

Humus Index as an indicator of forest stand and soil properties

Jean-François Ponge, Richard Chevalier

▶ To cite this version:

Jean-François Ponge, Richard Chevalier. Humus Index as an indicator of forest stand and soil properties. Forest Ecology and Management, 2006, 233 (1), pp.165-175. 10.1016/j.foreco.2006.06.022 . hal-00495387

HAL Id: hal-00495387 https://hal.science/hal-00495387v1

Submitted on 25 Jun 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

1	Humus Index as an indicator of forest stand and soil properties
2	
3	Jean-François Ponge ^{*1} , Richard Chevalier ²
4	
5	¹ Muséum National d'Histoire Naturelle, CNRS UMR 5176, 4 avenue du Petit-Château,
6	91800 Brunoy, France
7	
8	² Cemagref, Unité de Recherche "Écosystèmes Forestiers", Domaine des Barres, 45290
9	Nogent-sur-Vernisson, France
10	
11	Abstract
12	
13	The Humus Index, based on the visual assessment of topsoil horizons and a
14	classification of humus forms, is a numerical score which can be used as a correlate of stand
15	and soil properties. In oak stands from the Montargis forest (Loiret, France) we observed a
16	good linear relationship of the Humus Index with most parameters describing stand
17	development (age, basal area, height and diameter at breast height of dominants) and soil
18	type (depth of clay horizon). The relationship with parameters describing nutrient availability
19	(exchangeable bases, base saturation) was similarly good but non-linear. In the studied
20	forest the Humus Index was affected first by stand age and second by soil type. When
21	corrected for age and soil type, data (96 pooled estimates) indicated a slight decrease in the
22	Humus Index (shift towards more active humus forms) in stands converted from old
23	coppices-with-standards when compared with even-aged high forest.
24	

Keywords: Humus forms; Stand development; Management practices; Soil types; Oak
stands; Coppices-with-standards; Even-aged high forests

^{*} Corresponding author. Tel.: +33 1 60479213; fax: +33 1 60465009. *E-mail address:* jean-francois.ponge@wanadoo.fr (J.F. Ponge).

2 **1. Introduction**

3

There is a growing need for synthetic indicators to be used for the wide scale monitoring of terrestrial ecosystems, in particular when threatened by pollution, climate change and human pratices (Moore and DeRuiter, 1993; Lindenmayer et al., 2000; Duelli and Obrist, 2003). This goal can be achieved through field measurements if (i) they can be done by untrained people and (ii) field data are correlated with a lot of ecosystem parameters indicative of woodland well-being.

10

11 Humus forms (Mull, Moder, Mor) indicate the rate at which nutrients are circulating 12 within terrestrial ecosystems (Ovington, 1965; Chapin et al., 1986; Ponge, 2003). They vary 13 according to climate and parent rock (Vitousek et al., 1994; Ponge and Delhaye, 1995; 14 Sadaka and Ponge, 2003), but also to canopy and understory vegetation (Beniamino et al., 15 1991; Muys et al., 1992; Aubert et al., 2004), stand age (Emmer and Sevink, 1994; Sagot et 16 al., 1999; Aubert et al., 2004), management (Aber et al., 1978; Terlinden and André, 1988; 17 Covington, 1981), fertilization (Toutain et al., 1988; Deleporte and Tillier, 1999), irrigation 18 (Vavoulidou-Theodorou and Babel, 1987) and pollution (Coughtrey et al., 1979; Kuperman, 19 1996; Gillet and Ponge, 2002). In turn, humus forms, by their focus position within 20 biogeochemical cycles, influence many ecosystem compartments and processes such as 21 ground flora (Le Tacon and Timbal, 1973; Klinka et al., 1990; Bartoli et al., 2000), 22 regeneration of forest canopy species (Bernier and Ponge, 1994; Bernier, 1996; Ponge et al., 23 1998), forest productivity (Delecour, 1978) and litter quality (Davies et al., 1964; Toutain and 24 Duchaufour, 1970). They are considered, together with ground vegetation, as an indicator of 25 the soil nutrient regime (Wilson et al., 2001) and we expect them to be the best predictor of 26 stability domains within ecosystems (Odum, 1969; Ulrich, 1987; Ponge, 2003). However, the 27 wider use of humus forms as a site factor is limited by subjectivity in the identification of forest floor and topsoil horizons (Federer, 1982) and by the existence of small-scale variation
 (Riha et al., 1986; Carter and Lowe, 1986; Torgersen et al., 1995).

3

The Humus Index has been designed for the transformation of a scale of discrete humus forms in a numerical parameter, which could be manipulated statistically (Ponge et al., 2002; Ponge et al., 2003; Fédoroff et al., 2005). In the abovementioned studies the Humus Index proved to be significantly correlated with some important ecological parameters of forest ecosystems such as topsoil physical and chemical properties and plant and soil animal communities.

10

In forests, stand and soil properties are of paramount importance for the management and choice of target tree species (Carmean, 1975; Miller, 1981; Muys and Lust, 1992) and for the assessment of health and productivity of the ecosystem (Christie and Lines, 1979; Ulrich 1994; Ponge et al., 1997). The present study was intended to correlate the Humus Index with parameters of stand and soil development under varying management regimes of the same canopy species.

17

18 **2. Study sites**

19

20 The Montargis forest (Loiret, France) is a state forest (4090 ha) located in the 21 northern half of France (Fig; 1), in the rainwater basin of river Seine. The general aspect is 22 fairly level, with a slight westward declivity, the altitude varying between 95 and 132 m. The 23 climate is oceanic, with a weak continental influence. The mean annual precipitation, 24 calculated over the last thirty years, is 650 mm, 50% of which falling as rain during the 25 growing season, from early April to late September. The mean temperature, calculated over 26 the same thirty-year period, is 10.9°C, with a minimum monthly mean of 3.7°C in January 27 and a maximum monthly mean of 19.0°C in July. The parent rock is Senonian chalk (late 28 Cretaceous), covered with postglacial (Holocene) deposits of variegated textural properties,

1 sand being dominant in the western part and silt in the eastern part. This is at the origin of a 2 variety of soil types, weakly acidic to acidic, with a depth of 40 to 70 cm, generally well-3 drained year-round or at worst with weak temporary water-logging during Winter. Most 4 variation occurs through changes in the vertical distribution of particle size, in particular the 5 depth at which clay becomes dominant varies to a great extent, ranging from 30 to 80 cm in 6 our data set.

7

8 The Montargis forest exhibits a compact shape, extending around the Paucourt 9 village (Fig. 1), without any change in surface area and tree composition since the 12e 10 century (Garnier, 1965). Coppice-with-standards, with sessile oak [Quercus petraea (Mattus.) 11 Liebl.] standards and hornbeam (Carpinus betulus L.) coppices, was the dominant 12 management type from 1670 on. The cutting period for coppices was first fixed to 70 years 13 then to 25, 40 or 50 years (according to site conditions) from 1783 on. Since 1857, coppices-14 with-standards were partly converted to oak-dominated stands, with some admixture of 15 beech (Fagus sylvatica L.) and hornbeam according to the sites. The conversion was total 16 from 1872 on. Even-aged oak stands were issued from seed from the original mixed stands, 17 oldest ones being 99 years-old, without any agricultural past nor plantation.

18

19 Ninety-six stands were selected, in order to embrace the variety of oak stands 20 growing on medium acidic, well-drained sandy loam with level aspect, with one sampling 21 area in each stand. All soils are luvisols according to FAO classification, varying according to 22 the depth of the argillic horizon. The sampling area was selected in homogeneous vegetation 23 and stand structure, beyond 50 m of stand limit. The choice of a restricted array of site 24 conditions was aimed at testing the influence of stand properties. The sampling design was 25 balanced according to 8 forest types, either even-aged high forest or conversion from 26 previous coppice-with-standards:

27

28

• FG15: even-aged high forest 15 years-old (12 stands)

1 • FG35: even-aged high forest 35 years-old (12 stands) 2 • FG50: even-aged high forest 50 years-old (12 stands) FG90: even-aged high forest 90 years-old (12 stands) 3 • • CS1: coppice-with-standards converted to medium-diameter regular stand (19 4 5 stands) 6 CS2: coppice-with-standards converted to large-diameter regular stand (14 stands) 7 • CS3: coppice-with-standards converted to irregular stand (15 stands) 8 9 3. Methods 10 11 In each sampling area the Humus Index was visually assessed in triplicate at four 12 plots, located at 14 m from the central post in the four main directions. At each plot three 13 replicated estimates of the Humus Index were made at angles of a one-meter side equilateral 14 triangle. The twelve measurements were averaged, giving a composite value for the 15 sampling area, which could smooth out two scales of the local variation not directly related to 16 stand properties (Riha et al., 1986; Ponge et al., 2002). The Humus Index was based on the classification of humus forms by Brêthes et al. (1995), modified by Jabiol et al. (2000): 17 18 Eumull = 1, Mesomull = 2, Oligomull = 3, Dysmull = 4, Hemimoder = 5, Eumoder = 6, 19 Dysmoder = 7.

20

21 At each of the four plots within the same sampling area, a probe was used to 22 measure the depth at which clay enrichment was found for the first time and the depth at 23 which clay was dominant. The four values were averaged for each sampling area. At each of 24 the four plots a soil sample was taken at 15-20 cm depth, then the four samples were pooled 25 then air-dried for laboratory analyses on the fraction less than 2 mm: particle size distribution (clay, silt, sand), pH_{water}, pH_{KCl}, cation exchange capacity, main exchangeable bases 26 27 (extracted at soil pH using cobaltihexamine), and base saturation. Analytical methods 28 followed ISO standards (Anonymous, 1999).

At each sampling area we noted the time elapsed from the last thinning operation (except for clear-cuts), the age of the stand (only for even-aged high forest), we measured the height and diameter at breast height of three dominant trees distant from less than 14 m from the central post, and we estimated the wood standing crop, using production tables by Dagnélie et al. (1999). At each plot we measured the basal area (BA), the percent basal area occupied by beech, the percent basal area occupied by hornbeam. These four values were averaged for each sampling area.

9

10 The statistical treatment of the data involved regression analysis, using the Humus 11 Index as a predicted (dependent) variable and several stand and soil properties as 12 explanatory (independent) variables (Sokal and Rohlf, 1995). The analyses were performed 13 with the StatBox® software. Residuals were tested for normality previous to analysis.

14

15 **4. Results**

16

17 The Humus Index exhibited a significant (P<0.05) to highly significant (P<0.001) 18 correlation with 17 out of 21 stand and soil properties in oak stands of the Montargis forest 19 (Table 1). Other stand and soil parameters did not reach such a high level of indication, as 20 measured by the number of significant coefficients. For instance pH_{water} was significantly 21 correlated with only 4 out of 8 stand measurements (against 7 our of 8 for Humus Index) and 22 with only 8 out of 12 soil measurements (against 10 out of 13 for Humus Index). The best 23 predicted variable was the age of even-aged high forest (r=0.73, P=5.10⁻⁹). Among soil parameters, Humus Index predicted the best base saturation (r=-0.61, P=6.10⁻¹¹). 24

25

The Humus Index increased in value with the age of stands, indicating a shift from Mull to Moder in the course of time (Fig. 2), but it was not seemingly influenced by thinning operations (r=0.10, P=0.18, Table 1). It should be noted that pH_{water}, on the contrary, was negatively correlated with the time elapsed from the last thinning operation (r=-0.27,
 P=0.006). In short, after each thinning operation, soil acidity decreased then increased again
 but without any concomitant change in the humus form.

4

5 These global trends were depicted by the whole set of sampling areas, without any 6 account to possible effects of management pratices. If we separate even-aged high forest 7 stands from stands converted from old coppices-with-standards, a more variegated 8 landscape appears (Fig. 3).

9

10 The positive correlation between Humus Index and dominant height was better 11 depicted by even-aged high forest (Fig. 3b) than by the whole set of oak stands (Fig. 3a). 12 Coppices-with-standards did not exhibit any such trend, all of them falling within the range of 13 even-aged high forest stands with tallest trees as dominants. A comparison by paired t-test 14 between actual and calculated values of Humus Index for coppices-with-standards (using 15 equation 1) did not reveal any departure from the trend exhibited by even-aged high forest, 16 provided trees are of the same height (t=0.89, P=0.19). Thus the relationship between 17 Humus Index and dominant height was not affected by management practices.

18

19 A quite different picture was exhibited by dominant diameter. Similar to dominant 20 height, the correlation between Humus Index and dominant diameter was positive, better 21 depicted by even-aged high forest than by the whole set of stands, and null for coppices-22 with-standards (Figs. 3c and 3d). However, Humus Indices measured in coppices-with-23 standards differed by more than one unit from values calculated using equation 1 derived for even-aged high forest (t=7.48, P=2.10⁻⁹). Thus, provided they had the same dominant 24 25 diameter, coppices-with-standards seemed to exhibit more active humus forms than even-26 aged high forest. However, when comparing Figures 2b and 2d it appears that coppices-with-27 standards, the dominants of which have the same height than tallest trees of even-aged high 28 forest (90 years-old, see Fig. 2), exhibit larger diameters at breast height, which flaws any

comparison based on diameter. Coppices-with-standards, the mean diameter of dominant
 trees is 45 cm, should compare with even-aged high forest stands with a mean diameter of
 35 cm for dominants.

4

5 Wood standing crop was estimated using both diameter and height of trees. If we 6 consider wood volume and Humus Index, most coppices-with-standards fell within the range of tallest even-aged high forest stands (also oldest, r=0.98, P=2.10⁻³²), but some coppices-7 8 with-standards exhibited higher volumes of wood and lower Humus Indices than expected on 9 the base of even-aged high forest (Figs. 3e and 3f). However, a comparison between 10 observed and calculated values of the Humus Index for coppices-with-standards did not 11 reveal any significant shift (t=1.17, P=0.12). Here too, there was no effect of management 12 practices.

13

Basal area did not vary to a great extent among oak stands, although this parameter displayed a positive correlation with the Humus Index (Fig. 3g). Most coppices-withstandards fell within the range of variation of even-aged high forest stands (Fig. 3h) but they exhibited a higher Humus Index than expected from their basal area (t=-4.96, P=5.10⁻⁶). Beech and hornbeam (in percent of the total basal area) were positively correlated with the Humus Index, but at a lower level of significance than age, height, diameter and basal area (Table 1).

21

There was a positive relationship between the Humus Index and the depth at which clay becomes dominant (Fig. 4a): the shallower was the clay horizon, the lower was the Humus Index (Mull). Both even-aged high forest and coppices-with-standards exhibited the same relationship (Fig. 4b), with a similar slope of the regression line (t=1.52, P=0.13). This figure may also help to verify that even-aged high forest and coppices-with-standards grew on the same range of soil conditions, thus comparisons between management pratices were not biased by a possible influence of the soil type. When the combined effect of stand age and soil type (expressed by depth of clay horizon) on the Humus Index of full-gown stands
 was analysed by multiple regression, the mixed model explained 70.1% of the total variation,
 shared between 52.9% for age and 17.2% for soil type.

4

5 For the same depth of clay horizon, coppices-with-standards exhibited a higher Humus Index than the even-aged high forest (t=7.13, $P=5.10^{-9}$), the difference being ca. 1 6 7 unit. However, since the group of even-aged high forest stands included young stands with 8 more active humus forms (lower Humus Index), a possible bias due to aging was questioned. 9 If a Humus Index could be extrapolated for young stands supposed at the age of 90-years, 10 then more valid comparisons between coppices-with-standards and even-aged high forest 11 would be made. We used the equation shown in Figure 2 to extrapolate Humus Indices at 90 12 years (HI₉₀) from actual values of young stands (HI), according to the formula 13 HI₉₀=HI+0.03(90-age), with the age of the stand expressed in years. The Humus Index thus 14 calculated for theoretical 90-years-old even-aged high forest remained significantly (and 15 positively) explained by the depth of clay horizon ($R^2=0.37$, $P=10^{-4}$). When even-aged high 16 forest stands were thus corrected for aging, coppices-with-standards exhibited a lower Humus Index (ca. 0.5 unit less) than even-aged high forest (t=3.8, P=2.10⁻⁴), for the same 17 18 soil conditions (expressed by depth of clay horizon).

19

The Humus Index showed a negative relationship with exchangeable Ca (fig. 4c), but, contrary to above mentioned parameters, a better fitness was obtained with logarithmic values of calcium concentrations (R^2 =0.53 against 0.26 for linear regression). Even-aged high forest and coppices-with-standards exhibited the same relationship (Fig. 3d), and for the same concentration of exchangeable Ca the Humus Index did not differ between them (t=0.06, P=0.48).

Similarly, the relationship between Humus Index and base saturation was non-linear
 (Fig. 4e) and was depicted both by even-aged high forest and coppices-with-standards (Fig.
 4f), which did not differ between them at a given level of base saturation (t=0.017, P=0.49).

4

5 5. Discussion

6

7 First, it should be highlighted that our Humus Index differs to a great extent from the 8 same notation recently used by other authors to describe humus quality (Godefroid et al., 9 2005). The Humus Index they used was based on floristic composition, by averaging scores 10 of different plant species pertaining to the same plant community. The scores were 11 calculated on the model of Ellenberg (1974) indices, by noting the presence of plant species 12 along a scale of humus forms, which were given a number as in our own method. In the 13 present study, as in previously published papers (Ponge et al., 2002; Ponge et al., 2003; 14 Fédoroff et al., 2005), the Humus Index was directly derived from the observation of humus 15 forms, not of flora. Several authors noted that Ellenberg indices should be used with caution, 16 given the existence of regional and temporal changes in ecological requirements of plant 17 species (Parrish and Bazzaz, 1985; Hill et al., 1999; Diekmann and Lawesson, 1999). We 18 suggest that the identification of the humus form (Green et al., 1993; Brêthes et al., 1995), 19 which can be used directly on the field for building a Humus Index, should be preferred to a 20 list of plant species.

21

The positive correlation between the Humus Index and the age of oak stands (Fig. 2) can be attributed to changes in humus forms and associated parameters (soil acidification, organic matter accumulation) which have been repeatedly observed to occur during crop rotation (Adam, 1999; Aubert et al., 2004; Godefroid et al., 2005). The passage from Mull (Humus Index 1-4) to Moder (Humus Index 5-7) accompanies the growth of trees and their increasing influence on the soil, more especially when their litter is poor in nutrients and rich in secondary metabolites (Nicolai, 1988; Ponge et al., 1997; Ponge et al., 1998). Studies on

1 old-growth forests reveal that soil acidification under the influence of tree growth is temporary 2 and may reverse if environmental conditions and spatial configurations of habitats are proper 3 for the re-establishment of adapted decomposer communities (Ulrich, 1987; Bernier and 4 Ponge, 1994; Aubert et al., 2004). This occurs when nutrient requirements of the 5 aboveground compartment of the forest ecosystem decrease after cessation of stem 6 elongation (Nilsson et al., 1982; Miller, 1984a; Chapin et al., 1986). Here we did not show 7 such reversal of the Humus Index in ageing stands, because our stands were probably too 8 young and occupied too large surfaces, in an otherwise intensively managed forest. The fact 9 that the relationship between age and Humus Index was linear (Fig. 2) indicates that the 10 humus form changed steadily during stand development, at least during the first 90 years of 11 crop rotation. The linear relationship between the Humus Index and the age of trees 12 contradicts the hypothesis of stability domains within soil communities (Bengtsson, 2002; 13 Graefe, 2003; Ponge, 2003). According to this hypothesis, changes in soil communities 14 would occur by jumping from a species distribution to another, better adapted distribution, 15 when the original community has been disrupted by an environmental stressor, such as for 16 instance changes in environmental conditions and resource availability which occur during 17 stand development. This should result in a discrete response of the Humus Index to tree 18 growth, which was not depicted by our series of even-aged high forest stands.

19

20 The negative influence of beech upon soil biological activity was reflected in the 21 increase in Humus Index when the percent basal area occupied by beech increased (Table 22 1). Muys (1989) observed an increase in humus guality (expressed by an increase in 23 earthworm biomass) and a decrease in soil compaction when beech was replaced by oak in 24 a Belgian forest. Similar results, using herb species as indicators of humus quality, were 25 obtained by Godefroid et al. (2005) in the same country. This phenomenon could be explained by a higher increment in wood standing crop and basal area and a lower 26 27 decomposition rate of litter in beech compared to oak (Lemée and Bichaut, 1973; Monserud and Sterba, 1996), with concomitant soil impoverishment (Nilsson et al., 1982; Chapin et al.,
 1986).

3

4 The relationship between Humus Index and parameters of stand development 5 (height, diameter at breast height, wood standing crop) can be mostly explained by stand 6 age, as these parameters increase steadily during stand development (Miller, 1984b; Chapin 7 et al., 1986; Ulrich, 1994). Stands resulting from the conversion of old coppices-with-8 standards compare well with 90-years-old even-aged high forest stands, the dominants of 9 which are of the same height (25 m, see Fig. 3b), except that they reached a larger diameter 10 at breast height (Fig. 3d), due to higher annual increments (Guilley et al., 2004) and probably 11 older age. Both stand types exhibit a Humus Index averaging 4 (Dysmull). Howvever, 12 coppices-with-standards show a high degree of variation in their stand characteristics, which 13 are not correlated with the Humus Index (Figs. 3b, 3d, 3f, 3h). A more clear picture appears 14 when soil types are taken into account. They explain most of the variation which remained 15 unexplained by stand characteristics: both coppices-with-standards and even-aged high 16 forest show a positive relationship between Humus Index and depth of clay horizon (Fig. 4b). 17 When even-aged high forest trees are corrected for stand age, this relationship remains 18 positive and significant, thus is not age-dependent, and differences between both forest 19 types can be clearly perceived. For a given soil type, coppices-with-standards have a lower 20 Humus Index (minus 0.5 unit) than oldest even-aged high forest stands. This means that 21 coppices-with-standards exhibit less litter accumulation even though they have a higher 22 standing crop and the same basal area than even-aged high forest stands (Figs. 3f and 3h). 23 Given our knowledge of the relationships between humus forms (and closely related 24 processes such as litter decomposition) and functional biodiversity of forest soils (Ponge et 25 al., 1997; Ponge, 2003; Heemsbergen et al., 2004), we hypothesize that stands issuing from 26 coppices-with-standards exhibit slightly more diversified animal and microbial communities 27 than even-aged high forest. At first sight, this improvement of soil condition in converted 28 coppices-with-standards could be explained by a higher diversity of woody vegetation, in

1 particular to the presence of hornbeam in mixture with sessile oak, especially in the 2 understory (Aubert et al., 2004). However, in our study site we did not register any positive 3 influence of hornbeam upon the humus form (Table 1). Similarly, Bonneau and Ranger 4 (1984) observed a shift from Mull or Mull-Moder to Moder and a decrease in exchangeable 5 cations when even-aged high forest stands were compared to coppices-with-standards in the 6 Marchenoir forest, which is located not far from our study site. They attributed this shift to 7 increased nutrient uptake and immobilization in the woody biomass of even-aged high forest, 8 which impoverished the soil. Awaiting further studies, this interpretation could be questioned, 9 because we observed that stands converted from coppices-with-standards neither exhibited 10 a smaller basal area nor a smaller standing crop than even-aged high forest (Fig. 3). An 11 alternative hypothesis could be that even-aged high forest trees were still too young to depict 12 the improvement in soil biological activity (and thus the decrease in Humus Index) which is 13 typically observed under older trees in natural forests (Page, 1974; Ponge et al., 1998). 14 Other comparisons with literature data, especially when climate conditions and tree 15 composition are different, should be made with caution. For instance, Hölscher et al. (2001) 16 concluded that soils from oak coppices exhibited less acidity and higher mineral pools than 17 those from even-aged high forests, but the former group was made of oak while the latter 18 was made of beech, which flawed the comparison.

19

The non-linear relationship between Humus Index and base availability (Fig. 4c-f) possibly indicates a trend towards a saturation of the ecosystem in exchangeable bases, in particular in the below-ground compartment which is chiefly responsible for the building of humus forms (Chapin et al., 1986). Some studies have shown that an increase in nutrient availability maybe ineffective in changing humus quality, if adapted decomposer communities and efficient foodwebs are not present or cannot build-up rapidly (Törne, 1978; Graefe, 1990; Muys and Lust, 1992).

1 The observed stability of the Humus Index against thinning operations (Table 1), 2 despite a significant change in soil pH (see Results), can be ascribed to a redundancy 3 phenomenon within the humus profile, which has been explained in detail by Belotti and 4 Babel (1993). Each time a function (for instance the building of a horizon) is ensured by a 5 variety of organisms, no pronounced change appears until the least sensitive species 6 disappears (Heemsbergen et al., 2004). We hypothesize that the time from selection cutting 7 to crown recovery is too short for destabilizing humus profiles, because of biological inertia, 8 but also of the time required for building or disappearance of a horizon (Ulrich, 1987). A 9 previous study on a spruce chronosequence showed that the increase in earthworm 10 population size which accompanied thinning operations was only temporary and did not 11 reverse the observed shift from Mull to Moder (Bernier and Ponge, 1994).

12

13 We are aware that, although exhibiting a number of significant trends when correlated 14 with stand and soil variables, the Humus Index does not explain the whole variation of these 15 conditions. Roughly, the Humus Index explains at best half the total variation of stand and 16 soil parameters (Figs. 2 to 4). This could be explained by (i) the wide range of stand and soil 17 types covered by our study, (ii) the existence of other, not accounted for, factors which may 18 have influenced the building of humus forms. Among these factors, the past history of the 19 stands is probably responsible for a significant part of the unexplained variation. Fire places 20 for charcoal production, agricultural past, human settlements, among others, are known to 21 affect the distribution of plant species, which is probably true of soil organisms, too (Koerner 22 et al., 1997). Even though we can discard agricultural past in the case of the studied forest, 23 other human influences should not be neglected.

24

25 **6. Conclusion**

26

We showed that the Humus Index can be correlated with several important parameters of stand development and soil type, pointing on its possible use in the

1 assessment of site quality and the long-term survey of ecosystems. Awaiting further 2 theoretical and experimental developments, the Humus Index should be considered as a 3 synthetic measurement of the complexity of soil communities (Ponge, 2003), which could be 4 used as an early tool to predict changes at the ecosystem level, due to tree growth, 5 management pratices, climate change and pollution. Practicability of the method cannot be 6 questioned, since it does not need any other measurement than the estimate by eye of 7 horizons and structures. The only point which deserves further elaboration is a possible shift 8 from person to person in the estimate of horizon thickness, which has been highlighted by 9 Federer (1982). A standardization of the method would alleviate such possible biases. 10 Further studies should also take into account between-forest variation and the time required 11 fro reaching an equilibrium in the humus type (Wilson et al., 2001), before reaching firm 12 conclusions about the use of the Humus Index for ecological site classification (Ray, 2001).

13

14 Acknowledgements

15

The authors acknowledge the Centre d'Études du Machinisme Agricole et du Génie
 Rural des Eaux et Forêts (Cemagref) for financial support and the Office National des Forêts
 (ONF) for field facilities.

19

20 **References**

21

Aber, J.D., Botkin, D.B., Melillo, J.M., 1978. Predicting the effects of different harvesting
 regimes on forest floor dynamics in northern hardwoods. Can. J. For. Res. 8, 306 315.

25

Adam, M., 1999. Nutrient fluctuations in Sitka spruce (*Picea sitchensis*) plantations: the implications for future forest management practice. Forestry 72, 249-271.

2 3 Aubert, M., Bureau, F., Alard, D., Bardat, J., 2004. Effect of tree mixture on the humic 4 epipedon and vegetation diversity in managed beech forests (Normandy, France). 5 Can. J. For. Res. 34, 233-248. 6 7 Bartoli, M., Tran-Ha, M., Largier, G., Dumé, G., Larrieu, L., 2000. ECOFLORE, un logiciel 8 simple de diagnostic écologique. Rev. For. Fr. 52, 530-546. 9 10 Belotti, E., Babel, U., 1993. Variability in space and time and redundancy as stabilizing 11 principles of forest humus profiles. Eur. J. Soil Biol. 29, 17-27. 12 13 Bengtsson, J., 2002. Disturbance and resilience in soil animal communities. Eur. J. Soil Biol. 14 38, 119-125. 15 16 Beniamino, F., Ponge, J.F., Arpin, P., 1991. Soil acidification under the crown of oak trees. I. 17 Spatial distribution. For. Ecol. Manag. 40, 221-232. 18 19 Bernier, N., 1996. Altitudinal changes in humus form dynamics in a spruce forest at the 20 montane level. Plant Soil 178, 1-28. 21 22 Bernier, N., Ponge, J.F., 1994. Humus form dynamics during the sylvogenetic cycle in a 23 mountain spruce forest. Soil Biol. Biochem. 26, 183-220. 24 25 Bonneau, M., Ranger, J., 1984. Effect of an oak forest on a silty acid soil. Changes in humus form and exchangeable cations. In: Ågren, G.I. (Ed.), State and Change of Forest 26 27 Ecosystems. Indicators in Current Research. Swedish University of Agricultural

Anonymous, 1999. Qualité des Sols. AFNOR, Paris.

1	Sciences, Department of Ecology and Environmental Research, Report N°13, pp.
2	245-249.
3	
4	Brêthes, A., Brun, J.J., Jabiol, B., Ponge, J.F., Toutain, F., 1995. Classification of forest
5	humus forms: a French proposal. Ann. Sci. For. 52, 535-546.
6	
7	Carmean, W.H., 1975. Forest site quality evaluation in the United States. Adv. Agron. 27,
8	209-269.
9	
10	Carter, R.E., Lowe, L.E., 1986. Lateral variability of forest floor properties under second-
11	growth Douglas-fir stands and the usefulness of composite sampling techniques.
12	Can. J. For. Res. 16, 1128-1132.
13	
14	Chapin, F.S. III, Vitousek, P.M., Van Cleve, K., 1986. The nature of nutrient limitation in plant
15	communities. Am. Nat. 127, 48-58.
16	
17	Christie, J.M., Lines, R., 1979. A comparison of forest productivity in Britain and Europe in
18	relation to climatic factors. For. Ecol. Manag. 2, 75-102.
19	
20	Coughtrey, P.J., Jones, C.H., Martin, M.H., Shales, S.W., 1979. Litter accumulation in
21	woodlands contaminated by Pb, Zn, Cd and Cu. Oecologia 39, 51-60.
22	
23	Covington, W.W., 1981. Changes in forest floor organic matter and nutrient content following
24	clear cutting in northern hardwoods. Ecology 62, 41-48.
25	
26	Dagnélie, P., Palm, R., Rondeux, J., Thill, A., 1999. Tables de Cubage des Arbres et des
27	Peuplements Forestiers. Les Presses Agronomiques de Gembloux, Gembloux.
28	

1	Davies, R.I., Coulson, C.B., Lewis, D.A., 1964. Polyphenols in plant, humus, and soil. IV.
2	Factors leading to increase in biosynthesis of polyphenol in leaves and their
3	relationship to mull and mor formation. J. Soil Sci. 15, 310-318.
4	
5	Delecour, F., 1978. Facteurs édaphiques et productivité forestière. Pédologie 28, 271-284.
6	
7	Deleporte, S., Tillier, P., 1999. Long-term effects of mineral amendments on soil fauna and
8	humus in an acid beech forest floor. For. Ecol. Manag. 118, 245-252.
9	
10	Diekmann, M., Lawesson, J.E., 1999. Shifts in ecological behaviour of herbaceous forest
11	species along a transect from northern Central to North Europe. Folia Geobot. 34,
12	127-141.
13	
14	Duelli, P., Obrist, M.K., 2003. Biodiversity indicators: the choice of values and measures.
15	Agr. Ecosyst. Env. 98, 87-98.
16	
17	Ellenberg, H., 1974. Zeigerwerte der Gefasspflanzen Mitteleuropas. Scripta Geobotanica 9,
18	1-97.
19	
20	Emmer, I.M., Sevink, J., 1994. Temporal and vertical changes in the humus form profile
21	during a primary succession of <i>Pinus sylvestris</i> . Plant Soil 167, 281-295.
22	
23	Federer, C.A., 1982. Subjectivity in the separation of organic horizons of the forest floor. Soil
24	Sci. Soc. Am. J. 46, 1090-1093.
25	
26	Fédoroff, E., Ponge, J.F., Dubs, F., Fernández-González, F., Lavelle, P., 2005. Small-scale
27	response of plant species to land use intensification. Agr. Ecosyst. Environ. 105, 283-
28	290.

1	
2	Garnier, A., 1965. La forêt de Montargis. Excursion du 4 avril 1965. Bull. Assoc. Naturalistes
3	Orléanais 30-7, 12-23.
4	
5	Gillet, S., Ponge, J.F., 2002. Humus forms and metal pollution in soil. Eur. J. Soil Sci. 53,
6	529-539.
7	
8	Godefroid, S., Massant, W., Koedam, N., 2005. Variation in the herb species response and
9	the humus quality across a 200-year chronosequence of beech and oak plantations in
10	Belgium. Ecography 28, 223-235.
11	
12	Graefe, U., 1990. Untersuchungen zum Einfluß von Kompensationskalkung und
13	Bodenbearbeitung auf die Zersetzerfauna in einem bodensauren Buchenwald- und
14	Fichtenforst-Ökosystem. In: Gehrmann, J. (Ed.), Umweltkontrolle am Waldökosystem.
15	Forsch. Berat. C 48, 232-241.
16	
17	Graefe, U., 2003. Spatial variety of soil biota: diversity of types vs. diversity of species.
18	Verhandl. Gesellsch. Ökol. 33, 405.
19	
20	Green, R.N., Trowbridge, R.L., Klinka, K., 1993. Towards a taxonomic classification of
21	humus forms. For. Sci. Monogr. 29, 1-49.
22	
23	Guilley, E., Hervé, J.C., Nepveu, G., 2004. The influence of site quality, silviculture and
24	region on wood density mixed model in Quercus petraea Liebl. For. Ecol. Manag.
25	189, 111-121.
26	

1	Heemsbergen, D.A., Berg, M.P., Loreau, M., Van Hal, J.R., Faber, J.H., Verhoef, H.A., 2004.								
2	Biodiversity effects on soil processes explained by interspecific functional								
3	dissimilarity. Science 306, 1019-1020.								
4									
5	Hill, M.O., Mountford, J.O., Roy, D.B., Bunce, R.G.H., 1999. Ellenberg's Indicator Values for								
6	British Plants. Ministry of Agriculture, Fisheries and Food, Department of the								
7	Environment, Transport and the Regions, London.								
8									
9	Hölscher, D., Schade, E., Leuschener, C., 2001. Effects of coppicing in temperate deciduous								
10	forests on ecosystem nutrient pools and soil fertility. Basic Appl. Ecol. 2, 155-164.								
11									
12	Jabiol, B., Höltermann, A., Gégout, J.C., Ponge, J.F., Brêthes, A., 2000. Typologie des								
13	formes d'humus peu actives. Validation par des critères macro- et								
14	micromorphologiques, biologiques et chimiques. Etud. Gest. Sols 7, 133-154.								
15									
16	Klinka, K., Wang, Q., Carter, R.E., 1990. Relationships among humus forms, forest floor								
17	nutrient properties, and understory vegetation. For. Sci. 36, 564-581.								
18									
19	Koerner, W., Dupouey, J.L., Dambrine, E., Benoît, M., 1997. Influence of past land use on								
20	the vegetation and soils of present day forest in the Vosges mountains, France. J.								
21	Ecol. 85, 351-358.								
22									
23	Kuperman, R.G., 1996. Relationships between soil properties and community structure of								
24	soil macroinvertebrates in oak-kickory forests along an acidic deposition gradient.								
25	Appl. Soil Ecol. 4, 125-137.								
26									

1	Lemée, G., Bichaut, N., 1973. Recherches sur les écosystèmes des réserves biologiques de
2	la forêt de Fontainebleau. II. Décomposition de la litière de feuilles des arbres et
3	libération des bioéléments. Oecol. Plant. 8, 153-174.
4	
5	Le Tacon, F., Timbal, J., 1973. Valeurs indicatrices des principales espèces végétales des
6	hêtraies du Nord-Est de la France vis-à-vis des types d'humus. Rev. For. Fr. 25, 269-
7	282.
8	
9	Lindenmayer, D.B., Margules, C.R., Boykin, D.B., 2000. Indicators of biodiversity for
10	ecologically sustainable forest management. Conserv. Biol. 14, 941-950.
11	
12	Miller, H.G., 1981. Forest fertilization: some guiding concepts. Forestry 54, 157-167.
13	
14	Miller, H.G., 1984a. Nutrient cycles in birchwoods. Proc. Roy. Soc. Edinburgh 85B, 83-96.
15	
16	Miller, H.G., 1984b. Dynamics of nutrient cycling in plantation ecosystems. In: Bowen, G.D.,
17	Nambiar, E.K.S. (Eds.), Nutrition of Forest Trees in Plantations. Academic Press,
18	London, pp. 53-78.
19	
20	Monserud, R.A., Sterba, H., 1996. A basal area increment model for individual trees growing
21	in even- and uneven-aged forest stands in Austria. For. Ecol. Manag. 80, 57-80.
22	
23	Moore, J.C., DeRuiter, P.C., 1993. Assessment of disturbance on soil ecosystems. Vet.
24	Parasit. 48, 75-85.
25	
26	Muys, B., 1989. Evaluation of conversion of tree species and liming as measures to
27	decrease soil compaction in a beech forest on loamy soil. In: Actes du Séminaire sur
28	les Conséquences de la Mécanisation des Opérations Forestières sur le Sol,

1	Louvain-la-Neuve, Belgium, 11-15 September 1989. Ministère de l'Agriculture,
2	Brussel, pp. 341-355.
3	
4	Muys, B., Lust, N., 1992. Inventory of the earthworm communities and the state of litter
5	decomposition in the forests of Flanders, Belgium, and its implications for forest
6	management. Soil Biol. Biochem. 24, 1677-1681.
7	
8	Muys, B., Lust, N., Granval, P., 1992. Effects of grassland afforestation with different tree
9	species on earthworm communities, litter decomposition and nutrient status. Soil Biol.
10	Biochem. 24, 1459-1466.
11	
12	Nicolai, V., 1988. Phenolic and mineral content of leaves influences decomposition in
13	European forest ecosystems. Oecologia 75, 575-579.
14	
15	Nilsson, S.I., Miller, H.G., Miller, J.D., 1982. Forest growth as a possible cause of soil and
16	water acidification: an examination of the concepts. Oikos 39, 40-49.
17	
18	Odum, E.P., 1969. The strategy of ecosystem development. Science 164, 262-270.
19	
20	Ovington, J.D., 1965. Organic production, turnover and mineral cycling in woodlands. Biol.
21	Rev. 40, 295-336.
22	
23	Page, G., 1974. Effects of forest cover on the properties of some Newfoundland forest soils.
24	Can. For. Serv. Dept Environ. Publ. 1332, 1-32.
25	
26	Parrish, J.A.D., Bazzaz, F.A., 1985. Ontogenetic niche shifts in old-field annuals. Ecology 66,
27	1296-1302.
28	

1	Perry, D.A., Amaranthus, M.P., Borchers, J.G., Brainerd, R.E., 1989. Bootstrapping in
2	ecosystems. BioScience 39, 230-237.
3	
4	Ponge, J.F., 2003. Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil
5	Biol. Biochem. 35, 935-945.
6	
7	Ponge, J.F., André, J., Zackrisson, O., Bernier, N., Nilsson, M.C., Gallet, C., 1998. The forest
8	regeneration puzzle. BioScience 48, 523-530.
9	
10	Ponge, J.F., Arpin, P., Sondag, F., Delecour, F., 1997. Soil fauna and site assessment in
11	beech stands of the Belgian Ardennes. Can. J. For. Res. 27, 2053-2064.
12	
13	Ponge, J.F., Chevalier, R., Loussot, P., 2002. Humus Index: an integrated tool for the
14	assessment of forest floor and topsoil properties. Soil Sci. Soc. Am. J. 66, 1996-2001.
15	
16	Ponge, J.F., Delhaye, L., 1995. The heterogeneity of humus profiles and earthworm
17	communities in a virgin beech forest. Biol. Fertil. Soils 20, 24-32.
18	
19	Ponge, J.F., Gillet, S., Dubs, F., Fédoroff, E., Haese, L., Sousa, J.P., Lavelle, P., 2003.
20	Collembolan communities as bioindicators of land use intensification. Soil Biol.
21	Biochem. 35, 813-826.
22	
23	Ray, D., 2001. An Ecological Site Classification for Forestry in Great Britain. Forestry
24	Commission, Bulletin N° 124.
25	
26	Riha, S.J., James, B.R., Senesac, G.P., Pallant, E., 1986. Spatial variability of soil pH and
27	organic matter in forest plantation. Soil Sci. Soc. Am. J. 50, 1347-1352.
28	

1	Sadaka, N., Ponge, J.F., 2003. Climatic effects on soil trophic networks and the resulting					
2	humus profiles in holm oak (Quercus rotundifolia) forests in the High Atlas of Morocco					
3	as revealed by correspondence analysis. Eur. J. Soil Sci. 54, 767-777.					
4						
5	Sagot, C., Brun, J.J., Grossi, J.L., Chauchat, J.H., Boudin, G., 1999. Earthworm distribution					
6	and humus forms in the development of a semi-natural alpine spruce forest. Eur. J.					
7	Soil Biol. 35, 163-169.					
8						
9	Sokal, R.R., Rohlf, F.J., 1995. Biometry. The Principles and Practice of Statistics in Biological					
10	Research. Freeman, New York.					
11						
12	Terlinden, M., André, P., 1988. Effets de l'intensité d'éclaircie sur les horizons organiques et					
13	hémiorganiques du sol en futaie équienne de Picea abies. Pedobiologia 32, 201-309.					
14						
15	Torgersen, C.E., Jones, J.A., Moldenke, A.R., LeMaster, M.P., 1995. The spatial					
16	heterogeneity of soil invertebrates and edaphic properties in an old growth forest					
17	stand in western Oregon. In: Collins, H.P., Robertson, G.P., Klug, M.J. (Eds.), The					
18	Significance and Regulation of Soil Biodiversity. Kluwer, Dordrecht, pp. 225-236.					
19						
20	von Törne, E., 1978. Experimenteller Nachweis zootischer Einflüsse auf den Stoffumsatz in					
21	einem Kiefernforst. Pedobiologia 18, 398-414.					
22						
23	Toutain, F., Diagne, A., Le Tacon, F., 1988. Possibilités de modification du type d'humus et					
24	d'amélioration de la fertilité des sols à moyen terme en hêtraie par apport d'éléments					
25	minéraux. Rev. For. Fr. 40, 99-107.					
26						
27	Toutain, F., Duchaufour, P., 1970. Étude comparée des bilans biologiques de certains sols					
28	de hêtraie. Ann. Sci. For. 27, 39-61.					

1	
2	Ulrich, B., 1987. Stability, elasticity, and resilience of terrestrial ecosystems with respect to
3	matter balance. In: Schulze, E.D., Zwölfer, H. (Eds.), Potentials and Limitations of
4	Ecosystem Analysis. Ecol. Stud. 61, 11-49.
5	
6	Ulrich, B., 1994. Process hierarchy in forest ecosystems: an integrative ecosystem theory. In:
7	Hutterman, A., Godbold, D. (Eds.), Effects of Acid rain on Forest Processes. Wiley-
8	Liss, New York, pp. 353-397.
9	
10	Vavoulidou-Theodorou, E., Babel, U., 1987. Ein Bewässerungsversuch zur Dynamik von
11	Humusprofilen in Nadelholsbeständen mit Wuchsstörung. Pedobiologia 30, 389-399.
12	
13	Vitousek, P.M., Turner, D.R., Parton, W.J., Sanford, R.L., 1994. Litter decomposition of the
14	Mauna Loa environmental metrix, Hawai'i: patterns, mechanisms and models.
15	Ecology 75, 418-429.
16	
17	Wilson, S.McG., Pyatt, D.G., Malcolm, D.C., Connolly, T., 2001. The use of ground
18	vegetation and humus type as indicators of soil nutrient regime for an ecological site
19	classification of British forests. For. Ecol. Manag. 140, 101-116.
20	

1	Figure captions
2	
3	Fig. 1. Location map of the Montargis forest (France)
4	
5	Fig. 2. Relationship between Humus Index and age of even-aged high forest stands. *** =
6	significant at 0.001 level (F test)
7	
8	Fig. 3. Relationship between Humus Index and four stand measurements. N.S. = not
9	significant; ** = significatn at 0.01 level; *** = significant at 0.001 level (F test)
10	
11	Fig. 4. Relationship between Humus Index and three soil measurements. ** = significant at
12	0.01 level; *** = significant at 0.001 level (F test)
13	

1 energing high fields 67 25 6 Dystruit 3 1 energing high fields 68 20 12 Eurodati 3 1 energing high fields 68 20 11 Mescruit 6 1 energing high fields 68 20 1 Mescruit 6 1 energing high fields 68 20 1 Mescruit 2 1 energing high fields 68 0 4 Oligornull 2 2 energing high fields 68 0 1 Mescruit 2 2 energing high fields 68 0 2 Oligornull 3 2 energing high fields 61 10 Oligornull 8 3 energing high fields 61 10 Oligornull 8 3 energing high fields 61 10 Oligornull 8 3 energing high fields 61 10	Code number	Forest type	% Quercus	% Fagus	% Carpinus	Mean humus form	Last time thinning
2even-space hyph boost6876Dystrall311even-space hyph boost6010Hacenull612even-space hyph boost61611Macenull613even-space hyph boost6163Clippmull114even-space hyph boost6163Clippmull215even-space hyph boost61001Macenull220even-space hyph boost61001Macenull221even-space hyph boost61001Macenull222even-space hyph boost61000Clippmull323even-space hyph boost61000Clippmull224even-space hyph boost61000Clippmull325even-space hyph boost61100Clippmull226even-space hyph boost61100Clippmull327even-space hyph boost7100Clippmull328even-space hyph boost7000Clippmull329even-space hyph boost7000Clippmull329even-space hyph boost70000020even-space hyph boost70000020even-space hyph boost	1	even-aged high forest	67	25	8	Dysmull	3
a b b C L L Departure B 12 ever-spot sph (bos) 84 0 1 Maccrull 0 13 ever-spot sph (bos) 81 8 0 1 Maccrull 0 14 ever-spot sph (bos) 81 0 1 Maccrull 2 21 ever-spot sph (bos) 81 0 0 1 Maccrull 2 21 ever-spot sph (bos) 81 0 0 1 Maccrull 3 22 ever-spot sph (bos) 81 1 1 1 1 Maccrull 3 23 ever-spot sph (bos) 81 1	2	even-aged high forest	88	7	5	Dysmull	3
12 exclusion of the secture of the s	3	even-aged high forest	69 98	20	12	Oligomull	3
13exe-aged kpb forest9101Meanull614Clipprull1Clipprull115exe-aged kpb forest10001Meanull216exe-aged kpb forest10000Meanull217exe-aged kpb forest10000Clipprull328exe-aged kpb forest1011237Meanull829exe-aged kpb forest1011237Meanull829exe-aged kpb forest1010Clipprull329exe-aged kpb forest1010Clipprull330exe-aged kpb forest1010Clipprull331exe-aged kpb forest1010Clipprull332exe-aged kpb forest1010Clipprull333exe-aged kpb forest1010Clipprull334exe-aged kpb forest1010Clipprull334exe-aged kpb forest1010Clipprull334exe-aged kpb forest1010Clipprull335exe-aged kpb forest1010Clipprull336exe-aged kpb forest1010101036exe-aged kpb forest1010101036exe-aged kpb forest1010101037exe-aged kpb forest1010	12	even-aged high forest	84	5	11	Mesomuli	6
17 energing big hosts 81 6 3 Olgenul 1 10 energing big hosts 80 0 1 Macrul 2 21 energing big hosts 80 0 1 Macrul 2 22 energing big hosts 82 0 17 Olgenul 3 23 energing big hosts 81 0 1 Macrul 8 24 energing big hosts 81 0 1 Macrul 8 25 energing big hosts 81 0 10 Olgenul 3 36 energing big hosts 81 15 0 Olgenul 3 37 energing big hosts 15 0 Olgenul 5 3 44 energing big hosts 70 12 1 Classe 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13	even-aged high forest	99	0	1	Mesomull	6
19 even-aged hyb forst 00 0 Mascrull 2 21 even-aged hyb forst 00 0 Mascrull 2 22 even-aged hyb forst 00 0 0 Mascrull 3 23 even-aged hyb forst 01 0 0 0 0 0 24 even-aged hyb forst 01 12 0 0 0 0 24 even-aged hyb forst 01 12 0 0 0 0 0 25 even-aged hyb forst 01 0 0 0 0 0 0 26 even-aged hyb forst 01 0 0 0 0 0 0 27 even-aged hyb forst 01 0 0 0 0 0 0 28 even-aged hyb forst 01 0 0 0 0 0 0 28 even-aged hyb forst 01 0 0 0 0 0 29 even-aged hyb forst 01 0 0 0 0 0 40 even-aged hyb forst 01 0 0 0 0 0	17	even-aged high forest	91	6	3	Oligomull	1
2) existing heads 9 0 1 Meanual 2 21 existing heads 82 0 17 Cligorull 3 21 existing heads 82 0 17 Cligorull 3 22 existing heads 81 0 1 Cligorull 3 23 existing heads 81 12 37 Herrimoder 8 23 existing heads 81 15 0 Cligorull 3 34 existing heads 82 15 0 Cligorull 5 35 existing heads 82 15 0 Cligorull 5 36 existing heads 82 15 0 Cligorull 5 5 37 existing heads 83 15 0 Cligorull 5 5 38 existing heads 16 15 Existing heads 5 5 44 existing heads	19	even-aged high forest	96	0	4	Oligomull	2
21 existings 100 0 0 Meanual 2 23 existings 100 0 0 0 0 0 24 existings 100 0 0 0 0 0 25 existings 100 100 40 0 0 0 26 existings 100 100 100 0 0 0 0 26 existings 100 10 0 <td>20</td> <td>even-aged high forest</td> <td>99</td> <td>0</td> <td>1</td> <td>Mesomuli</td> <td>2</td>	20	even-aged high forest	99	0	1	Mesomuli	2
34 exe-aged high brest 86 0 1 Outprant 3 27 exe-aged high brest 81 0 12 37 Heinitodort 8 28 exe-aged high brest 81 0 19 Heinitodort 8 39 exe-aged high brest 81 0 0 00 00 37 39 exe-aged high brest 80 15 0 001portul 5 39 exe-aged high brest 80 11 0 Diparul 5 34 exe-aged high brest 70 6 25 Dyrant 6 44 exe-aged high brest 70 6 25 Euroder 6 44 exe-aged high brest 70 23 5 Euroder 6 44 exe-aged high brest 70 24 2 Dyrant 3 5 corrent coppic-with standards 80 7 Heinitodort 7 44 <t< td=""><td>21</td><td>even-aged high forest</td><td>100</td><td>0</td><td>0</td><td>Mesomuli</td><td>2</td></t<>	21	even-aged high forest	100	0	0	Mesomuli	2
25 even-aged high brest 68 0 2 Oilganuil 8 23 even-aged high brest 61 12 37 Hemimodar 8 34 even-aged high brest 81 0 19 Hemimodar 8 34 even-aged high brest 80 0 10 Oilganuil 3 35 even-aged high brest 80 15 0 Oiganuil 5 34 even-aged high brest 80 16 5 Eumodar 7 41 even-aged high brest 70 20 2 Dyrmuil 6 42 even-aged high brest 70 2 3 5 Eumodar 6 43 even-aged high brest 70 2 11 10 Eumodar 2 44 even-aged high brest 70 2 14 Eumodar 2 45 covered coppice-with-bandards 8 7 15 Eumodar 2	23	even-aged high forest	82 99	0	17	Oligomuli	3
27 existing high best 90 0 90 00 90 00 90 00 90 28 existing high best 81 0 0 13 Heiminder 8 29 existing high best 81 0 00 00 00 39 existing high best 80 0 00 00 00 30 existing high best 80 15 0 00 00 30 existing high best 80 15 0 00 00 41 existing high best 80 15 0 00 00 42 existing high best 70 60 25 00 00 44 existing high best 70 60 17 14 Euroder 6 45 existing high best 70 10 17 14 Euroder 6 50 existing high best 77 22 14 Euroder 6 51 existing high best 77 10 13 Heiminder 7 52 existing high best 77 10 13 Heiminder 7 54 existing hisisting h	26	even-aged high forest	98	0	2	Oligomull	8
3B even-appet high httest 8 12 37 Hemmoder 8 34 even-appet high httest 80 0 1 10 0)ipprulit 2 35 even-appet high httest 80 0 0 0 0)ipprulit 3 36 even-appet high httest 80 15 0 0)ipprulit 3 36 even-appet high httest 80 15 0 0)ipprulit 5 41 even-appet high httest 80 15 0 0)ipprulit 6 42 even-appet high httest 70 6 2 0)ipprulit 6 43 even-appet high httest 70 6 2 0 0 0 0 54 even-appet high httest 70 2 1 0<	27	even-aged high forest	90	0	9	Oligomull	8
34 een-sign high herest 90 4 6 Dynami 2 35 een-sign high herest 82 1 17 Oilgonull 3 38 een-sign high herest 83 15 0 Oilgonull 5.5 34 een-sign high herest 83 15 0 Dipartual 5.5 44 een-sign high herest 81 15 0 Dipartual 6.6 44 een-sign high herest 70 6 2.5 Dyranull 6 44 een-sign high herest 70 7 2.3 5 Eunoder 6 45 een-sign high herest 70 4.2 16 Eunoder 2 46 een-sign high herest 77 2.3 5 Eunoder 2 55 converted coppice-with-standunds 8.3 9 7 Herminoder 2 56 converted coppice-with-standunds 8.3 9 Merminoder 7	28	even-aged high forest	51 81	12	37	Hemimoder	8
35 ewn-agod high forest 87 0 3 Oligomul 3 38 ewn-agod high forest 88 15 0 Oligomul 5. 38 ewn-agod high forest 88 15 0 Digomul 5. 44 ewn-agod high forest 78 20 2 Dyarnul 6 44 ewn-agod high forest 78 20 2 Dyarnul 6 44 ewn-agod high forest 78 20 2 Dyarnul 6 45 ewn-agod high forest 77 22 1 Digmanil 3.5 46 ewn-agod high forest 77 22 1 Digmanil 3.5 55 connerfed coppic-with-standards 80 9 7 Herminoder 12 56 connerfed coppic-with-standards 80 9 13 Herminoder 12 57 connerfed coppic-with-standards 80 9 1 Herminoder 12	34	even-aged high forest	90	4	6	Dysmull	2
37 ewn-aged high forest 82 1 17 Oligonull 3 38 ewn-aged high forest 88 15 0 Dyrnull 5.5 40 ewn-aged high forest 88 15 0 Dyrnull 6 41 ewn-aged high forest 81 15 4 Eunoder 7 42 ewn-aged high forest 70 63 2 Dyrnull 6 44 ewn-aged high forest 70 63 Eunoder 6 44 ewn-aged high forest 77 22 1 Cligonull 3.5 55 connettal coppic-ewth-standards 83 9 7 Herminoder 2 56 connettal coppic-ewth-standards 77 10 13 Herminoder 12 57 connettal coppic-ewth-standards 77 10 13 Herminoder 7 58 connettal coppic-ewth-standards 70 10 10 Dyrmull 12 <	36	even-aged high forest	97	0	3	Oligomull	2
abs period period <td>37</td> <td>even-aged high forest</td> <td>82</td> <td>1</td> <td>17</td> <td>Oligomull</td> <td>3</td>	37	even-aged high forest	82	1	17	Oligomull	3
40 ewn-sight fyring 88 11 0 Dysnull 5.5 42 ewn-sight fyring 81 15 4 Euroder 7 42 ewn-sight fyring 71 60 25 Dysnull 6 44 ewn-sight fyring 71 61 Euroder 6 45 ewn-sight fyring 68 17 15 Euroder 6 46 ewn-sight fyring 68 17 16 Euroder 6 51 ewn-sight fyring 72 22 1 Cligornull 3.5 55 connetic coppic-with-standards 73 7 15 Herrinoder 2 56 connetic coppic-with-standards 73 7 15 Herrinoder 7 61 connetic coppic-with-standards 7 15 Herrinoder 7 62 connetic coppic-with-standards 7 15 Herrinoder 7 63 connetic coppic-with-standards	39	even-aged high forest	85	15	0	Oligomull	5.5
41 exen-aged high forest 80 15 5 Eumoder 7 42 exen-aged high forest 78 20 2 Dymull 6 44 exen-aged high forest 78 20 2 Dymull 6 44 exen-aged high forest 80 17 16 Eumoder 6 50 exen-aged high forest 60 17 14 Eumoder 6 51 exen-aged high forest 60 47 7 Hermoder 2 54 connetted coppic ewith-standards 83 9 7 Hermoder 2 55 connetted coppic ewith-standards 82 9 18 Hermoder 12 66 connetted coppic ewith-standards 82 0 18 Hermoder 12 67 connetted coppic ewith-standards 82 0 18 Hermoder 12 68 connetted coppic ewith-standards 82 0 14 Hermoder 12	40	even-aged high forest	88	11	0	Dysmull	5.5
44 example high first 91 13 4 Euroder 7 44 example high forest 73 23 5 Euroder 6 47 example high forest 83 17 15 Euroder 6 48 example high forest 88 17 14 Euroder 6 50 example high forest 77 22 1 Oligonull 3.5 55 converted coppice-with-standard 83 9 7 Herninoder 2 56 converted coppice-with-standard 80 2 18 Herninoder 2 57 converted coppice-with-standard 80 2 18 Herninoder 7 56 converted coppice-with-standard 80 13 Herninoder 7 56 converted coppice-with-standard 80 8 4 80 Digmull 1 66 converted coppice-with-standard 80 8 4 80 Digmull <td>41</td> <td>even-aged high forest</td> <td>80</td> <td>15</td> <td>5</td> <td>Eumoder</td> <td>7</td>	41	even-aged high forest	80	15	5	Eumoder	7
44 even-agad high forest 70 6 25 Dyarmal 6 44 even-agad high forest 80 11 10 Eumoder 6 50 even-agad high forest 80 17 14 Eumoder 6 51 even-agad high forest 77 12 1 Oligonull 3.5 54 converted coppice-with-standard 80 9 7 Hernimoder 2 55 converted coppice-with-standard 80 9 1 Eumoder 2 60 converted coppice-with-standard 81 9 1 Eumoder 7 61 converted coppice-with-standard 85 3 13 Hernimoder 7 62 converted coppice-with-standard 85 3 18 Oligonull 7 63 converted coppice-with-standard 81 0 12 14 Hernimoder 7 64 converted coppice-with-standard 81 0 12	42	even-aged high forest	81 78	15 20	4	Eumoder	6
47 exen-aged high forest 73 23 5 Eumoder 6 48 exen-aged high forest 88 17 15 Eumoder 6 51 exen-aged high forest 77 22 1 Oligomull 3.5 54 converted coppice-with-standard 83 9 7 Herninoder 2 55 converted coppice-with-standard 80 9 7 Herninoder 2 56 converted coppice-with-standard 80 9 7 Herninoder 7 66 converted coppice-with-standard 80 9 18 Herninoder 7 66 converted coppice-with-standard 80 9 11 Herninoder 7 67 converted coppice-with-standard 80 9 11 Herninoder 7 68 converted coppice-with-standard 80 9 9 9 11 12 76 converted coppice-with-standard 80 9 9	44	even-aged high forest	70	6	25	Dysmull	6
48 exernaged high forest 80 11 10 Eumoder 6 50 exernaged high forest 67 12 14 Eumoder 6 51 exernaged high forest 68 17 14 Eumoder 6 54 exernaged high forest 68 17 14 Eumoder 2 55 convented coppice-with-standards 83 9 7 Hernimoder 2 56 convented coppice-with-standards 83 9 7 15 Hernimoder 12 60 convented coppice-with-standards 86 2 61 11 00 pysmul 7 63 convented coppice-with-standards 86 14 38 Dysmul 7 63 convented coppice-with-standards 81 0 4 Hernimoder 7 64 convented coppice-with-standards 70 26 4 Oigpnull 12 75 convented coppice-with-standards 81 <td>47</td> <td>even-aged high forest</td> <td>73</td> <td>23</td> <td>5</td> <td>Eumoder</td> <td>6</td>	47	even-aged high forest	73	23	5	Eumoder	6
S0 even-agad high brasit 69 17 14 Eurosder 6 51 even-agad high brasit 69 4 27 Dysmull 3.5 54 converted coppice-with-standards 82 6 12 Eurosder 2 55 converted coppice-with-standards 80 2 18 Hemimoder 12 56 converted coppice-with-standards 80 2 18 Hemimoder 12 62 converted coppice-with-standards 80 2 18 Otigonull 7 64 converted coppice-with-standards 80 4 38 Dysmull 7 65 converted coppice-with-standards 80 9 11 10 Dysmull 13 66 converted coppice-with-standards 80 9 12 14 14 Nemmoder 7 7 converted coppice-with-standards 80 9 12 12 12 12 12 12 12	48	even-aged high forest	80 68	11 17	10 15	Eumoder	6
51 even-spic high forest 77 22 1 Digmull 3 54 converted copple-with-standards 83 9 7 Herminoder 2 55 converted copple-with-standards 80 2 68 12 Euroder 2 60 converted copple-with-standards 80 2 18 Herminoder 12 61 converted copple-with-standards 80 2 18 Herminoder 7 62 converted copple-with-standards 82 0 18 Oligonull 7 63 converted copple-with-standards 82 0 18 Oligonull 7 64 converted copple-with-standards 83 0 62 Oligonull 12 75 converted copple-with-standards 83 0 62 Digonull 12 76 converted copple-with-standards 83 0 12 12 12 77 converted copple-with-standards 86	50	even-aged high forest	69	17	14	Eumoder	6
64 converted coppie-with-standards 69 4 27 Dysmull 3 65 converted coppie-with-standards 82 6 12 Euroder 2 67 converted coppie-with-standards 82 6 12 Euroder 2 63 converted coppie-with-standards 83 2 18 Hemimoder 12 63 converted coppie-with-standards 83 2 64 Oligomull 12 64 converted coppie-with-standards 82 4 38 Dysmull 7 65 converted coppie-with-standards 83 0 62 11 Hemimoder 7 66 converted coppie-with-standards 83 0 62 4 Oligomull 13 77 converted coppie-with-standards 80 9 Dipsmull 12 78 converted coppie-with-standards 65 3 32 Oligomull 12 79 converted coppie-with-standards 65	51	even-aged high forest	77	22	1	Oligomull	3.5
b3 converted copple-with-standards 83 9 / Herminober 2 57 converted copple-with-standards 78 12 Euroder 2 58 converted copple-with-standards 80 2 18 Herminoder 2 62 converted copple-with-standards 85 3 13 Herminoder 7 64 converted copple-with-standards 88 4 80 Operuit 1 65 converted copple-with-standards 80 9 11 Herminoder 7 68 converted copple-with-standards 80 9 11 Herminoder 7 69 converted copple-with-standards 79 11 10 Dysmull 13 76 converted copple-with-standards 66 19 Oligomull 12 78 converted copple-with-standards 66 3 Oligomull 12 76 converted copple-with-standards 66 7 Oligomull 12 </td <td>54</td> <td>converted coppice-with-standards</td> <td>69</td> <td>4</td> <td>27</td> <td>Dysmull</td> <td>3</td>	54	converted coppice-with-standards	69	4	27	Dysmull	3
Bit converted coppic-with-standards 78 7 15 Hernimoder 2 60 converted coppic-with-standards 34 2 64 Olgomuli 7 63 converted coppic-with-standards 85 3 13 Hernimoder 7 64 converted coppic-with-standards 85 3 13 Hernimoder 7 65 converted coppic-with-standards 81 0 49 Hernimoder 7 66 converted coppic-with-standards 83 0 62 Dysmuli 1 75 converted coppic-with-standards 83 0 62 4 Olgomuli 12 76 converted coppic-with-standards 65 16 19 Olgomuli 12 83 converted coppic-with-standards 66 3 32 Olgomuli 12 84 converted coppic-with-standards 68 23 9 Olgomuli 12 95 converted coppic-with-standards 71	55 57	converted coppice-with-standards	83 82	9	12	Eumoder	2
59 connetad coppice-with-standards 34 2 18 Hemimoder 12 62 connetad coppice-with-standards 77 10 13 Dysrull 7 64 connetad coppice-with-standards 82 0 18 Oligomull 7 66 connetad coppice-with-standards 88 4 38 Dysrull 7 66 connetad coppice-with-standards 89 11 Hemimoder 7 66 connetad coppice-with-standards 79 11 Dysrull 13 76 connetad coppice-with-standards 79 11 10 Dysrull 12 78 connetad coppice-with-standards 68 9 6 Dysrull 12 79 connetad coppice-with-standards 66 7 Oligomull 12 80 connetad coppice-with-standards 66 7 Oligomull 12 70 connetad coppice-with-standards 66 7 Oligomull 12	58	converted coppice-with-standards	78	7	15	Hemimoder	2
60 converted coppice-with-standards 34 2 64 Objecnuli 7 62 converted coppice-with-standards 85 3 13 Herninoder 7 64 converted coppice-with-standards 82 0 18 Objecnuli 7 65 converted coppice-with-standards 51 0 49 Herninoder 7 66 converted coppice-with-standards 70 20 Dysmuli 13 76 converted coppice-with-standards 72 11 10 Dysmuli 12 77 converted coppice-with-standards 72 21 7 Dysmuli 12 83 converted coppice-with-standards 86 9 6 Dysmuli 12 84 converted coppice-with-standards 88 6 7 Objecnuli 12 85 converted coppice-with-standards 88 6 7 Objecnuli 12 86 converted coppice-with-standards 71 1	59	converted coppice-with-standards	80	2	18	Hemimoder	12
Description Description Description Description Description 65 connents coppice-with standards 86 3 13 Object Telescopice 66 connents coppice-with standards 86 3 18 Object Telescopic 66 connents coppice-with standards 80 9 11 Hernimoder 7 66 connents coppice-with standards 79 11 10 Dysmull 13 76 connents coppice-with standards 79 11 10 Dysmull 12 77 connents coppice-with standards 66 19 Objecn 12 78 connents coppic-with standards 68 9 6 Dysmull 12 79 connents coppic-with standards 68 23 9 Dysmull 12 84 connents coppic-with standards 68 23 9 Dysmull 12 77 connents coppic-with standards 71 12 8 12	60 62	converted coppice-with-standards	34 77	2	64 13	Oligomull	12
64 converted coppice-with-standards 82 0 18 Oligonull 7 66 converted coppice-with-standards 80 9 11 Hemimoder 7 68 converted coppice-with-standards 80 9 11 Hemimoder 7 69 converted coppice-with-standards 79 Converted coppice-with-standards 70 Dysmull 12 77 converted coppice-with-standards 67 16 19 Oligonull 12 81 converted coppice-with-standards 86 9 6 Dysmull 12 82 converted coppice-with-standards 86 7 Oligonull 12 84 converted coppice-with-standards 88 6 7 Oligonull 12 90 converted coppice-with-standards 88 6 7 Oligonull 12 91 converted coppice-with-standards 51 14 8 Euroder 12 92 converted coppice-with-standards 52<	63	converted coppice-with-standards	85	3	13	Hemimoder	7
66 converted coppice-with-standards 51 9 Hernimoder 7 68 converted coppice-with-standards 80 9 11 Hernimoder 7 68 converted coppice-with-standards 38 0 62 Dysmull 13 76 converted coppice-with-standards 70 11 10 Dysmull 12 77 converted coppice-with-standards 72 21 7 Dysmull 12 83 converted coppice-with-standards 86 9 6 Digmull 12 84 converted coppice-with-standards 88 6 7 Oligomull 12 90 converted coppice-with-standards 68 23 9 Dysmull 2 91 converted coppice-with-standards 50 1 48 Euroder 12 92 converted coppice-with-standards 52 8 41 Hernimoder 12 93 converted coppice-with-standards 5 5 <t< td=""><td>64</td><td>converted coppice-with-standards</td><td>82</td><td>0</td><td>18</td><td>Oligomull</td><td>7</td></t<>	64	converted coppice-with-standards	82	0	18	Oligomull	7
converted copple>with standards 80 9 11 Hernimoder 7 68 converted copple>with standards 78 0 62 Dysmull 13 76 converted copple>with standards 79 26 4 Oligomull 12 77 converted copple>with standards 65 16 19 Oligomull 12 78 converted copple>with standards 69 6 Dysmull 12 84 converted copple>with standards 68 9 6 Dysmull 12 84 converted copple>with standards 68 23 9 Dysmull 12 87 converted copple>with standards 68 23 9 Dysmull 12 80 converted copple>with standards 71 18 21 Dysmull 6 91 converted copple>with standards 72 8 41 Hernimoder 12 93 converted copple>with standards 74 30 Hernimoder <	65	converted coppice-with-standards	58	4	38	Dysmull	1
econverted coppice-with-standards 38 0 62 Dysmull 7 75 converted coppice-with-standards 79 11 10 Dysmull 13 77 converted coppice-with-standards 70 28 4 Oligomull 13 77 converted coppice-with-standards 72 21 7 Dysmull 12 83 converted coppice-with-standards 86 9 6 Dysmull 12 84 converted coppice-with-standards 88 6 7 Oligomull 12 90 converted coppice-with-standards 68 23 9 Dysmull 2 91 converted coppice-with-standards 50 1 48 Euroder 12 92 converted coppice-with-standards 50 1 48 Euroder 12 93 converted coppice-with-standards 51 3 53 Dysmull 6 101 converted coppice-with-standards 71 11 1	68	converted coppice-with-standards	51 80	9	49 11	Hemimoder	7
75converted coppice-with-standards701110Dysmull1377converted coppice-with-standards70264Oilgomull1279converted coppice-with-standards72217Dysmull1284converted coppice-with-standards86283Oilgomull1284converted coppice-with-standards86332Oilgomull1286converted coppice-with-standards867Oilgomull391converted coppice-with-standards88677Oilgomull292converted coppice-with-standards71128Heinmoder1293converted coppice-with-standards711821Dysmull694converted coppice-with-standards71821Dysmull695converted coppice-with-standards72841Heinmoder196converted coppice-with-standards733Dysmull6101converted coppice-with-standards7442Euroder8103converted coppice-with-standards7443Heinimoder1.5105converted coppice-with-standards54442Euroder8104converted coppice-with-standards54442Euroder8105converted coppice-with-standards54443Heinimoder1.5103	69	converted coppice-with-standards	38	0	62	Dysmull	7
76 converted coppice-with-standards 70 26 4 Oligonull 13 77 converted coppice-with-standards 66 19 Oligonull 12 84 converted coppice-with-standards 68 9 6 Dysmull 12 84 converted coppice-with-standards 68 9 6 Dysmull 12 87 converted coppice-with-standards 68 6 7 Oligonull 3 90 converted coppice-with-standards 68 6 7 Oligonull 2 91 converted coppice-with-standards 68 6 7 Dysmull 2 92 converted copice-with-standards 50 1 48 Eumoder 1 93 converted copice-with-standards 52 8 41 Hemimoder 1 94 converted copice-with-standards 53 Dysmull 6 1 14 1 1 1 95 converted copice-with-standards	75	converted coppice-with-standards	79	11	10	Dysmull	13
79 Converted coppice-with-standards 72 1 7 Dysmull 12 83 converted coppice-with-standards 69 28 3 Oligomull 12 84 converted coppice-with-standards 65 3 32 Oligomull 12 86 converted copice-with-standards 66 7 Oligomull 12 90 converted copice-with-standards 68 6 7 Oligomull 12 91 converted copice-with-standards 50 1 48 Eumoder 12 92 converted copice-with-standards 50 1 48 Eumoder 12 93 converted copice-with-standards 50 1 48 Eumoder 12 94 converted copice-with-standards 52 8 41 Hemimoder 12 101 converted copice-with-standards 71 11 18 Dysmull 6 102 converted copice-with-standards 71 11 1	76 77	converted coppice-with-standards	70 65	26 16	4 19	Oligomull	13
83converted coppice-with-standards86960 psmuli1284converted coppice-with-standards86960 Uigomuli1287converted coppice-with-standards88670 Uigomuli391converted coppice-with-standards88670 Uigomuli392converted coppice-with-standards71128Hemimoder1293converted coppice-with-standards50148Eumoder1294converted coppice-with-standards52841Hemimoder698converted coppice-with-standards52841Hemimoder1101converted coppice-with-standards76024Hemimoder1102converted coppice-with-standards63730Hemimoder1103converted coppice-with-standards711118Dysmuli3104converted coppice-with-standards711118Dysmuli2105converted coppice-with-standards7330Hemimoder8114converted coppice-with-standards76618Hemimoder7115converted coppice-with-standards76618Mesonuli6124converted coppice-with-standards76618Mesonuli6125converted coppice-with-standards76618 <td< td=""><td>79</td><td>converted coppice-with-standards</td><td>72</td><td>21</td><td>7</td><td>Dysmull</td><td>12</td></td<>	79	converted coppice-with-standards	72	21	7	Dysmull	12
84 converted coppice-with-standards 86 9 6 Dysmull 12 86 converted coppice-with-standards 82 10 28 Oligomull 12 87 converted coppice-with-standards 88 6 7 Oligomull 3 91 converted coppice-with-standards 71 1 28 Hemimoder 12 92 converted coppice-with-standards 71 8 21 Dysmull 6 93 converted coppice-with-standards 71 8 21 Dysmull 6 94 converted coppice-with-standards 71 8 21 Dysmull 6 100 converted coppice-with-standards 76 0 24 Hemimoder 1 101 converted coppice-with-standards 71 11 18 Dysmull 6 103 converted coppice-with-standards 71 11 18 Dysmull 3 116 converted coppice-with-standards 56 <	83	converted coppice-with-standards	69	28	3	Oligomull	12
action converted coppice-with-standards 60 3 32 Originnull 12 90 converted coppice-with-standards 88 6 7 Oligonnull 3 91 converted coppice-with-standards 71 1 28 Hernimoder 12 92 converted coppice-with-standards 71 8 21 Dysmull 6 98 converted coppice-with-standards 71 8 21 Dysmull 6 99 converted coppice-with-standards 52 8 41 Hernimoder 1 100 converted coppice-with-standards 52 8 41 Hernimoder 1 101 converted coppice-with-standards 52 8 41 Hernimoder 1 102 converted coppice-with-standards 52 8 41 Hernimoder 1 103 converted coppice-with-standards 65 1 34 Hernimoder 8 114 converted coppice-with-standards <td< td=""><td>84</td><td>converted coppice-with-standards</td><td>86</td><td>9</td><td>6</td><td>Dysmull</td><td>12</td></td<>	84	converted coppice-with-standards	86	9	6	Dysmull	12
90 converted coppice-with-standards 88 6 7 Oligonull 3 91 converted coppice-with-standards 68 23 9 Dysmull 2 92 converted coppice-with-standards 50 1 48 Euroder 12 96 converted coppice-with-standards 52 8 41 Hemimoder 6 99 converted coppice-with-standards 52 8 41 Hemimoder 1 100 converted coppice-with-standards 55 1 34 Hemimoder 1 101 converted coppice-with-standards 76 0 24 Hemimoder 1 102 converted coppice-with-standards 63 7 30 Hemimoder 1.5 105 converted coppice-with-standards 54 4 42 Euroder 8 114 converted coppice-with-standards 56 23 21 Dysmull 3 115 converted coppice-with-standards 55	87	converted coppice-with-standards	62	3 10	32 28	Oligomull	12
91 converted coppice-with-standards 86 23 9 Dysmull 2 92 converted coppice-with-standards 50 1 48 Eumoder 12 93 converted coppice-with-standards 50 1 48 Eumoder 12 96 converted coppice-with-standards 71 8 21 Dysmull 6 97 converted coppice-with-standards 76 0 24 Hemimoder 1 100 converted coppice-with-standards 76 0 24 Hemimoder 1 101 converted coppice-with-standards 76 0 24 Hemimoder 1 102 converted coppice-with-standards 71 11 18 Dysmull 1 103 converted coppice-with-standards 71 11 18 Dysmull 3 114 converted coppice-with-standards 39 2 59 Hemimoder 7 115 converted coppice-with-standards 61	90	converted coppice-with-standards	88	6	7	Oligomull	3
92 Converted coppice-with-standards 71 1 2.8 Hemmoder 12 96 converted coppice-with-standards 71 8 21 Dysmull 6 98 converted coppice-with-standards 22 11 67 Dysmull 6 100 converted coppice-with-standards 45 3 53 Dysmull 6 101 converted coppice-with-standards 65 1 34 Hemimoder 1 102 converted coppice-with-standards 65 1 34 Hemimoder 1 103 converted coppice-with-standards 65 1 34 Hemimoder 1 106 converted coppice-with-standards 71 11 18 Dysmull 3 114 converted coppice-with-standards 54 4 4 2 Eumoder 8 114 converted coppice-with-standards 61 5 34 Hemimoder 7 117 converted coppice-with-standards	91	converted coppice-with-standards	68	23	9	Dysmull	2
96 converted coppice-with-standards 71 8 21 Dysmull 6 98 converted coppice-with-standards 52 8 41 Hemimoder 6 100 converted coppice-with-standards 45 3 53 Dysmull 6 101 converted coppice-with-standards 66 1 34 Hemimoder 1 103 converted coppice-with-standards 63 7 30 Hemimoder 12 106 converted coppice-with-standards 54 4 42 Euroder 8 109 converted coppice-with-standards 39 2 59 Hemimoder 12 116 converted coppice-with-standards 61 5 34 Hemimoder 7 117 converted coppice-with-standards 55 26 18 Mesomull 6 128 converted coppice-with-standards 55 26 18 Mesomull 9 131 converted coppice-with-standards 52	92 93	converted coppice-with-standards	50	1	28 48	Eumoder	12
98converted coppice-with-standards52841Hemimoder699converted coppice-with-standards221167Dysmull6101converted coppice-with-standards76024Hemimoder1102converted coppice-with-standards63730Hemimoder1103converted coppice-with-standards63730Hemimoder8104converted coppice-with-standards711118Dysmoder8105converted coppice-with-standards39259Hemimoder8114converted coppice-with-standards562321Dysmull2115converted coppice-with-standards63307Dysmull3116converted coppice-with-standards63307Dysmull3117converted coppice-with-standards65350Eumoder7128converted coppice-with-standards59437Hemimoder9130converted coppice-with-standards59437Hemimoder99133even-aged high forest1000Mesomull99134even-aged high forest98111Mesomull99135even-aged high forest9406Mesomull99144even-aged high forest9406Mesomull99135even-aged	96	converted coppice-with-standards	71	8	21	Dysmull	6
99 converted coppice-with-standards 22 11 67 Dysmull 6 100 converted coppice-with-standards 76 0 24 Hemimoder 1 101 converted coppice-with-standards 66 1 34 Hemimoder 2 103 converted coppice-with-standards 63 7 30 Hemimoder 1.5 105 converted coppice-with-standards 71 11 18 Dysmull 3 106 converted coppice-with-standards 39 2 59 Hemimoder 8 114 converted coppice-with-standards 66 23 21 Dysmull 3 115 converted coppice-with-standards 66 30 7 Dysmull 6 119 converted coppice-with-standards 55 26 18 Mesomull 6 128 converted coppice-with-standards 52 4 37 Hemimoder 9 130 converted coppice-with-standards 52 <td>98</td> <td>converted coppice-with-standards</td> <td>52</td> <td>8</td> <td>41</td> <td>Hemimoder</td> <td>6</td>	98	converted coppice-with-standards	52	8	41	Hemimoder	6
100 Converted coppice-with-standards 76 0 24 Hemimoder 1 101 converted coppice-with-standards 65 1 34 Hemimoder 1 103 converted coppice-with-standards 65 1 34 Hemimoder 1.5 105 converted coppice-with-standards 71 11 18 Dysmoder 8 106 converted coppice-with-standards 39 2 59 Hemimoder 8 114 converted coppice-with-standards 39 2 59 Hemimoder 8 114 converted coppice-with-standards 61 5 34 Hemimoder 7 117 converted coppice-with-standards 61 5 34 Hemimoder 7 128 converted coppice-with-standards 55 26 18 Mesomull 9 131 converted coppice-with-standards 32 0 68 Dysmull 12 133 even-aged high forest 100	99 100	converted coppice-with-standards	22 45	11	67 53	Dysmull	6
102 converted coppice-with-standards 65 1 34 Hemimoder 2 103 converted coppice-with-standards 63 7 30 Hemimoder 1.5 106 converted coppice-with-standards 54 4 42 Eumoder 8 109 converted coppice-with-standards 39 2 59 Hemimoder 8 114 converted coppice-with-standards 54 20 39 Dysmull 3 115 converted coppice-with-standards 56 23 21 Dysmull 3 116 converted coppice-with-standards 61 5 34 Hemimoder 7 117 converted coppice-with-standards 55 26 18 Mesomull 6 128 converted coppice-with-standards 52 26 18 Mesomull 9 131 converted coppice-with-standards 52 26 18 Mesomull 99 133 converted coppice-with-standards 52<	101	converted coppice-with-standards	76	0	24	Hemimoder	1
103 converted coppice-with-standards 63 7 30 Hemimoder 1.5 105 converted coppice-with-standards 71 11 18 Dysmoder 12 106 converted coppice-with-standards 39 2 59 Hemimoder 8 114 converted coppice-with-standards 61 23 21 Dysmull 3 115 converted coppice-with-standards 61 5 34 Hemimoder 7 119 converted coppice-with-standards 65 25 06 18 Hemimoder 8 129 converted coppice-with-standards 55 26 18 Mesomull 6 130 converted coppice-with-standards 55 26 18 Mesomull 9 131 converted coppice-with-standards 55 4 37 Hemimoder 2 132 even-aged high forest 100 0 0 Mesomull 9 133 eower-aged high forest 100 0 0 Mesomull 99 134 even-a	102	converted coppice-with-standards	65	1	34	Hemimoder	2
Index converted coppice-with-standards 54 4 42 Eumoder 12 106 converted coppice-with-standards 39 2 59 Hemimoder 8 114 converted coppice-with-standards 39 2 59 Hemimoder 8 115 converted coppice-with-standards 66 23 21 Dysmull 3 116 converted coppice-with-standards 61 5 34 Hemimoder 8 119 converted coppice-with-standards 76 6 18 Hemimoder 7 129 converted coppice-with-standards 55 26 18 Mesomull 6 120 converted coppice-with-standards 55 26 18 Mesomull 9 130 converted coppice-with-standards 52 0 68 Dysmull 12 131 converted coppice-with-standards 52 0 68 Dysmull 9 133 even-aged high forest 100 0 0 Mesomull 99 133 even-aged high fore	103	converted coppice-with-standards	63	7	30	Hemimoder	1.5
109 converted coppice-with-standards 39 2 59 Hemimoder 8 114 converted coppice-with-standards 41 20 39 Dysmull 3 115 converted coppice-with-standards 66 23 21 Dysmull 3 116 converted coppice-with-standards 61 5 34 Hemimoder 7 119 converted coppice-with-standards 76 6 18 Hemimoder 7 128 converted coppice-with-standards 55 26 18 Mesomull 6 129 converted coppice-with-standards 59 4 37 Hemimoder 2 131 converted coppice-with-standards 52 0 68 Dysmull 12 132 converted coppice-with-standards 52 0 68 Dysmull 99 133 even-aged high forest 100 0 0 Mesomull 99 134 even-aged high forest 94 0	105	converted coppice-with-standards	54	4	42	Eumoder	8
114 converted coppice-with-standards 41 20 39 Dysmull 3 115 converted coppice-with-standards 66 23 21 Dysmull 2 116 converted coppice-with-standards 63 30 7 Dysmull 3 117 converted coppice-with-standards 61 5 34 Hemimoder 7 119 converted coppice-with-standards 55 26 18 Mesomull 6 128 converted coppice-with-standards 55 26 18 Mesomull 9 130 converted coppice-with-standards 52 0 68 Dysmull 12 131 converted coppice-with-standards 52 0 08 Dysmull 99 132 even-aged high forest 100 0 0 Mesomull 99 133 even-aged high forest 98 0 2 Hemimoder 99 134 even-aged high forest 94 0 6 Mesomull 99 144 even-aged high forest 20	109	converted coppice-with-standards	39	2	59	Hemimoder	8
115 converted coppice-with-standards 56 23 21 Dysmull 2 116 converted coppice-with-standards 63 30 7 Dysmull 3 117 converted coppice-with-standards 61 5 34 Hemimoder 7 119 converted coppice-with-standards 55 26 18 Mesomull 6 129 converted coppice-with-standards 55 26 18 Mesomull 9 130 converted coppice-with-standards 59 4 37 Hemimoder 2 131 converted coppice-with-standards 59 4 37 Hemimoder 9 132 even-aged high forest 100 0 0 Mesomull 99 133 even-aged high forest 100 0 0 Mesomull 99 134 even-aged high forest 84 0 6 Mesomull 99 140 even-aged high forest 84 0 6	114	converted coppice-with-standards	41	20	39	Dysmull	3
117 converted coppice-with-standards 61 5 34 Hemimoder 7 119 converted coppice-with-standards 76 6 18 Hemimoder 8 128 converted coppice-with-standards 55 26 18 Mesomull 6 129 converted coppice-with-standards 65 35 0 Eumoder 7 130 converted coppice-with-standards 59 4 37 Hemimoder 2 131 converted coppice-with-standards 32 0 68 Dysmull 12 132 even-aged high forest 100 0 0 Mesornull 99 133 even-aged high forest 100 0 0 Mesornull 99 134 even-aged high forest 98 0 2 Hemimoder 99 135 even-aged high forest 94 0 6 Mesornull 99 140 even-aged high forest 20 0 80 Mesornull 99 144 even-aged high forest 95 0 <td>115</td> <td>converted coppice-with-standards</td> <td>50 63</td> <td>23 30</td> <td>7</td> <td>Dysmull</td> <td>2</td>	115	converted coppice-with-standards	50 63	23 30	7	Dysmull	2
119 converted coppice-with-standards 76 6 18 Hemimoder 8 128 converted coppice-with-standards 55 26 18 Mesonull 6 129 converted coppice-with-standards 55 26 18 Mesonull 6 130 converted coppice-with-standards 59 4 37 Hemimoder 2 131 converted coppice-with-standards 59 4 37 Hemimoder 9 132 even-aged high forest 100 0 0 Mesonull 99 133 even-aged high forest 100 0 0 Mesonull 99 136 even-aged high forest 100 0 0 Mesonull 99 140 even-aged high forest 89 1 11 Mesonull 99 144 even-aged high forest 20 0 80 Mesonull 99 144 even-aged high forest 99 0 1 Oligonull<	117	converted coppice-with-standards	61	5	34	Hemimoder	7
128 converted coppice-with-standards 55 26 18 Mesonull 6 129 converted coppice-with-standards 65 35 0 Eumoder 7 130 converted coppice-with-standards 59 4 37 Hemimoder 2 131 converted coppice-with-standards 52 0 68 Dysmull 12 132 even-aged high forest 100 0 0 Mesomull 99 133 even-aged high forest 100 0 0 Mesomull 99 136 even-aged high forest 94 0 6 Mesomull 99 138 even-aged high forest 89 1 11 Mesomull 99 140 even-aged high forest 82 0 6 Mesomull 99 143 even-aged high forest 82 0 80 Mesomull 99 144 even-aged high forest 95 0 4 Oligomull <td< td=""><td>119</td><td>converted coppice-with-standards</td><td>76</td><td>6</td><td>18</td><td>Hemimoder</td><td>8</td></td<>	119	converted coppice-with-standards	76	6	18	Hemimoder	8
123 converted coppice-with-standards 55 6 Clinicitie 7 130 converted coppice-with-standards 59 4 37 Hemimoder 2 131 converted coppice-with-standards 52 0 68 Dysmull 12 132 even-aged high forest 100 0 0 Mesomull 99 133 even-aged high forest 100 0 0 Mesomull 99 136 even-aged high forest 94 0 6 Mesomull 99 138 even-aged high forest 84 0 6 Mesomull 99 140 even-aged high forest 84 0 6 Mesomull 99 143 even-aged high forest 20 0 80 Mesomull 99 144 even-aged high forest 94 0 6 Mesomull 99 144 even-aged high forest 94 0 6 Mesomull 99	128	converted coppice-with-standards	55 65	26 35	18	Mesomull	6
131 converted coppice-with-standards 32 0 68 Dysmull 12 132 even-aged high forest 100 0 0 Mesomull 99 133 even-aged high forest 100 0 0 Mesomull 99 135 even-aged high forest 98 0 2 Hemimoder 99 136 even-aged high forest 94 0 6 Mesomull 99 140 even-aged high forest 89 1 11 Mesomull 99 141 even-aged high forest 20 0 80 Mesomull 99 144 even-aged high forest 20 0 80 Mesomull 99 144 even-aged high forest 94 0 6 Mesomull 99 144 even-aged high forest 94 0 6 Mesomull 99 145 even-aged high forest 99 0 1 Oligomull 99 146 even-aged high forest 99 1 0 Mesomull 99 <td>130</td> <td>converted coppice-with-standards</td> <td>59</td> <td>4</td> <td>37</td> <td>Hemimoder</td> <td>2</td>	130	converted coppice-with-standards	59	4	37	Hemimoder	2
132 even-aged high forest 100 0 0 Mesomull 99 133 even-aged high forest 100 0 0 Mesomull 99 135 even-aged high forest 98 0 2 Hemimoder 99 136 even-aged high forest 100 0 0 Mesomull 99 136 even-aged high forest 100 0 0 Mesomull 99 138 even-aged high forest 89 1 11 Mesomull 99 140 even-aged high forest 62 0 38 Mesomull 99 141 even-aged high forest 20 0 80 Mesomull 99 143 even-aged high forest 94 0 6 Mesomull 99 144 even-aged high forest 94 0 6 Mesomull 99 145 even-aged high forest 99 0 1 Oligomull 99 146 even-aged high forest 99 1 0 Mesomull 99 <td>131</td> <td>converted coppice-with-standards</td> <td>32</td> <td>0</td> <td>68</td> <td>Dysmull</td> <td>12</td>	131	converted coppice-with-standards	32	0	68	Dysmull	12
135 even-aged high forest 98 0 2 Hemimoder 99 136 even-aged high forest 100 0 0 Mesomuli 99 136 even-aged high forest 100 0 0 Mesomuli 99 138 even-aged high forest 94 0 6 Mesomuli 99 140 even-aged high forest 83 1 11 Mesomuli 99 141 even-aged high forest 62 0 38 Mesomuli 99 143 even-aged high forest 94 0 6 Mesomuli 99 144 even-aged high forest 94 0 6 Mesomuli 99 145 even-aged high forest 95 0 1 Oligomuli 99 147 even-aged high forest 99 1 0 Mesomuli 99 148 even-aged high forest 76 0 24 Dysmuli 8 152 </td <td>132</td> <td>even-aged high forest</td> <td>100</td> <td>0</td> <td>0</td> <td>Mesomuli</td> <td>99</td>	132	even-aged high forest	100	0	0	Mesomuli	99
136 even-aged high forest 100 0 Mesomull 99 138 even-aged high forest 94 0 6 Mesomull 99 140 even-aged high forest 89 1 11 Mesomull 99 140 even-aged high forest 89 1 11 Mesomull 99 141 even-aged high forest 20 0 80 Mesomull 99 143 even-aged high forest 94 0 6 Mesomull 99 144 even-aged high forest 94 0 6 Mesomull 99 145 even-aged high forest 95 0 4 Oligomull 99 147 even-aged high forest 99 1 0 Mesomull 99 148 even-aged high forest 99 1 0 Mesomull 99 152 even-aged high forest 76 0 24 Dysmull 8 153 even	135	even-aged high forest	98	0	2	Hemimoder	99
138 even-aged high forest 94 0 6 Mesomull 99 140 even-aged high forest 89 1 11 Mesomull 99 141 even-aged high forest 62 0 38 Mesomull 99 143 even-aged high forest 20 0 80 Mesomull 99 144 even-aged high forest 94 0 6 Mesomull 99 144 even-aged high forest 95 0 4 Oligomull 99 145 even-aged high forest 99 0 1 Oligomull 99 147 even-aged high forest 99 0 1 Oligomull 99 148 even-aged high forest 99 0 24 Dysmull 8 152 even-aged high forest 100 0 Oligomull 5 155 even-aged high forest 89 0 11 Dysmull 8 156 eve	136	even-aged high forest	100	0	0	Mesomull	99
140 even-aged high forest 89 1 11 Mesomull 99 141 even-aged high forest 62 0 38 Mesomull 99 143 even-aged high forest 20 0 80 Mesomull 99 144 even-aged high forest 94 0 6 Mesomull 99 144 even-aged high forest 95 0 4 Oligomull 99 145 even-aged high forest 99 0 1 Oligomull 99 147 even-aged high forest 99 0 1 Oligomull 99 148 even-aged high forest 99 1 0 Mesomull 99 152 even-aged high forest 100 0 Oligomull 5 153 even-aged high forest 91 3 6 Oligomull 5 156 even-aged high forest 89 0 11 Dysmull 8 158 co	138	even-aged high forest	94	0	6	Mesomuli	99
143 even-aged high forest 20 0 80 Mesomuli 99 144 even-aged high forest 20 0 80 Mesomuli 99 144 even-aged high forest 95 0 4 Oligomuli 99 145 even-aged high forest 95 0 4 Oligomuli 99 147 even-aged high forest 99 0 1 Oligomuli 99 148 even-aged high forest 99 0 24 Dysmuli 8 152 even-aged high forest 100 0 Oligomuli 5 153 even-aged high forest 100 0 Oligomuli 5 156 even-aged high forest 89 0 11 Dysmuli 8 158 converted coppice-with-standards 76 8 16 Euroder 12 159 converted coppice-with-standards 55 23 22 Mesomuli 10 167 <t< td=""><td>140 141</td><td>even-aged high forest</td><td>89 62</td><td>1 0</td><td>11 38</td><td>Mesomuli</td><td>99 99</td></t<>	140 141	even-aged high forest	89 62	1 0	11 38	Mesomuli	99 99
144 even-aged high forest 94 0 6 Mesonull 99 145 even-aged high forest 95 0 4 Oligomull 99 147 even-aged high forest 99 0 1 Oligomull 99 148 even-aged high forest 99 1 0 Mesonull 99 152 even-aged high forest 76 0 24 Dysmull 8 153 even-aged high forest 100 0 Oligomull 5 155 even-aged high forest 91 3 6 Oligomull 5 156 even-aged high forest 89 0 11 Dysmull 8 158 converted coppice-with-standards 76 8 16 Eumoder 12 159 converted coppice-with-standards 55 23 22 Mesonull 10 160 converted coppice-with-standards 76 3 21 Dysmull 2	143	even-aged high forest	20	0	80	Mesomuli	99
14b even-aged high forest 95 0 4 Oligomull 99 147 even-aged high forest 99 0 1 Oligomull 99 148 even-aged high forest 99 1 0 Mesornull 99 152 even-aged high forest 99 1 0 Mesornull 8 153 even-aged high forest 91 3 6 Oligomull 5 155 even-aged high forest 91 3 6 Oligomull 8 156 even-aged high forest 89 0 11 Dysmull 8 158 converted coppice-with-standards 76 8 16 Eumoder 12 159 converted coppice-with-standards 76 3 22 Mesomull 10 160 converted coppice-with-standards 76 3 21 Dysmull 2	144	even-aged high forest	94	0	6	Mesomull	99
148 even-aged high forest 99 1 0 Mesonull 99 152 even-aged high forest 99 1 0 Mesonull 99 153 even-aged high forest 100 0 0 Oligomull 5 155 even-aged high forest 91 3 6 Oligomull 5 156 even-aged high forest 89 0 11 Dysmull 8 158 converted coppice-with-standards 76 8 16 Eumoder 12 159 converted coppice-with-standards 55 23 22 Mesonull 10 160 converted coppice-with-standards 76 3 21 Dysmull 2	145 147	even-aged high forest	95 99	0	4	Oligomull	99 99
152 even-aged high forest 76 0 24 Dysmull 8 153 even-aged high forest 100 0 0 Oligomull 5 155 even-aged high forest 91 3 6 Oligomull 5 156 even-aged high forest 89 0 11 Dysmull 8 158 converted coppice-with-standards 76 8 16 Eumoder 12 159 converted coppice-with-standards 55 23 22 Mesomull 10 160 converted coppice-with-standards 76 3 21 Dysmull 2	148	even-aged high forest	99	1	0	Mesomull	99
153 even-aged high forest 100 0 0 Oligomull 5 155 even-aged high forest 91 3 6 Oligomull 5 156 even-aged high forest 89 0 11 Dysmull 8 158 converted coppice-with-standards 76 8 16 Eumoder 12 159 converted coppice-with-standards 55 23 22 Mesomull 10 160 converted coppice-with-standards 76 3 21 Dysmull 2	152	even-aged high forest	76	0	24	Dysmull	8
156 even-aged high forest 81 3 6 Uligomuli 5 156 even-aged high forest 89 0 11 Dysmuli 8 158 converted coppice-with-standards 76 8 16 Eumoder 12 159 converted coppice-with-standards 55 23 22 Mesomuli 10 160 converted coppice-with-standards 76 3 21 Dysmuli 2	153	even-aged high forest	100	0	0	Oligomull	5
158 converted coppice-with-standards 76 8 16 Eumoder 12 159 converted coppice-with-standards 55 23 22 Mesomuli 10 160 converted coppice-with-standards 40 6 53 Hemimoder 10 167 converted coppice-with-standards 76 3 21 Dysmuli 2	155	even-aged high forest	ฮา 89	о 0	ა 11	Dvsmull	5 8
159 converted coppice-with-standards 55 23 22 Mesomuli 10 160 converted coppice-with-standards 40 6 53 Hernimoder 10 167 converted coppice-with-standards 76 3 21 Dysmuli 2	158	converted coppice-with-standards	76	8	16	Eumoder	12
100 converted coppice-with-standards 40 b 53 Hemimoder 10 167 converted coppice-with-standards 76 3 21 Dysmull 2	159	converted coppice-with-standards	55	23	22 52	Mesomull	10
	167	converted coppice-with-standards	76	3	21	Dysmull	2

Table 2. Product-moment correlation coefficients between Humus Index, pH_{water} and main parameters describing stand and soil condition. Correlation coefficients were tested by t test. Significance levels are: * = 0.05, ** = 0.01, *** = 0.001. Degrees of freedom = 94, except for stand age (46) and time from last thinning operation (82)

	Humus Index	pH _{water}
Time from last thinning operation	0.10 NS	-0.27**
Age of the stand	0.73***	0.05 NS
Height of the three dominant trees	0.61***	-0.35***
Diameter at breast height of the three dominant trees	0.64***	-0.46***
Basal area	0.41***	-0.13 NS
% basal area occupied by beech	0.29**	-0.20 NS
% basal area occupied by hornbeam	0.21*	-0.16 NS
Wood standing crop	0.59***	-0.34***
Depth of the first enrichment in clay	0.43***	0.04 NS
Depth of the first clay-dominated horizon	0.47***	-0.05 NS
% clay	-0.21*	-0.31**
% silt	-0.19 NS	-0.40***
% sand	0.20 NS	0.38***
pH _{water}	-0.39***	
рН _{кСI}	0.12 NS	0.58***
Cation exchange capacity	-0.25*	-0.27**
Exchangeable Ca	-0.51***	0.45***
Exchangeable Mg	-0.38***	0.13 NS
Exchangeable K	-0.29**	-0.09 NS
Total exchangeable bases	-0.50***	0.39***
Base saturation	-0.61***	0.68***

- 2 Fig. 1

