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We consider the convex optimization problem P : minx{f (x) :

x ∈ K} where f is convex continuously differentiable, and K ⊂ R n is a compact convex set with representation {x ∈ R n : g j (x) ≥ 0, j = 1, . . . , m} for some continuously differentiable functions (g j ). We discuss the case where the g j 's are not all concave (in contrast with convex programming where they all are). In particular, even if the g j are not concave, we consider the log-barrier function φµ with parameter µ, associated with P, usually defined for concave functions (g j ). We then show that any limit point of any sequence (xµ) ⊂ K of stationary points of φµ, µ → 0, is a Karush-Kuhn-Tucker point of problem P and a global minimizer of f on K.

Introduction

for some convex and continuously differentiable function f : R n → R, and where the feasible set K ⊂ R n is defined by:

(1.2) K := {x ∈ R n : g j (x) ≥ 0, j = 1, . . . , m}, for some continuously differentiable functions g j : R n → R. We say that (g j ), j = 1, . . . , m, is a representation of K. When K is convex and the (g j ) are concave we say that K has a convex representation.

In the literature, when K is convex P is referred to as a convex optimization problem and in particular, every local minimum of f is a global minimum. However, if on the one hand convex optimization usually refers to minimizing a convex function on a convex set K without precising its representation (g j ) (see e.g. Ben-Tal and Nemirovsky [1, Definition 5.1.1] or Bertsekas et al. [START_REF] Bertsekas | Convex Analysis and Optimization[END_REF]Chapter 2]), on the other hand convex programming usually refers to the situation where the representation of K is also convex, i.e. when all the g j 's are concave. See for instance Ben-Tal and Nemirovski [1, p. 335], Berkovitz [2,p. 179], Boyd and Vandenberghe [4, p. 7], Bertsekas et al. [3, §3.5.5], Nesterov and Nemirovski [13, p. 217-218], and Hiriart-Urruty [START_REF] Hiriart-Urruty | Optimisation et Analyse Convexe[END_REF]. Convex programming is particularly interesting because under Slater's condition 1 , the standard Karush-Kuhn-Tucker (KKT) optimality conditions are not only necessary but also sufficient and in addition, the concavity property of the g j 's is used to prove convergence (and rates of convergence) of specialized algorithms.

To the best of our knowledge, little is said in the literature for the specific case where K is convex but not necessarily its representation, that is, when the functions (g j ) are not necessarily concave. It looks like outside the convex programming framework, all problems are treated the same. This paper is a companion paper to [START_REF] Lasserre | On representations of the feasible set in convex optimization[END_REF] where we proved that if the nondegeneracy condition (1.3) ∀j = 1, . . . , m : ∇g j (x) = 0 ∀x ∈ K with g j (x) = 0 holds, then x ∈ K is a global minimizer of f on K if and only if (x, λ) is a KKT point for some λ ∈ R m + . This indicates that for convex optimization problems (1.1), and from the point of view of "first-order optimality conditions", what really matters is the geometry of K rather than its representation. Indeed, for any representation (g j ) of K that satisfies the nondegeneracy condition (1.3), there is a one-to-one correspondence between global minimizers and KKT points.

But what about from a computational viewpoint? Of course, not all representations of K are equivalent since the ability (as well as the efficiency) of algorithms to obtain a KKT point of P will strongly depend on the representation (g j ) of K which is used. For example, algorithms that implement Lagrangian duality would require the (g j ) to be concave, those based on second-order methods would require all functions f and (g j ) to be twice continuous differentiable, self-concordance of a barrier function associated with a representation of K may or may not hold, etc.

When K is convex but not its representation (g j ), several situations may occur. In particular, the level set {x : g j (x) ≥ a j } may be convex for a j = 0 but not for some other values of a j > 0, in which case the g j 's are not even quasiconcave on K, i.e., one may say that K is convex by accident for the value a = 0 of the parameter a ≥ 0. One might think that in this situation, algorithms that generate a sequence of feasible points in the interior of K could run into problems to find a local minimum of f . If the -g j 's are all quasiconvex on K, we say that we are in the generic convex case because not only K but also all sets K a := {x : g j (x) ≥ a j , j = 1, . . . , m} are convex. However, quasiconvex functions do not share some nice properties of the convex functions. In particular, (a) ∇g j (x) = 0 does not imply that g j reaches a local minimum at x, (b) a local minimum is not necessarily global and (c), the sum of quasiconvex functions is not quasiconvex in general; see e.g. Crouzeix et al. [5, p. 65]. And so even in this case, for some minimization algorithms, convergence to a minimum of f on K might be problematic.

So an interesting issue is to determine whether there is an algorithm which converges to a global minimizer of a convex function f on K, no matter if the representation of K is convex or not. Of course, in view of [12, Theorem 2.3], a sufficient condition is that this algorithm provides a sequence (or subsequence) of points

(x k , λ k ) ∈ R n × R m
+ converging to a KKT point of P.

With P and a parameter µ > 0, we associate the log-barrier function

φ µ : K → R ∪ {+∞} defined by (1.4) x → φ µ (x) :=      f (x) -µ m j=1 ln g j (x), if g j (x) > 0, ∀j = 1, . . . , m +∞, otherwise.
By a stationary point x ∈ K of φ µ , we mean a point x ∈ K with g j (x) = 0 for all j = 1, . . . , m, and such that ∇φ µ (x) = 0. Notice that in general and in contrast with the present paper, φ µ (or more precisely ψ µ := µφ µ ) is usually defined for convex problems P where all the g j 's are concave; see e.g. Den Hertog [START_REF] Hertog | Interior Point Approach to Linear, Quadratic and Convex Programming[END_REF] and for more details on the barrier functions and their properties, the interested reader is referred to Güler [START_REF] Güler | Barrier functions in interior point methods[END_REF] and Güler and Tuncel [START_REF] Güler | Characterization of the barrier parameter of homogeneous convex cones[END_REF].

Contribution. The purpose of this paper is to show that no matter which representation (g j ) of a convex set K (assumed to be compact) is used (provided it satisfies the nondegeneracy condition (1.3)), any sequence of stationary points (x µ ) of φ µ , µ → 0, has the nice property that each of its accumulation points is a KKT point of P and hence, a global minimizer of f on K. Hence, to obtain the global minimum of a convex function on K it is enough to minimize the logbarrier function for nonincreasing values of the parameter, for any representation of K that satisfies the nondegeneracy condition (1.3). Again and of course, the efficiency of the method will crucially depend on the representation of K which is used. For instance, in general φ µ will not have the self-concordance property, crucial for efficiency.

Observe that at first glance this result is a little surprising because as we already mentioned, there are examples of sets K a := {x : g j (x) ≥ a j , j = 1, . . . , m} which are non convex for every 0 = a ≥ 0 but K := K 0 is convex (by accident!) and (1.3) holds. So inside K the level sets of the g j 's are not convex any more. Still, and even though the stationary points x µ of the associated log-barrier φ µ are inside K, all converging subsequences of a sequence (x µ ), µ → 0, will converge to some global minimizer x * of f on K. In particular, if the global minimizer x * ∈ K is unique then the whole sequence (x µ ) will converge. Notice that this happens even if the g j 's are not log-concave, in which case φ µ may not be convex for all µ (e.g. if f is linear). So what seems to really matter is the fact that as µ decreases, the convex function f becomes more and more important in φ µ , and also that the functions g j which matter in a KKT point (x * , λ) are those for which g j (x * ) = 0 (and so with convex associated level set {x : g j (x) ≥ 0}).

Main result

Consider the optimization problem (1.1) in the following context. Assumption 1. The set K in (1.2) is convex and Slater's assumption holds. Morover, the nondegeneracy condition (2.1)

∇g j (x) = 0 ∀ x ∈ K such that g j (x) = 0,
holds for every j = 1, . . . , m.

Observe that when the g j 's are concave then the nondegeneracy condition (2.1) holds automatically. Recall that (x * , λ) ∈ K×R m is a Karush-Kuhn-Tucker (KKT) point of P if

• x ∈ K and λ ≥ 0 • λ j g j (x * ) = 0 for every j = 1, . . . , m • ∇f (x * ) -m
j=1 λ j ∇g j (x * ) = 0. We recall the following result from [START_REF] Lasserre | On representations of the feasible set in convex optimization[END_REF]: Theorem 1 ( [START_REF] Lasserre | On representations of the feasible set in convex optimization[END_REF]). Let K be as in (1.2) and let Assumption 1 hold. Then x is a global minimizer of f on K if and only if there is some λ ∈ R m + such that (x, λ) is a KKT point of P.

The next result is concerned with the log-barrier φ µ in (1.4). Lemma 2. Let K in (1.2) be convex and compact and assume that Slater's condition holds. Then for every µ > 0 the log-barrier function φ µ in (1.4) has at least one stationary point on K (which is a global minimizer of φ µ on K).

Proof. Let f * be the minimum of f on K and let µ > 0 be fixed, arbitrary. We first show that φ µ (x k ) → ∞ as x k → ∂K (where (x k ) ⊂ K). Indeed, pick up an index i such that

g i (x k ) → 0 as k → ∞. Then φ µ (x k ) ≥ f * -µ ln g i (x k ) -(m -1) ln C
(where all the g j 's are bounded above by C). So φ µ is coercive and therefore must have a (global) minimizer x µ ∈ K with g j (x µ ) > 0 for every j = 1, . . . , m; and so ∇φ µ (x µ ) = 0.

Notice that φ µ may have several stationary points in K. We now state our main result.

Theorem 3. Let K in (1.2) be compact and let Assumption 1 hold true. For every fixed µ > 0, choose x µ ∈ K to be an arbitrary stationary point of φ µ in K.

Then every accumulation point x * ∈ K of such a sequence (x µ ) ⊂ K with µ → 0, is a global minimizer of f on K, and if ∇f (x * ) = 0, x * is a KKT point of P.

Proof. Let x µ ∈ K be a stationary point of φ µ , which by Lemma 2 is guaranteed to exist. So

(2.2) ∇φ µ (x µ ) = ∇f (x µ ) - m j=1 µ g j (x µ ) ∇g j (x µ ) = 0.
As µ → 0 and K is compact, there exists x * ∈ K and a subsequence (µ ℓ ) ⊂ R + such that x µ ℓ → x * as ℓ → ∞. We need consider two cases: Case when g j (x * ) > 0, ∀j = 1, . . . , m. Then as f and g j are continuously differentiable, j = 1, . . . , m, taking limit in (2.2) for the subsequence (µ ℓ ), yields ∇f (x * ) = 0 which, as f is convex, implies that x * is a global minimizer of f on R n , hence on K.

Case when g j (x * ) = 0 for some j ∈ {1, . . . , m}. Let J := {j : g j (x * ) = 0} = ∅. We next show that for every j ∈ J, the sequence of ratios (µ/g j (x µ ℓ ), ℓ = 1, . . ., is bounded. Indeed let j ∈ J be fixed arbitrary. As Slater's condition holds, let x 0 ∈ K be such that g j (x 0 ) > 0 for all j = 1, . . . , m; then ∇g j (x * ), x 0x * > 0. Indeed, as K is convex, ∇g j (x * ), x 0 + vx * ≥ 0 for all v in some small enough ball B(0, ρ) around the origin. So if ∇g j (x * ), x 0x * = 0 then ∇g j (x * ), v ≥ 0 for all v ∈ B(0, ρ), in contradiction with ∇g j (x * ) = 0. Next,

∇f (x µ ℓ ), x 0 -x * = m k ∈J µ ℓ g k (x µ ℓ ) ∇g k (x µ ℓ ), x 0 -x * A ℓ (2.3) + m k∈J µ ℓ g k (x µ ℓ ) ∇g k (x µ ℓ ), x 0 -x * B ℓ
Observe that in (2.3):

• Every term of the sum B ℓ is nonnegative for sufficiently large ℓ, say ℓ ≥ ℓ 0 , because x µ ℓ → x * and ∇g k (x * ), x 0x * > 0 for all k ∈ J.

• A ℓ → 0 as ℓ → ∞ because µ ℓ → 0 and g k (x µ ℓ ) → g k (x * ) > 0 for all k ∈ J.
Therefore |A ℓ | ≤ A for all sufficiently large ℓ, say ℓ ≥ ℓ 1 , and so for every j ∈ J:

∇f (x µ ℓ ), x 0 -x * + A ≥ µ ℓ g j (x µ ℓ ) ∇g j (x µ ℓ ), x 0 -x * , ℓ ≥ ℓ 2 := max[ℓ 0 , ℓ 1 ],
which shows that for every j ∈ J, the nonnegative sequence (µ ℓ /g j (x µ ℓ )), ℓ ≥ ℓ 2 , is bounded from above. So take a subsequence (still denoted (µ ℓ ), ℓ ∈ N, for convenience) such that the ratios µ ℓ /g j (x µ ℓ ) converge for all j ∈ J, that is,

lim ℓ→∞ µ ℓ g j (x µ ℓ ) = λ j ≥ 0, ∀ j ∈ J,
and let λ j := 0 for every j ∈ J, so that λ j g j (x * ) = 0 for every j = 1, . . . , m. Taking limit in (2.2) as ℓ → ∞, yields:

(2.4) ∇f (x * ) = m j=1 λ j ∇g j (x * ),
which shows that (x * , λ) ∈ K×R m + is a KKT point for P. Finally, invoking Theorem 1, x * is also a global minimizer of P.

2.1. Discussion. The log-barrier function φ µ or its exponential variant f +µ g -1 j has become popular since the pioneer work of Fiacco and McCormick [START_REF] Fiacco | The sequential unconstrained minimization technique for nonlinear programming, a primal-dual method[END_REF][START_REF] Fiacco | Computational algorithm for the sequential unconstrained minimization technique for nonlinear programming[END_REF], where it is assumed that f and the g j 's are twice continuously differentiable, the g j 's are concave 2 , Slater's condition holds, the set K ∩ {x : f (x) ≤ k} is bounded for every finite k, and finally, the barrier function is strictly convex for every value of the parameter µ > 0. Under such conditions, the barrier function f + µ g -1 j has a unique minimizer x µ for every µ > 0 and the sequence (x µ , (µ/g j (x µ ) 2 ) ⊂ R n+m converges to a Wolfe-dual feasible point.

In contrast, Theorem 3 states that without assuming concavity of the g j 's, one may obtain a global minimizer of f on K, by looking at any limit point of any sequence of stationary points (x µ ), µ → 0, of the log-barrier function φ µ associated with a representation (g j ) of K, provided that the representation satisfies the nondegeneracy condition (1.3). To us, this comes as a little surprise as the stationary points (x µ ) are all inside K, and there are examples of convex sets K with a representation (g j ) satisfying (1.3) and such that the level sets K a = {x : g j (x) ≥ a j } with a j > 0, are not convex! (See Example 1.) Even if f is convex, the log-barrier function φ µ need not be convex; for instance if f is linear, ∇ 2 φ µ = -µ j ∇ 2 ln g j , and so if the g j 's are not log-concave then φ µ may not be convex on K for every value of the parameter µ > 0.

Example 1. Let n = 2 and K a := {x ∈ R 2 : g(x) ≥ a} with x → g(x) := 4 -((x 1 + 1) 2 + x 2 2 )((x 1 -1) 2 + x 2 
2 ), with a ∈ R. The set K a is convex only for those values of a with a ≤ 0; see in Figure 1. It is even disconnected for a = 4.

2 In fact as noted in [START_REF] Fiacco | The sequential unconstrained minimization technique for nonlinear programming, a primal-dual method[END_REF], concavity of the g j 's is merely a sufficient condition for the barrier function to be convex. We might want to consider a generic situation, that is, when the set

K a := {x ∈ R n : g j (x) ≥ a j , j = 1, . . . , m},
is also convex for every positive vector 0 ≤ a = (a j ) ∈ R m . This in turn would imply that the g j are quasiconcave 3 on K. In particular, if the nondegeneracy condition (1.3) holds on K and the g j 's are twice differentiable, then at most one eigenvalue of the Hessian ∇ 2 g j (and hence ∇ 2 ln g j ) is possibly positive (i.e., ln g j is almost concave). This is because for every x ∈ K with g j (x) = 0, one has v, ∇ 2 g j (x)v ≤ 0 for all v ∈ ∇g j (x) ⊥ (where ∇g j (x) ⊥ := {v : ∇g j (x), v = 0}). However, even in this situation, the log-barrier function φ µ may not be convex. On the other hand, ln g j is "more" concave than g j on Int K because its Hessian ∇ 2 g j satisfies g 2 j ∇ 2 ln g j = g j ∇ 2 g j -∇g j (∇g j ) T . But still, g j might not be log-concave on Int K, and so φ µ may not be convex at least for values of µ not too small (and for all values of µ if f is linear).

Example 2. Let n = 2 and K := {x : g(x) ≥ 0, x ≥ 0} with x → g(x) = x 1 x 2 -1. The representation of K is not convex but the g j 's are log-concave, and so the log-barrier x → φ µ (x) := f x)µ(ln g(x)ln x 1ln x 2 ) is convex.

Example 3. Let n = 2 and K := {x : g 1 (x) ≥ 0; ax 1 ≥ 0; 0 ≤ x 2 ≤ b} with x → g 1 (x) = x 1 /(ǫ + x 2

2 ) with ǫ > 0. The representation of K is not convex and g 1 is not log-concave. If f is linear and ǫ is small enough, the log-barrier

x → φ µ (x) := f (x)µ(ln x 1 + ln(ax 1 )ln(ǫ + x 2 2 ) + ln x 2 + ln(bx 2 ))

3 Recall that on a convex set O ⊂ R n , a function f : O → R is quasiconvex if the level sets {x : f (x) ≤ r} are convex for every r ∈ R. A function f : O → R is said to be quasiconcave if -f is quasiconvex; see e.g. [START_REF] Crouzeix | A geometrical insight on pseudoconvexity and pseudomonotonicity[END_REF].

is not convex for every value of µ > 0.

  P : f * := min x { f (x) : x ∈ K}.

Figure 1 .

 1 Figure 1. Example 1: Level sets {x : g(x) = a} for a = 2.95, 2.5, 1.5, 0 and -2
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