+ with compact support in [0,+∞)).

2 Microscopic age and trait structured particle system

We consider a discrete population in continuous time where the individuals reproduce, age and
die with rates depending on a hereditary trait and on their age. An individual is characterized
by a quantitative trait x ∈ X where X is a closed subset of Rd and by its physical age a ∈ R+,
i.e. the time since its birth. The individuals reproduce asexually during their lives, and the trait
from the parent is transmitted to its offspring except when a mutation occurs. Resources are
shared by the individuals, implying an interaction described by a kernel comparing the competi-
tors’ traits and ages. Senescence, which quantifies the decrease of fertility or survival probability
with age, is also taken into account. These two phenomena create selection pressure.

We are interested in approximating the dynamics of a large population whose size is parametrized
by some integer n. This parameter can be seen as the order of the carrying capacity, when the
total amount of resources is assumed to be fixed. If the parameter n is large, there will be many
individuals with little per capita resource and we renormalize the individual biomass by the
weight 1/n.
We consider here allometric demographies where the lifetime and gestation length of each in-
dividual are proportional to its biomass. Thus the birth and death rates are of order n, while
preserving the demographic balance. As a consequence the right scale to observe a nontrivial
limit in the age structure, as n increases, is of order 1/n.

The population at time t is represented by a point measure as follows:

Xn
t =

1

n

Nn
t∑

i=1

δ(Xi(t),Ai(t)), (2.1)

where Nn
t = 〈nXn

t , 1〉 is the number of individuals alive at time t, and Xi(t) and Ai(t) denote
respectively the trait and age of individual i at time t (individuals are ranked in lexicographical
order for instance).

The dynamics of Xn is given as follows:

• The birth of an individual with trait x ∈ X and age a ∈ R+ is given by n r(x, a)+ b(x, a).
The new offspring is of age 0 at birth. Moreover, it inherits of the trait x of its ancestor with
probability 1−p(x, a) ∈ [0, 1] and is a mutant with probability p(x, a) ∈ [0, 1]. The mutant
trait is then x + h, where the variation h is randomly chosen following the distribution
πn(x, dh).
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• Individuals age with velocity n, so that the physical age at time t of an individual born at
time c is a = n(t− c).

• The intrinsic death rate of an individual with trait x ∈ X and age a ∈ R+ is given by
n r(x, a) + d(x, a). The competition between individuals (x, a) and (y, α) is described
by the value U((x, a), (y, α)) of a kernel U . In a population described by the measure
X ∈ MF (X × R+), the total interaction on an individual (x, a) is thus:

XU(x, a) =

∫

X×R+

U((x, a), (y, α))X(dy, dα), (2.2)

and its total death rate is n r(x, a) + d(x, a) +XU(x, a).

Assumption 2.1. 1. The birth and death rates b and d are continuous on X × R+ and
bounded respectively by b̄ and d̄.

2. The function r is continuous on X × R+. There exist a positive constant r̄ and a non-
negative real function r such that ∀(x, a) ∈ X × R+, r(a) ≤ |r(x, a)| ≤ r̄ with

∫ +∞

0
r(a)da = +∞. (2.3)

3. The competition kernel U is continuous on (X × R+)
2 and is bounded by Ū . 2

Assumption 2.1-(2) implies that any individual i from the population Xn
t has a finite lifetime

that is stochastically upper-bounded by a random variable Dn
i (t) with survival function

Sn(ℓ) = P(Dn
i (t) > ℓ) = exp

(
−
∫ ℓ

0
n r(x, nu)du

)
, (2.4)

where we recall that the aging velocity is equal to n.
If the competition kernel U is positive on (X × R+)

2, it can model a competition of the logis-
tic type: the more important the size of the population is and the higher the death rate by
competition is. For examples of such kernels we refer to [25].

Example 2.2. Let us illustrate the condition (2.3).

1. If the function r is lower bounded by a positive constant r, then (2.3) is satisfied and so is
(2.4), with exponential random variable Dn

i (t) of parameter nr.

2. Another example is when the trait x is linked to the rate of metabolism, which measures
the energy expended by individuals. Ageing may result from toxic by-products of the
metabolism and we can define a biological age, xa. If x ∈ [x1, x2] with x1, x2 > 0 and if
we define r(x, a) = xa, then Condition (2.3) is satisfied with r(a) = x1a. The example of
Section 4.2 deals with this case.

3. If we consider r(x, a) = γ/(1 + a) with γ ∈ (0, 1), then (2.3) is also satisfied and the
probability of observing an age higher than a is equivalent to a−γ when a tends to infinity.
Such cases with distributions in the domain of attraction of a stable law, but without
interaction, have been considered for instance in [14].

Assumption 2.3. For any x ∈ X , the mutation kernel πn(x, dh) has its support in X − {x} =
{h ∈ Rd |x+ h ∈ X}. We consider two cases:
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1. The trait space X is a compact subset of Rd and there exists a generator A of a Feller
semi-group on Cb(X ,R) with domain D(A) dense in Cb(X ,R) such that:

∀f ∈ D(A), lim
n→+∞

sup
x∈X

∣∣∣∣∣n
∫

X−{x}

(
f(x+ h)− f(x)

)
πn(x, dh) −Af(x)

∣∣∣∣∣ = 0. (2.5)

2. The trait space X is a closed subset of Rd and we assume in addition that there exists
ℓ1 ≥ ℓ0 ≥ 2 with Cℓ1

b (X ,R) ⊂ D(A) and ∀f ∈ Cℓ1
b (X ,R), ∀x ∈ X .

|Af(x)| ≤ C
∑

|k|≤ℓ0
k=(k1,...,kd)

|Dkf(x)| (2.6)

and

sup
x∈X

∣∣∣∣∣n
∫

X−{x}

(
f(x+ h)− f(x)

)
πn(x, dh) −Af(x)

∣∣∣∣∣ ≤ εn
∑

|k|≤ℓ1
k=(k1,...,kd)

‖Dkf‖∞, (2.7)

where Dkf(x) = ∂k1x1
. . . ∂kdxd

f(x), εn is a sequence tending to 0 as n tends to infinity and
C is a constant.

Remark 2.4. Both Assumptions (2.5) and (2.7) describe small mutation steps. The stronger
hypothesis (2.7) is required when X is not compact, to obtain the tightness in the proof of
Theorem 3.1.

Example 2.5. Let us give some examples of mutation kernels satisfying (2.5) or (2.6) and (2.7).

1. In the case where X = [x1, x2], the mutation kernel πn(x, dh) is a Gaussian distribution with
mean 0 and variance σ2/n, conditioned to [x1−x, x2−x]. In this case, elementary computation

shows that for f ∈ C2
b ([x1, x2],R) such that f ′(x1) = f ′(x2) = 0, Af(x) = σ2

2 f
′′(x), which

satisfies (2.5).

2. In the case where X = Rd, a possible choice of mutation kernel πn(x, dh) is a Gaussian
distribution with mean 0 and covariance matrix Σ(x)/n, with Σ(x) = (Σij(x), 1 ≤ i, j ≤ d).

The generator A is given for f ∈ C2
b (R

d,R) by Af(x) = 1
2

∑d
i,j=1Σij(x)∂

2
ijf(x). If the function

Σ is bounded, then Assumption (2.6) is fulfilled. If moreover, the third moments of πn(x, dh)
are bounded (in x), then (2.7) is satisfied. 2

Let us now describe the generator Ln of the MF (X × R+)-valued Markov process Xn, which
sums the aging phenomenon and the ecological dynamics of the population. As developed in
Dawson [8] Theorem 3.2.6, the set of cylindrical functions defined for each µ ∈ MF (X ×R+) by
Fϕ(µ) = F (〈µ,ϕ〉), with F ∈ C1

b (R,R) and ϕ ∈ C0,1
b (X × R+,R), generates the set of bounded

measurable functions on MF (X × R+). For such function, for µ ∈ MF (X × R+),

LnFϕ(µ) = n〈µ, ∂aϕ(.)〉F ′
ϕ(µ)

+ n

∫

X×R+

[(
nr(x, a) + d(x, a) + µU(x, a)

)(
Fϕ

(
µ− 1

n
δ(x,a)

)
− Fϕ(µ)

)

+
(
nr(x, a) + b(x, a)

) ∫

Rd

(
Fϕ

(
µ+

1

n
δ(x+h,0)

)
− Fϕ(µ)

)
Kn(x, a, dh)

]
µ(dx, da), (2.8)

where
Kn(x, a, dh) = p(x, a) πn(x, dh) + (1− p(x, a)) δ0(dh). (2.9)
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Under the condition supn∈N∗ E (〈Xn
0 , 1〉) < +∞, it has been proved in Méléard-Tran [25] (see

also the case without age in Fournier-Méléard [16] and the case without trait in Tran [33]), that
there exists for any n, a càd-làg Markov process with generator Ln, which can be obtained as
solution of a stochastic differential equation driven by a Point Poisson measure. Trajectorial
uniqueness also holds for this equation. The construction provides an exact individual-based
simulation algorithm (see [13]).

A slight adaptation of the proofs in [16] allows us to get the

Proposition 2.6. (i) Under Assumptions 2.1, and if

sup
n∈N∗

E(〈Xn
0 , 1〉3) < +∞, (2.10)

then for all T > 0,

sup
n∈N∗

E

(
sup

t∈[0,T ]
〈Xn

t , 1〉3
)
< +∞. (2.11)

(ii) Moreover, for n ∈ N∗ and a test function ϕ ∈ C0,1
b (X ×R+,R), the process Mn,ϕ defined by

Mn,ϕ
t = 〈Xn

t , ϕ〉 − 〈Xn
0 , ϕ〉 − n

∫ t

0
〈Xn

s , ∂aϕ(x, a)〉 ds

−
∫ t

0

∫

X×R+

((
nr(x, a) + b(x, a)

) ∫

Rd

ϕ(x+ h, 0)Kn(x, a, dh)

−
(
nr(x, a) + d(x, a) +Xn

s U(x, a)
)
ϕ(x, a)

)
Xn

s (dx, da) ds (2.12)

is a square integrable martingale started at 0 with quadratic variation:

〈Mn,ϕ〉t =
1

n

∫ t

0

∫

X×R+

((
nr(x, a) + b(x, a)

) ∫

Rd

ϕ2(x+ h, 0)Kn(x, a, dh)

+
(
nr(x, a) + d(x, a) +Xn

s U(x, a)
)
ϕ2(x, a)

)
Xn

s (dx, da) ds. (2.13)

Notice that in (2.12), the mutation rate is hidden in the kernel Kn:

(
nr(x, a) + b(x, a)

) ∫

Rd

ϕ(x+ h, 0)Kn(x, a, dh) =
(
nr(x, a) + b(x, a)

)
(1− p(x, a))ϕ(x, 0)

+
(
nr(x, a) + b(x, a)

)
p(x, a)

∫

Rd

ϕ(x+ h, 0)πn(x, dh). (2.14)

3 Superprocess limit

We now investigate the limit when n increases to +∞. In the limit, we obtain a continuum of
individuals in which the individualities are lost. It is in particular difficult to keep track of the
age-distribution when n tends to infinity. Because of the non-local branching (a mother of age
a > 0 gives birth to a daughter of age 0) and because the aging velocity tends to infinity, it is
impossible to obtain directly the uniform tightness on D(R+,MF (X × R+)) of the sequence of
laws of the measure-valued processes (Xn

. (dx, da))n∈N∗ , as it can be observed considering (2.12).
Indeed, assuming that the function ϕ only depends on a, the term of the form

∫ t

0

∫

X×R+

nr(x, a) (ϕ(0) − ϕ(a))Xn
s (dx, da)ds
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cannot be tight if r(x, a) is bounded and Xn is tight. Therefore, we will be led to firstly show the
uniform tightness of the trait marginal of the process Xn and then to prove that in the limit, an
averaging phenomenon appears for the age dynamics. Indeed, this ”fast” evolving component
stabilizes in an equilibrium that depends on the dynamics of the ”slow” trait component.

We generalize to measure-valued processes, averaging techniques of Ball et al. [2], Kurtz
[22] for diffusion processes. A specificity in our case is that the fast-scaling is related to time,
since age is involved. In addition, notice that the competition between individuals creates a
large dependence between the age and trait distributions. At our knowledge this dependence
has never been investigated before in the literature.

Let us introduce the marginal X̄n
t (dx) of Xn

t (dx, da) defined for any bounded and measurable
function f on X and for any t ∈ R+ by

∫

X
f(x)X̄n

t (dx) =

∫

X×R+

f(x)Xn
t (dx, da). (3.1)

Our main result states the convergence of the sequence (X̄n)n∈N∗ to a nonlinear super-process.
The nonlinearity remains at the slow time scale in the growth rate, which is preserved in this
asymptotics. Moreover, fast mutations are compensated by small mutation steps. Fast births
and deaths provide stochastic fluctuations in the limit.

Theorem 3.1. Assume Hypotheses 2.1 and 2.3, (2.10) and assume that there exists X0 ∈
MF (X × R+) such that limn→+∞Xn

0 = X0 in (MF (X × R+), w).
For any x ∈ X , let us introduce the age probability density

m̂(x, a) =
exp

(
−
∫ a
0 r(x, α)dα

)
∫ +∞
0 exp

(
−
∫ a
0 r(x, α)dα

)
da
. (3.2)

Then, for each T > 0, the sequence (X̄n)n∈N∗ converges in law in D([0, T ], (MF (X ), w)) to the
unique superprocess X̄ ∈ C([0, T ],MF (X )) such that for any function f ∈ D(A),

Mf
t = 〈X̄t, f〉 − 〈X̄0, f〉−

∫ t

0

∫

X

(
(̂p r)(x)Af(x)

+
[̂
b(x)−

(
d̂(x) + X̄sÛ(x)

)]
f(x)

)
X̄s(dx) ds (3.3)

is a square integrable martingale with quadratic variation:

〈Mf 〉t =
∫ t

0

∫

X
2r̂(x)f2(x)X̄s(dx) ds. (3.4)

Here, any ψ̂(x) is defined for a bounded function ψ(x, a) by

ψ̂(x) =

∫

R+

ψ(x, a)m̂(x, a)da,

and X̄tÛ(x) is given by

X̄tÛ(x) =

∫

X

(∫

R+

∫

R+

U((x, a), (y, α))m̂(y, α)dα m̂(x, a)da

)
X̄t(dy).

2
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Theorem 3.1 states that in the limit, an averaging phenomenon happens and the ”fast” age
component finally submits to the dynamics of the ”slow” trait component. Since the fast-
scaling (involving age) is related to the time, the stable age distribution m̂(x, a)da given in (3.2)
is obtained for each trait x as the long time limit in the age-structured population where all
coefficients except r(x, a) are zero.

Before proving this slow-fast limit theorem, let us insist on the main difficulty created by the
interacting competition mechanism. Indeed, the branching property fails and it impedes the
use of Laplace-transform techniques, as it had been almost systematically done in the papers in
the past studying particle pictures with age-structure. Our model generalizes the age-structure
population process studied in Athreya et al. [1], Bose and Kaj [3], in which birth and death rates
are equal to a constant λ. In that case, the limiting behaviour of the renormalized critical birth
and death process appears as a particular case of Theorem 3.1 with m̂(x, a)da = λe−λada. In
Dawson et al. [9], Dynkin [10], and Kaj and Sagitov [21], the age dependence is modelled through
an additive functional of the motion process. In that way, the age ”accumulates” along the
lineage. In our case, the age is set to zero at each birth, inducing a renewal phenomenon. The life-
length does not have a fixed probability distribution anymore, unless there is no interaction. In
[4], the authors consider a particle system with a different scaling, which favors large reproduction
events. The limit in this case is not a superprocess anymore but behaves as the solution of a
McKendrick-Forster equation perturbed by random immigration events created by the large rare
birth events.

The proof of Theorem 3.1 is the aim of Section 3. We first establish the tightness of the sequence
(X̄n)n∈N∗ (Section 3.1). We identify the limiting values as solutions of the martingale problem
given in (3.3), (3.4), proving the convergence of the time marginals (Xn

t (dx, da))n, for any fixed
t, to a limit involving the age averaging (Section 3.2). Uniqueness is then showed to conclude.

3.1 Tightness of (X̄n)n∈N∗

In this subsection, we shall prove that:

Proposition 3.2. Assume Hypotheses 2.1 and 2.3, and (2.10). If the sequence of laws of
(X̄n

0 )n∈N∗ is uniformly tight in (MF (X ), w), then the sequence (L(X̄n))n∈N∗ is uniformly tight
in the space of probability measures on D([0, T ], (MF (X ), w)).

Proof. Recall firstly that for a measurable and bounded function f on X , the process

Mn,f
t = 〈Xn

t , f〉 − 〈Xn
0 , f〉 −

∫ t

0

∫

X×R+

((
nr(x, a) + b(x, a)

) ∫

Rd

f(x+ h)Kn(x, a, dh)

−
(
nr(x, a) + d(x, a) +Xn

s U(x, a)
)
f(x)

)
Xn

s (dx, da) ds (3.5)

is a square integrable martingale started at 0 with quadratic variation

〈Mn,f 〉t =
1

n

∫ t

0

∫

X×R+

((
nr(x, a) + b(x, a)

) ∫

Rd

f2(x+ h)Kn(x, dh)

+
(
nr(x, a) + d(x, a) +Xn

s U(x, a)
)
f2(x)

)
Xn

s (dx, da) ds. (3.6)

We divide the proof into several steps.

Step 1 Firstly, we prove the uniform tightness of (L(X̄n))n∈N∗ in the space of probability
measures on D([0, T ], (MF (X ), v)).
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Let us consider a continuous bounded function f ∈ D(A), and show the uniform tightness of
the sequence (〈X̄n

. , f〉)n∈N∗ in D([0, T ],R). We remark that for every fixed t ∈ [0, T ] and n > 0,

P(|〈X̄n
t , f〉| > k) ≤

‖f‖∞ E(supt∈[0,T ]〈X̄n
t , 1〉)

k
, (3.7)

which tends to 0 as k tends to infinity (cf. (2.11)). This proves the tightness of the family of
time-marginals (〈X̄n

t , f〉)n∈N∗ . Denoting by An,f the finite variation process in the r.h.s. of (3.5)
and thanks to Assumption 2.3, we get for all stopping times Sn < Tn < (Sn + δ) ∧ T , that

E(|An,f
Tn

−An,f
Sn

|) ≤ δ
[(

(‖Af(s, .)‖∞ + 1)
r̄

2
+ ‖f‖∞(b̄+ d̄)

)
sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉)

+ ‖f‖∞Ū sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉2)

]
. (3.8)

The quadratic variation process (3.6) satisfies a similar inequality:

E(|〈Mn,f 〉Tn − 〈Mn,f 〉Sn |)

≤‖f‖2∞E
(∫ Tn

Sn

[
2r̄〈X̄n

s , 1〉 +
b̄〈Xn

s , 1〉
n

+
d̄〈X̄n

s , 1〉+ Ū〈X̄n
s , 1〉2

n

]
ds
)

≤‖f‖2∞δ
[(

2r̄ +
b̄+ d̄

n

)
sup
n∈N∗

E( sup
t∈[0,T ]

〈X̄n
t , 1〉) +

Ū

n
sup
n∈N∗

E( sup
t∈[0,T ]

〈X̄n
t , 1〉2)

]
. (3.9)

Then, for ε > 0, η > 0, a sufficiently large n and small δ, we have using (2.11) and Assumption
2.3, that

P(|An,f
Tn

−An,f
Sn

| > η) ≤ ε and P(|〈Mn,f 〉Tn − 〈Mn,f 〉Sn | > η) ≤ ε. (3.10)

From (3.7), (3.8), (3.9) and the Aldous-Rebolledo criterion (see e.g. [19] or [11, Th. 1.17]), we
obtain the uniform tightness of the sequence (〈X̄n

. , f〉)n∈N∗ in D([0, T ],R). Thanks to Roelly’s
criterion [29], we conclude that (X̄n)n∈N∗ is uniformly tight in D([0, T ], (MF (X ), v)).

Let us denote by X̄ a limiting process of (X̄n)n∈N∗ . It is almost surely (a.s.) continuous in
(MF (X ), v) since

sup
t∈R+

sup
f, ‖f‖∞≤1

|〈X̄n
t , f〉 − 〈X̄n

t− , f〉| ≤
1

n
. (3.11)

In the case where X is a compact subset of Rd, the vague and weak topologies coincide, which
fails in the non-compact case. Nevertheless the tightness in D([0, T ], (MF (X ), w)) is needed to
identify the limiting values of (X̄n)n∈N∗ .

Step 2 Let us now concentrate on the case where X is unbounded and let us show the tightness
of (X̄n)n∈N∗ in D([0, T ], (MF (X ), w)). The same computation as in Step 1 for f(x) = 1 implies
that the sequence (〈X̄n, 1〉)n∈N∗ is uniformly tight in D([0, T ],R+). As a consequence, it is
possible to extract from (X̄n)n∈N∗ a subsequence (X̄un)n∈N∗ such that:

• (X̄un)n∈N∗ converges in distribution to X̄ in D([0, T ], (MF (X ), v)),

• (〈X̄un , 1〉)n∈N∗ converges in distribution in D([0, T ],R+).

Let us now show that the limit of (〈X̄un , 1〉)n∈N∗ is 〈X̄, 1〉, empedding a loss of mass in the
limit. Indeed, as a consequence, a criterion in Méléard and Roelly [24] will prove that (X̄un)n∈N∗

converges in distribution to X̄ in D([0, T ], (MF (X ), w)).

9



By simplicity, we will again denote un by n.

As in Jourdain-Méléard [20], we introduce a sequence of smooth functions ψk defined on R+ and
approximating 1{u≥k}. For k ∈ N, let ψk(u) = ψ(0∨ (u− (k−1))∧1) where ψ(y) = 6y5−15y4+
10y3 is a nondecreasing function such that ψ(0) = ψ′(0) = ψ′′(0) = 1−ψ(1) = ψ′(1) = ψ′′(1) = 0.
The function u 7→ ψk(u) is nondecreasing on R+, equals 0 on [0, k− 1] and 1 on the complement
of [0, k). In particular ψ0 ≡ 1. Moreover the sequence (ψk)k∈N∗ is nonincreasing, and satisfies
for u ≥ 0 and p ≥ 1 that

1{u≥k} ≤ ψk(u) ≤ 1{u≥k−1}; (3.12)

ψ
(p)
k (u) ≤ sup

u∈[k−1,k]
|ψ(p)

k (u)|1{u≥k−1} ≤ sup
u∈[k−1,k]

|ψ(p)
k (u)|ψk−1(u).

The proof of the following lemma is postponed at the end of Proposition 3.2’s proof. We define
fk(x) = ψk(‖x‖), for all x ∈ X .

Lemma 3.3. Under the assumptions of Proposition 3.2,

lim
k→+∞

lim sup
n→+∞

E

(
sup
t≤T

〈X̄n
t , fk〉

)
= 0.

From Lemma 3.3, we can deduce that

lim
k→+∞

E

(
sup
t≤T

〈X̄t, fk〉
)
= 0. (3.13)

Indeed, for k ∈ N, the continuous and compactly supported functions (fk,ℓ
def
= fk(1 − fℓ))ℓ∈N

increase to fk as ℓ → +∞. By continuity of ν 7→ supt≤T 〈νt, fk,ℓ〉 on D([0, T ], (MF , v)) and
uniform integrability deduced from the uniform square moment estimates (2.11), one has

E
(
sup
t≤T

〈X̄t, fk,ℓ〉
)
= lim

n→+∞
E
(
sup
t≤T

〈X̄n
t , fk,ℓ〉

)
≤ lim inf

n→+∞
E
(
sup
t≤T

〈X̄n
t , fk〉

)
.

Taking the limit ℓ → +∞ in the left-hand-side by the monotone convergence theorem, one
concludes that for k = 0

E

(
sup
t≤T

〈X̄t, 1〉
)
= E

(
sup
t≤T

〈X̄t, f0〉
)
< +∞, (3.14)

and from Lemma 3.3, that (3.13) holds for any k.
As a consequence one may extract a subsequence of (supt≤T 〈X̄t, fk〉)k that converges to 0 a.s.,
and since the process (X̄t)t≤T is continuous from [0, T ] into (MF (X ), v), one deduces that it is
also continuous from [0, T ] into (MF (X ), w).
We can now prove the convergence of 〈Xun , 1〉 to 〈X̄, 1〉. For F a Lipschitz continuous and
bounded function on D([0, T ],R), we have

lim sup
n→+∞

|E
(
F (〈X̄n, 1〉) − F (〈X̄, 1〉)

)
| ≤ lim sup

k→+∞
lim sup
n→+∞

|E
(
F (〈X̄n, 1〉)− F (〈X̄n, 1− fk〉)

)
|

+ lim sup
k→+∞

lim sup
n→+∞

|E
(
F (〈X̄n, 1− fk〉)− F (〈X̄, 1− fk〉)

)
|

+ lim sup
k→+∞

|E
(
F (〈X̄, 1− fk〉)− F (〈X̄, 1〉)

)
|.

Since |F (〈ν, 1− fk〉)−F (ν, 1〉)| ≤ C supt≤T 〈νt, fk〉 by Lipschitz property, the first and the third
terms in the r.h.s. are equal to 0 respectively according to Lemma 3.3 and to (3.13). The second
term is 0 by continuity of ν 7→ 〈ν, 1− fk〉 in D([0, T ], (MF (X ), v)).
This ends the proof of Proposition 3.2. �
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Proof of Lemma 3.3. Firstly, let us show that for each t ∈ [0, T ],

lim
k→+∞

lim sup
n→+∞

E
(
〈X̄n

t , fk〉
)
= 0. (3.15)

The boundedness of r and Assumption 2.3-2 ensure the existence of a sequence (εn)n∈N∗ con-
verging to 0 such that

E(〈X̄n
t , fk〉) ≤ E(〈X̄n

0 , fk〉) + b̄

∫ t

0
E(〈X̄n

s , fk〉)ds + εn

∫ t

0
E(〈X̄n

s , 1〉)ds

+ E

(∫ t

0

∫

Rd×R+

r(x, a)p(x, a)Afk(x)X
n
s (dx, da)ds

)
, (3.16)

and we have by (2.6) and (3.12)

∣∣∣
∫

Rd×R+

r(x, a)p(x, a)Afk(x)X
n
s (dx, da)

∣∣∣ ≤ r̄
∑

|ℓ|≤ℓ0

‖Dℓfk‖∞ 〈X̄n
s , fk−1〉.

Since moreover, the sequence (fk)k∈N∗ is non-increasing, 〈X̄n
s , fk〉 ≤ 〈X̄n

s , fk−1〉 and there is a
constant C > 0 independent of k ≥ 2 such that

E(〈X̄n
t , fk〉) ≤ E(〈X̄n

0 , fk〉) + C

∫ t

0
E(〈X̄n

s , fk−1〉)ds + εn

∫ t

0
E(〈X̄n

s , 1〉)ds. (3.17)

Let µn,ks = E
(
〈X̄n

s , fk〉
)
≤ µns = E

(
〈X̄n

s , 1〉
)
which is bounded uniformly in n ∈ N∗ and s ∈ [0, T ]

according to (2.11). There exist two positive constants C1 and C2 such that

µn,kt ≤ µn,k0 + C1

∫ t

0
µn,k−1
s ds +C2εn.

Iteration of this inequality yields

µn,kt ≤
k−1∑

ℓ=0

µ
n,(k−ℓ)
0

(C1t)
ℓ

ℓ!
+

(C1

∫ t
0 µ

n
s ds)

k

k!
+ εnC2

k−1∑

ℓ=0

(C1t)
ℓ

ℓ!

≤ µ
n,⌊k/2⌋
0 eC1t + µn0

+∞∑

ℓ=⌊k/2⌋+1

(C1t)
ℓ

ℓ!
+

(C ′
1t)

k

(k)!
+ εn C2 e

C1t.

where we used the monotonicity of µn,k0 w.r.t. k for the second inequality. Given the moment
condition (2.10), the assumption of tightness in (MF (X ), w) of the initial conditions (X̄n

0 )n∈N∗

is equivalent to
lim

k→+∞
lim sup
n→+∞

µn,k0 = 0. (3.18)

Hence

lim
k→+∞

lim sup
n→+∞

µn,kt ≤ sup
n∈N∗

µn0 lim
k→+∞

+∞∑

ℓ=⌊k/2⌋+1

(C1t)
ℓ

ℓ!
+ lim

k→+∞
(C ′

1t)
k

(k)!
.

We deduce immediately that

lim
k→+∞

lim sup
n→+∞

E
(
〈X̄n

t , fk〉
)
= lim

k→+∞
lim sup
n→+∞

µn,kt = 0. (3.19)

Let us now consider the martingale Mn,k
t defined by (3.5) with fk instead of f , and with

quadratic variation given in (3.6). Similar arguments as above allow us to prove that

E(〈Mn,k〉t) ≤ C1

∫ t

0
E(〈Xn

s , fk−1〉)ds + εnC2

∫ t

0
E(〈Xn

s , 1〉)ds.
11



Thus, using that fk ≤ 1, Doob’s inequality, (3.15), (2.11) and the dominated convergence
theorem, we get

lim
k→+∞

lim sup
n→+∞

E

(
sup
t≤T

|Mn,k
t |
)
= 0.

Let us now come back to the process 〈X̄n, fk〉. As before, we can get

〈X̄n
t , fk〉 ≤ 〈X̄n

0 , fk〉+Mn,k
t + b̄

∫ t

0
〈X̄n

s , fk〉ds+ εn

∫ t

0
〈X̄n

s , 1〉ds

+

∫ t

0

∫

Rd×R+

r(x, a)p(x, a)Afk(x)X
n
s (dx, da)ds

≤ 〈X̄n
0 , fk〉+Mn,k

t + C1

∫ t

0
〈X̄n

s , fk−1〉ds + εnC2

∫ t

0
〈X̄n

s , 1〉ds, (3.20)

for constants C1 and C2. Let αn,k
t = E

(
sups≤t〈X̄n

s , fk〉
)
and αn

t = E
(
sups≤t〈X̄n

s , 1〉
)
which is

bounded uniformly in n ∈ N∗ and t ∈ [0, T ] according to (2.11). One deduces that

αn,k
t ≤ αn,k

0 + C1

∫ t

0
µn,k−1
s ds+ C2εn + E

(
sup
t≤T

|Mn,k
t |
)
.

An iteration as before allows us to prove that

lim
k→+∞

lim sup
n→+∞

E

(
sup
t≤T

〈X̄n
t , fk〉

)
= lim

k→+∞
lim sup
n→+∞

αn,k
t = 0,

which concludes the proof of Lemma 3.3 and thus the one of Proposition 3.2. �

3.2 Identification of the limiting values

To obtain the convergence stated in Theorem 3.1, we show that the limiting value X̄ of the
uniformly tight sequence (X̄n)n∈N∗ is unique. We establish a martingale problem satisfied by
X̄ in which there are integration terms with respect to the equilibrium (3.2) involved in the
averaging phenomenon for the ages. The uniqueness of the solution to the martingale problem
is then proved.

3.2.1 Averaging phenomenon

We begin with establishing the form of the limiting values of the time-marginal distributions
(Xn

t (dx, da))n∈N∗ for t ∈ [0, T ]. Since the sequence (X̄n)n∈N∗ is uniformly tight, there exists a
subsequence of (Xn

t (dx, da))n∈N∗ , with trait-marginals converging in law to a limiting value X̄,
that by simplicity, we denote again by (Xn

t (dx, da))n∈N∗ .

We have already explained why the uniform tightness of the sequence (t 7→ Xn
t (dx, da))n∈N∗ in

D([0, T ],MF (X × R+)) cannot hold. However, following Kurtz [22], we will prove the uniform
tightness of the sequence of random measures

Γn(dt, dx, da) = Xn
t (dx, da)dt (3.21)

on MF ([0, T ]×X × R+). Proceeding in this way allows us to escape the difficulties created by
the degeneracies due to the rapid time scale for age, when one tries to follow individual paths.

Proposition 3.4. The sequence (Γn)n∈N∗ converges in law to X̄t(dx)m̂(x, da)dt in MF ([0, T ]×
X × R+).
As a consequence, for dt-almost every (a.e.) t ∈ [0, T ], the sequence (Xn

t (dx, da))n∈N∗ converges
weakly to m̂(x, da)X̄t(dx), with m̂ defined in (3.2).

12



The proof of Proposition 3.4 is inspired by Kurtz [22]. To establish the the result, we need to
consider the random measure defined in (3.21).
Firstly, we prove the uniform tightness of the sequence (Xn

t (dx, da))n∈N∗ , for fixed t ∈ [0, T ]
(Lemma 3.5), as well as the one of the sequence of measures (Γn)n∈N∗ (Lemma 3.6), where the
pathwise and individual points of view have been forgotten. The techniques to disentangle
the traits and individuals’ time scales appear strikingly in the proof of Lemma 3.5, where
different treatments are used for the trait marginal and for the ages, with the introduction
of the individuals’ lifelengths. Then, in the proof of Proposition 3.4, a factor n appears in
(3.37), when changing from the macroscopic scale to the microscopic scale. The next part of the
proof consists in identifying the limiting martingale problem.

Lemma 3.5. For dt-a.e. t ∈ [0, T ], the sequence (Xn
t )n∈N∗ is uniformly tight on MF (X ×R+).

Proof. Let ε > 0. Since the family (X̄n
t )n∈N∗ is tight, there exists a compact set K ⊂ Rd such

that
sup
n∈N∗

P
(
X̄n

t (K
c) > ε

)
< ε. (3.22)

Moreover, thanks to Point 2 of Assumption 2.1 and using a coupling argument, the life-lengths
of the individuals in the population Xn

t are dominated, uniformly in x ∈ X , by independent
random variables Dn

i (t) with survival function Sn defined in (2.4). Because the aging velocity
is n, the ages of the individuals of Xn

t satisfy Ai(t) ≤ nDn
i (t). Thus, for A > 0 and n0, N ∈ N∗,

sup
n≥n0

P
(
Xn

t ((K × [0, A])c) > 2ε
)
≤ sup

n≥n0

P
(
X̄n

t (K
c) > ε

)
+ sup

n≥n0

P

( 1
n

Nn
t∑

i=1

1l{Ai(t)>A} > ε
)

≤ ε+ sup
n≥n0

P
( nN∑

i=1

1l{nDn
i (t)>A} > nε

)
+ sup

n≥n0

P
(
Nn

t > nN
)
.

(3.23)

By (2.10), it is possible to find N such that:

sup
n≥n0

P
(
Nn

t > nN
)
= sup

n≥n0

P
(
〈Xn

t , 1〉 > N
)
≤

supn≥n0
E
(
supt∈[0,T ]〈Xn

t , 1〉)
N

≤ ε. (3.24)

Notice that

E
(
1l{nDn

i (t)>A}
)
= Sn(A/n) = exp

(
−
∫ A

0
r(a)da

)
,

which converges to 0 when A tends to infinity by (2.3). For N as in (3.24), we choose A such
that Sn(A/n) < ε/2N . Then

P

( nN∑

i=1

1l{Dn
i (t)>A/n} > nε

)
= P

( nN∑

i=1

(1l{Dn
i (t)>A/n} − Sn(A/n)) > n(ε−NSn(A/n))

)

≤ P

( nN∑

i=1

(1l{Dn
i (t)>A/n}−Sn(A/n)) > nε/2

)
≤ exp

(
− nε2

8(Ne−
∫A
0 r(a)da(1− e−

∫A
0 r(a)da) + ε/3)

)

(3.25)

by Bernstein’s inequality (e.g. [31] p.855). For a sufficiently large n0, the r.h.s. of (3.25) is
smaller than ε for n ≥ n0. The tightness of (X

n
t )n∈N∗ is thus a consequence of (3.23), (3.24) and

(3.25). �
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Lemma 3.6. The family (Γn)n∈N is tight in MF ([0, T ] × X × R+).

Proof. Following Kurtz [22, Lemma 1.3], a sufficient condition for the tightness of the family
(Γn)n∈N is that for all ε > 0, there exists a compact set Ξ of X × R+ such that

sup
n∈N∗

E

(
Γn
(
[0, T ] × Ξc

))
≤ C(T )ε. (3.26)

Let us establish (3.26). From the proof of Lemma 3.5, it appears that the upperbounds (3.22),
(3.23) and (3.25) are uniform in t ∈ [0, T ] so that:

sup
t∈[0,T ]

sup
n∈N∗

P

(
Xn

t

(
(K × [0, A])c

)
> 2ε

)
< 3ε. (3.27)

We are now ready to upperbound

E

(
Γn
(
[0, T ] × (K × [0, A])c

))
=E

(∫ T

0
〈Xn

t , 1l(K×[0,A])c〉dt
)
=

∫ T

0
E

(
Xn

t

(
(K × [0, A])c

))
dt.

Indeed:

E

(
Xn

t

(
(K × [0, A])c

))
≤ 2ε P

(
Xn

t

(
(K × [0, A])c

)
≤ 2ε

)
+ E

(
〈Xn

t , 1〉1lXn
t

(
(K×[0,A])c

)
>2ε

)

≤ 2ε+

√
E

(
〈Xn

t , 1〉2
)√

P

(
Xn

t

(
(K × [0, A])c

)
> 2ε

)
≤ C(T )(ε+

√
ε), (3.28)

by Cauchy-Schwarz inequality and (2.11). This proves (3.26) and finishes the proof. �

Before proving Proposition 3.4, we provide a lemma characterizing m̂(x, a).

Lemma 3.7. Let x ∈ X be fixed. There exists a unique probability measure m̂(x, da) on R+,
solution of the following equation: For ψ ∈ C1

c (R+,R) with compact support in [0,+∞),

∫

R+

∂aψ(a)m̂(x, da) =

∫

R+

ψ(a)r(x, a)m̂(x, da) − ψ(0)

∫

R+

r(x, a)m̂(x, da). (3.29)

The probability measure m̂(x, da) is absolutely continuous with respect to the Lebesgue measure
and its density is given in (3.2).

Proof. Let us consider the test function ψ(a) =
∫ +∞
a f(α)dα, where f ∈ Cc(R+,R+) is positive.

Then ∂aψ(a) = −f(a) and ψ(0) =
∫ +∞
0 f(α)dα. Equation (3.29) gives by Fubini’s theorem:

∫

R+

f(a)m̂(x, da) =

∫

R+

∫ a

0
f(α)dα r(x, a)m̂(x, da)

=

∫

R+

f(α)

∫ +∞

α
r(x, a)m̂(x, da) dα. (3.30)

This entails that m̂(x, da) is absolutely continuous with respect to the Lebesgue measure with
density m̂(x, a) =

∫ +∞
a r(x, α)m̂(x, α)dα. The latter implies that a 7→ m̂(x, a) is a function of

class C1. Using further an integration by part in (3.29), and since m̂(x, a) tends to 0 when a
grows to infinity, we get for all ψ ∈ C1

c (R+,R)

−ψ(0)m̂(x, 0) −
∫

R+

ψ(a)∂am̂(x, a)da =

∫

R+

(
ψ(a) − ψ(0)

)
r(x, a)m̂(x, a)da. (3.31)

14



By identification, we obtain that m̂(x, a) is a solution of

∂am̂(x, a) = −r(x, a)m̂(x, a)

m̂(x, 0) =

∫

R+

r(x, a)m̂(x, a)da, (3.32)

which is solved by

m̂(x, a) = m̂(x, 0) exp
(
−
∫ a

0
r(x, α)dα

)
. (3.33)

Since m̂(x, a)da is a probability measure, necessarily

m̂(x, 0) =

∫

R+

r(x, a)m̂(x, a)da =
1∫

R+
exp

(
−
∫ a
0 r(x, α)dα

)
da
. (3.34)

This provides existence and uniqueness of the solution of (3.32) and hence of (3.29). �

Remark 3.8. Notice that the system (3.32) defines the stable age equilibrium of the McKendrick-
Von Foerster equation [23, 15] (see also [35]) when the birth and death rates equal to r(x, a)
and the trait x is fixed. 2

Remark 3.9. The space C1
c (R+,R) is separable and there exists a denumberable dense family

(ψk)k∈N in this set. To obtain the result of Lemma 3.7, it is sufficient to have (3.29) for these
functions (ψk)k∈N.

We are now able to prove Proposition 3.4.

Proof of Proposition 3.4. From (3.21), we can see that the marginal measure of Γn(ds, dx, da)
on [0, T ]×X is X̄n

s (dx)ds. For any real bounded test function ϕ : (s, x) 7→ ϕs(x) on [0, T ]×X ,
∫ t

0

∫

X×R+

ϕs(x)Γ
n(ds, dx, da) =

∫ t

0
〈X̄n

s , ϕs〉ds. (3.35)

The sequence (X̄n)n∈N∗ is uniformly tight by Proposition 3.2, as well as (Γn)n∈N∗ , by Lemma 3.6
(ii). Using Prohorov’s theorem, we thus deduce that (Γn(ds, dx, da), X̄n

s (dx)ds)n is relatively
compact and there exists a subsequence that converges in distribution to a limiting value, say
(Γ(ds, dx, da), X̄s(dx)ds). Taking (3.35) to the limit, we obtain that X̄s(dx)ds is necessarily
the marginal measure of Γ(ds, dx, da) on [0, T ] × X up to a null-measure set. We deduce from
this (e.g. Lemma 1.4 of Kurtz [22]) that there exists a (random) probability-valued process
(γs,x(da), s ∈ [0, T ], x ∈ X ) that is predictable in (ω, s) and such that for all bounded measurable
function ϕ(s, x, a) on [0, T ] ×X × R+,

∫ t

0

∫

X×R+

ϕ(s, x, a)Γ(ds, dx, da) =

∫ t

0

∫

X

∫

R+

ϕ(s, x, a)γs,x(da)X̄s(dx)ds. (3.36)

We now want to characterize the limiting value Γ(ds, dx, da) = γs,x(da)X̄s(dx)ds. Applying

(2.12) for a test function ϕ(x, a) ∈ C0,1
b (X × R+,R) and dividing by n gives that:

Mn,ϕ
t

n
=

〈Xn
t , ϕ〉 − 〈Xn

0 , ϕ〉
n

−
∫ t

0

∫

X×R+

[
∂aϕ(x, a)

+
(
r(x, a) +

b(x, a)

n

)∫

Rd

ϕ(x+ h, 0)Kn(x, a, dh)

−
(
r(x, a) +

d(x, a) +Xn
s U(x, a)

n

)
ϕ(x, a)

]
Γn(ds, dx, da) (3.37)
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is a martingale. For each t, the process

M̃n,ϕ
t :=

∫ t

0

∫

X×R+

[
∂aϕ(x, a) + r(x, a)

(
ϕ(x, 0) − ϕ(x, a)

)]
Γn(ds, dx, da) (3.38)

converges in distribution to

M̃ϕ
t =

∫ t

0

∫

X×R+

[
∂aϕ(x, a) + r(x, a)

(
ϕ(x, 0) − ϕ(x, a)

)]
γs,x(da)X̄s(dx)ds, (3.39)

since the integrand in (3.38) is continuous and bounded. Thanks to the moments estimates of
Proposition 2.6,

lim
n→+∞

E

(∣∣∣M
n,ϕ
t

n
− M̃n,ϕ

t

∣∣∣
)
= 0.

This, together with the uniform integrability of (Mn,ϕ/n)n∈N∗ , provides that the process (M̃ϕ
t )t

defined in (3.39) is a martingale. As it is also a continuous and finite variation process, it must
hence be almost surely zero. Since this holds for every t ∈ R+, we have proved that a.s., dt-a.e.

∫

X×R+

[
∂aϕ(x, a) + r(x, a)

(
ϕ(x, 0) − ϕ(x, a)

)]
γt,x(da)X̄t(dx) = 0. (3.40)

Choosing ϕ(x, a) = φℓ(x)ψk(a) with (φℓ)ℓ∈N and (ψk)k∈N dense families in Cc(X ,R) and C1
c (R+,R),

respectively, we obtain from (3.40) that, for all ℓ, k ∈ N,

∫

X
φℓ(x)Hk(t, x)X̄t(dx) = 0

where Hk(t, x) =
∫
R+

[
∂aψk(a) + r(x, a)

(
ψk(0) − ψk(a)

)]
γt,x(da). Almost surely, the function

Hk(t, x) is bounded and is thus dt-a.e. X̄t(dx)-integrable. We obtain that for all k ∈ N, a.s.,
dt-a.e., X̄t(dx)-a.e.,

∫

R+

[
∂aψk(a) + r(x, a)

(
ψk(0) − ψk(a)

)]
γt,x(da) = 0. (3.41)

By Lemma 3.7 and Remark 3.9, we deduce that a.s., dt-a.e., and X̄t(dx)-a.e., γt,x(da) =
m̂(x, a)da and as a consequence, any limiting value of (Xn

t )n∈N∗ is of the form X̄t(dx) ⊗
m̂(x, a)da. �

3.2.2 Characterization of the limiting values

In the previous sections, we have proved that the sequence (X̄n)n∈N∗ is tight and that for a given
limiting value X̄ , the associated subsequence (Γn(dt, dx, da) = Xn

t (dx, da) dt)n∈N∗ converges in
(MF ([0, T ] × X × R+), w) to X̄t(dx)m̂(x, da) dt. Now, we are ready to prove that:

Lemma 3.10. The limiting values X̄ of the sequence (X̄n)n∈N∗ are solution of the martingale
problem (3.3)-(3.4).

Proof. Let 0 < s1 ≤ . . . sk < s < t, and let us introduce for Y ∈ D(R+,MF (X )):

Ψs,t(Y ) = φ1(Ys1) . . . φk(Ysk)
{
〈Yt, f〉 − 〈Ys, f〉 −

∫ t

s
du

∫

X
Yu(dx)

[

(̂p r)(x)Af(x) +
(
b̂(x)− d̂(x)− YsÛ(x)

)
f(x)

]}
, (3.42)
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where φ1, . . . , φk are bounded continuous functions on MF (X ) and f ∈ D(A). Our purpose is
to prove that E

(
Ψs,t(X̄)

)
= 0 for any limiting value X̄ of (X̄n)n∈N∗ .

Let X̄ be a limiting value of (X̄n)n∈N∗ and let (X̄un)n∈N∗ be a subsequence converging to X̄.
On the one hand, thanks to Proposition 3.4 and (2.11):

E
(
Ψs,t(X̄)

)
= lim

n→+∞
E

(
φ1(X̄

un
s1 ) . . . φk(X̄

un
sk

)
{
〈X̄un

t , f〉 − 〈X̄un
s , f〉 −

∫ t

s
du

∫

X×R+

Xun
u (dx, da)

[

p(x, a) r(x, a)Af(x) +
(
b(x, a)− d(x, a) −

∫

X×R+

U((x, a), (y, α))Xun
u (dy, dα)

)
f(x)

]})
.

(3.43)

On the other hand, the term under the expectation in the r.h.s. of (3.43) equals:

φ1(X
un
s1 ) . . . φk(X

un
sk

)
{
Mun,f

t −Mun,f
s +Aun +Bun

}
, (3.44)

where Mn,f has been defined in (3.5) and where:

An =

∫ t

s
du

∫

X×R+

Xn
u (dx, da) r(x, a)

[
n

∫

X

(
f(x+ h)− f(x)

)
Kn(x, a, dh) − p(x, a)Af(x)

]

=

∫ t

s
du

∫

X×R+

Xn
u (dx, da) r(x, a) p(x, a)

[
n

∫

X

(
f(x+ h)− f(x)

)
πn(x, dh) −Af(x)

]

Bn =

∫ t

s
du

∫

X×R+

Xn
u (dx, da) b(x, a)

[ ∫

Rd

f(x+ h)Kn(x, a, dh) − f(x)
]

Firstly, using (2.11) and the fact that the process Mn,f is a martingale we obtain that:

E
(
φ1(X

un
s1 ) . . . φk(X

un
sk

)
[
Mun,f

t −Mun,f
s

])
= 0. (3.45)

Secondly, from Assumption 2.3, |
∫
Rd f(x + h)Kn(x, a, dh) − f(x)| = o(1/n) and using (2.11)

again provides:
lim

n→+∞
E
(
φ1(X

un
s1 ) . . . φk(X

un
sk

)
[
Aun +Bun

])
= 0. (3.46)

From (3.43), (3.44), (3.45) and (3.46), we deduce that E
(
Ψs,t(X̄)

)
= 0 and hence (Mf

t )t∈R+

defined in (3.3) is a martingale. From this, using Itô’s formula with localization arguments and
Proposition 2.6 (i), we obtain that the following process is a martingale:

〈X̄t, f〉2 − 〈X̄0, f〉2 −
∫ t

0
2〈X̄s, f〉

∫

X

[
(̂pr)(x)Af(x) +

(
b̂(x)

− d̂(x)− X̄sU(x)
)
f(x)

]
X̄s(dx) ds− 〈Mf 〉t (3.47)

is a martingale. Moreover, using the results of Proposition 2.6, we obtain that the following
process is a martingale:

〈X̄n
t , f〉2 − 〈X̄n

0 , f〉2

−
∫ t

0

[
2〈X̄n

s , f〉
∫

X×R+

(
nr(x, a)

∫

Rd

(
f(x+ h)− f(x)

)
Kn(x, a, dh)

+ b(x, a)

∫

Rd

f(x+ h)Kn(x, a, dh) −
(
d(x, a) +Xn

s U(x, a)
)
f(x)

)
Xn

s (dx, da)
]
ds

−
∫ t

0

∫

X×R+

[
r(x, a)

( ∫

Rd

f2(x+ h)Kn(x, a, dh) + f2(x)
)

+
b(x, a)

n

∫

Rd

f2(x+ h)Kn(x, a, dh) +
d(x, a) +Xn

s U(x, a)

n
f2(x)

]
Xn

s (dx, da) ds.
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By using arguments similar as those in the beginning of the proof, we deduce that

〈X̄t, f〉2 − 〈X̄0, f〉2 −
∫ t

0
2〈X̄s, f〉

∫

X

[
(̂pr)Af(x)

+
(
b̂(x)− d(x)− X̄sU(x)

)
f(x)

]
X̄s(dx)ds −

∫ t

0

∫

X
2r̂(x)f2(x)X̄s(dx) ds (3.48)

is a martingale. Comparing (3.47) and (3.48) yields the bracket of the martingale Mf . This
ends the proof. �

3.2.3 Uniqueness of the martingale problem

We have shown that the limiting values of the uniformly tight sequence (X̄n)n∈N∗ satisfy the
martingale problem (3.3)-(3.4). To conclude the proof of Theorem 3.1, it remains to prove the
uniqueness of the solution of this martingale problem.

Proposition 3.11. There is a unique solution to the martingale problem of Theorem 3.1.

Proof. We start with getting rid of the non-linearity by using Girsanov’s formula (see Dawson
[8] Theorem 7.2.2). There exists a probability measure Q on the path space such that for all
f ∈ D(A):

M̃f
t =Mf

t +

∫ t

0

∫

Rd

(
b̂(x)− d̂(x)− X̄sU(x)

)
f(x)X̄s(dx) ds

=〈X̄t, f〉 − 〈X̄0, f〉 −
∫ t

0

∫

Rd

(̂p r)(x)Af(x)X̄s(dx) ds (3.49)

is a square integrable martingale with bracket (3.4).

The uniqueness of the martingale problem (3.49)-(3.4) is proved by Roelly and Rouault [30]. It
is based on the branching property of X̄ under Q which allows us to characterize the Laplace
functional Ltf of Xt by its cumulant Utf :

Lt(f) = E
(
e〈X̄,f〉

)
= E

(
e〈X̄0,Utf〉

)
. (3.50)

The latter is the unique positive solution of the following PDE:

∂u

∂t
(t, x) = Au(t, x) − r̂(x)u2(t, x), u(0, x) = f(x), (3.51)

(see e.g. Pazy [27, Th. 1.4 and 1.5 p.185 and 187]). �

The proof of Theorem 3.1 is now complete.

4 Examples

Let us develop and compare two examples, which only differ by the function r(x, a).
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4.1 Logistic physical-age and size-structured population

In Méléard and Tran [25], the following example for a population structured by age a ∈ R+ and
size x ∈ X = [0, x0] is considered:

b(x, a) = x(x0 − x)e−a1l[0,x0](x) for x0 > 0,

d(x, a) = d0, U((x, a), (y, α)) = η(x0 − x), (4.1)

with x0 = 4, d0 = 1/4 and η = 1.7. Because reproduction needs energy, and since this energy
depends on the size of the created offspring, very small or big individuals are disadvantaged.
Individuals of intermediate size x = 2 have the highest birth rate. The competition term
in contrast favors bigger individuals. Hence there is a trade-off between competitiveness and
reproduction. The decreasing exponential in age describes a senescence phenomenon: older
individuals reproduce less than their young competitors. In [25], partial differential equation
limits, Trait substitution sequence and Canonical equations are considered. Here we consider
the superprocess approximation described in the above sections, with r(x, a) = 1 and πn(x, dh)

a centered Gaussian kernel with variance σ2

n conditioned on [0, x0], as in Example 2.5.

Computation gives m̂(x, a) = e−a so that Xt(dx, da) = X̄t(dx) ⊗ e−a da becomes in this
particular case a product measure. As soon as the population survives, the age distribution
”stabilizes” around an exponential distribution with parameter 1, as seen on the simulations of
Figure 1. With the age distribution m̂(x, a) = e−a, we get

b̂(x) = x(x0 − x)

∫

R+

e−2ada =
x(x0 − x)

2
; d̂(x) = d0 Û(x, y) = η(x0 − x). (4.2)

The martingale problem (3.3) becomes here:

Mf
t = 〈X̄t, f〉 − 〈X̄0, f〉 −

∫ t

0

∫

X

(
p
σ2

2
∆f(x)

+
[x(x0 − x)

2
−
(
d0 + η(x0 − x)〈X̄s, 1〉

)]
f(x)

)
X̄s(dx) ds, (4.3)

〈Mf 〉t =
∫ t

0

∫

X
2f2(x)X̄s(dx) ds.

In Figure 1, two sets of simulations are presented, depending on two different mutation variances
σ2. As expected, when σ increases, the traits vary more rapidly, and the irregularity of the
trait support appears more strikingly. On both simulations of Fig. 1, extinction happens in a
fast time. Almost-sure extinction is due to the logistic interaction, as proved in the following
proposition.

Proposition 4.1. There is almost-sure extinction of the superprocess (4.3).

Proof. The mass of the super-process satisfies the following equation:

〈X̄t, 1〉 = 〈X̄0, 1〉 +
∫ t

0

∫

[0,x0]
A(x, 〈Xs, 1〉)X̄s(dx) ds +M1

t

〈M1〉t =
∫ t

0
2〈X̄s, 1〉 ds,

where A(x,Z) =
x(x0 − x)

2
−
(
d0 + η(x0 − x)Z

)
. (4.4)

This equation is not closed for the mass process, since the drift depends on the trait distribution.
Our purpose is to upper-boundA(x,Z) so that 〈X̄., 1〉 can be stochastically dominated by a Feller
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Figure 1: Simulation of the individual-based process Xn, with n = 1000 and discretization step
∆t = 0.005. The system is started with 1000 particles of trait x = 1.5. First line: σ = 1. Second
line: σ = 0.8. (a): Support of the process X̄n (with time in abscissa and trait in ordinate). (b):
Evolution of the population size. (c): Age distribution for t = 0.5. It can be checked that the
age distribution converges to an exponential of parameter 1 (plain line).

diffusion with negative drift, that goes extinct almost surely.
In the case where x > x0 − (2d0x0

− ζ) with ζ ∈ (0, 2d0x0
∧ 1) and since x ∈ (0, x0), one gets

A(x,Z) =− d0 + (x0 − x)
(x
2
− ηZ

)

≤− d0 +
(2d0
x0

− ζ
)
× x0

2
= −ζx0

2
. (4.5)

In the case where x < x0 − (2d0x0
− ζ), then 0 < 2d0

x0
− ζ ≤ x0 − x ≤ x0 and depending on the sign
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of x/2− ηZ:

A(x,Z) ≤− d0 +max
(
x0
(x0
2

− ηZ
)
;
(2d0
x0

− ζ
)(x0

2
− ηZ

))

≤x
2
0

2
− d0 − η

(2d0
x0

− ζ
)
Z. (4.6)

Since the upper bounds in (4.5) and (4.6) are equal when the mass Z equals m0 defined by

m0 =
x0(x0+ζ)

2 − d0

η
(
2d0
x0

− ζ
) , (4.7)

we thus get in any case that

A(x,Z) ≤ −ζx0
2

1lZ≥m0 +
(x20
2

− d0

)
1lZ≤m0 . (4.8)

Hence, the process 〈X̄., 1〉 can be stochastically dominated by the following positive process:

Zt = 〈X̄0, 1〉+
∫ t

0

(
− ζx0

2
Zs +m0

(x0(x0 + ζ)

2
− d0

)
1lZs≤m0

)
ds+

∫ t

0

√
2ZsdBs (4.9)

where B is a standard Brownian motion.
We can adapt the results of Meyn and Tweedie [26] to prove almost sure extinction. For
u ∈ R+, let us denote by τu = inf{t ≥ 0, Zt ≤ u} and let z = 〈X̄0, 1〉 > 0. Either z ≤ m0

and then τm0 = 0, or z > m0. In the latter case, let us consider M > z > m0 and let
ρM = inf{t ≥ 0, Zt ≥M}. We have

Ez

(
Zτm0∧ρM − z +

ζx0
2

∫ τm0∧ρM

0
Zs ds+

∫ τm0∧ρM

0

√
2ZsdBs

)
= 0. (4.10)

By uniform integrability of the fourth term and optional stopping theorem, we deduce that

m0 Ez

(
τm0 ∧ ρM

)
≤ Ez

(∫ τm0∧ρM

0
Zs ds

)
≤ 2z

ζx0
. (4.11)

It can easily be proved that for all T > 0, E(supt≤T (Zt)
2) < ∞, implying that ρM tends to

infinity with M . Thus, (4.11) provides that for all z > 0, Pz(τm0 < +∞) = 1. By Girsanov’s
theorem, there exists a probability measure under which the process Z is a sub-critical Feller
diffusion. It turns out that Pm0(τ0 ∧ ρM < +∞) = 1. Standard computation using the strong
Markov property yields Pz(τ0 < +∞) = 1. �

4.2 Logistic biological-age and size-structured population

In this section, the trait x ∈ [x1, x2] ⊂ (0, x0) (with x1, x2 > 0) is linked to the rate of metabolism,
which measures the energy expended by individuals, and is often an increasing function of the
body size. Ageing may result from toxic by-products of the metabolism. This leads us to
introduce a biological age xa, where a is the physical age and where x can be interpreted
as the ageing velocity equals. In this example, we consider r(x, a) = xa so that biologically
older individuals give birth and die with higher rate, the other parameters being chosen as in
Subsection 4.1. For a review on body size, energy metabolism and ageing, we refer the reader
to [32]. In our example:

m̂(x, a) =
2
√
xe−

xa2

2

√
2π

1l[0,+∞)(a). (4.12)
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We recognize the Gaussian distribution with variance 1/x conditioned on being positive. Then:

b̂(x) =
2x3/2(x0 − x)√

2π

∫ +∞

0
e−

x(a2+2a/x)
2 da =

2x(x0 − x)e
1
2x√

2π

∫ +∞

1/
√
x
e−

α2

2 dα

=2x(x0 − x)e
1
2xΦ

(
− 1√

x

)
, (4.13)

r̂(x) =
2x3/2√

2π

∫ +∞

0
ae−

xa2

2 da =

√
2x

π

∫ +∞

0
αe−

α2

2 dα =

√
2x

π
, (4.14)

where Φ is the cumulative distribution function of the standard Gaussian distribution. The
functions d̂(x) and Û(x, y) are unchanged and given by (4.2). The martingale problem (3.3)
becomes here:

Mf
t = 〈X̄t, f〉 − 〈X̄0, f〉 −

∫ t

0

∫

X

(
p

√
x

2π
σ2∆ϕ(x) +

[
2x(x0 − x)e

1
2xΦ

(
− 1√

x

)

−
(
d0 + η(x0 − x)〈X̄s, 1〉

)]
f(x)

)
X̄s(dx) ds (4.15)

〈Mf 〉t =
∫ t

0

∫

X
2

√
2x

π
f2(x)X̄s(dx) ds.

In this example, there is a higher senescence for individuals with trait x > 1, compared with the
example of Section 4.1. The new choice of r(x, a) influences the age distribution: lifelengths are
shortened. This can be seen on the smaller support of the age distribution (compare Fig. 2-(c)
with Fig. 1-(c)).
However, the populations are more persistent in the example of this section, although it can
be proved similarly to Prop. 4.1 that there is almost sure extinction. Indeed, contrary to the
populations in Example 1 which are extinct at t = 2, the population of Example 2 still survives
at t = 20. One reason is that the growth rate in the finite variation term of (4.15) is bigger than
the one in Example 1. Indeed, for many values of x, the factor 2 exp(1/2x)Φ(−1/

√
x) in the

birth rate b̂(x) is bigger than the factor 1/2. For x = 1.5, 2 exp(1/2x)Φ(−1/
√
x) = 0.58 > 0.5

and for x = 3, 2 exp(1/2x)Φ(−1/
√
x) = 0.67 > 0.5.

When comparing Fig. 1-(b) and Fig. 2-(b), we observe more fluctuations of the population
size in Example 2. The bracket of the martingale in (4.15) presents a multiplicative x term,
compared to (4.3). As soon as x > π

2 , this explains the increased variance. Notice however that
this variance tends to zero when the population size tends to zero, which also explains why there
is no decrease in the population persistence.
Finally, the multiplicative term p

√
x/2πσ2 in front of the diffusion term ∆ϕ(x) explains the

large variability of the trait support, which is observed in Fig. 2-(a). When the diffusion coef-
ficient σ is small (second line of Fig. 2), the traits evolve towards a value between x = 2 and
x = 4 where the trade-off between reproduction and competition is optimized.
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