
HAL Id: hal-00495382
https://hal.science/hal-00495382

Submitted on 25 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polymorphic Matrices in Paladin
Frédéric Guidec, Jean-Marc Jézéquel

To cite this version:
Frédéric Guidec, Jean-Marc Jézéquel. Polymorphic Matrices in Paladin. Workshop on Object-
Based Parallel and Distributed Computation (OBPDC’95), Jun 1995, Tokyo, Japan. pp.18-37. �hal-
00495382�

https://hal.science/hal-00495382
https://hal.archives-ouvertes.fr

Polymorphic Matrices in Paladin

F. Guidec and J.-M. JSz~quel

I.R.I.S.A. Campus de Beanlieu
F-35042 I~NNES CEDEX, FRANCE

Tel: +33-99.84.71.92 - - Fax: +33-99.84.71.71
E-mail: jezequel~irisa.fr

Abstract . Scientific programmers are eager to take advantage of the com-
putational power offered by Distributed Computing Systems (DCSs), but
axe generally reluctant to undertake the porting of their application pro-
grams onto such machines. The DCS commercially available today are in-
deed widely believed to be difficult to use, which should not be a surprise
since they axe traditionally prqgrammed with software tools dating back to
the days of punch cards and paper tape. We claim that provided modern
object oriented technologies are used, these computers can be programmed
easily and efficiently. In EPEE, our Eiffel Parallel Execution Environment,
we propose to use a kind of parallelism known as data-parallelism, encapsu-
lated within classes of the Eiffel sequential object-oriented language, using
the SPMD (Single Program Multiple Data) programming model. We describe
our method for designing with this environment PALADIN, an object-oriented
linear algebra library for DCSs. We show how dynamic binding and poly-
morphism can be used to solve the problems set by the dynamic aspects of
the distribution of linear algebra objects such as matrices and vectors.

1 I n t r o d u c t i o n

Distributed computing systems (DCSs)nalso called distributed memory parallel
computers or multiprocessors---consist of hundreds or thousands of processors and
are now commercially available. An example of this kind of DCS is the Intel Paragon
supercomputer, a distributed-memory multicomputer with architecture that can
accommodate more than a thousand heterogeneous nodes connected in a two-
dimensional rectangular mesh (see Figure 1). Its computation nodes are based on In-
tel i860 processors, and communicate by passing messages over a high-speed internal
interconnect network. These kinds of multiprocessors provide orders of magnitude
more raw power than traditional supercomputers at lower costs. They enable the
development of previously infeasible applications (called grand challenges) in vari-
ous scientific domains, such as materials science (for the aerospace and automobile
industries), molecular biology, high-energy physics (Quantic Chromo-Dynamic), and
global climate modeling.

Although the physical world they model is inherently parallel, scientific program-
mers used to rely on sequential techniques and algorithms to solve their problems,
because these algorithms e.g., the N-body problem) often present a better computa-
tional complexity than possible direct solutions. Their interest in concurrency only
results from their desire to improve the performance of sequential algorithms applied

]9

Fig. 1. The architecture of the Intel Paragon XP/S supercomputer

to large-scale numerical computations [12]. Scientific programmers are generally re-
luctant to cope with the manual porting of their applications on DCSs, because the
average user will not move from an environment in which programming is relatively
easy to one in which it is relatively hard unless the performance gains are truly
remarkable and unachievable by any other method. They soon discovered how te-
dious it was to write parallel programs in a dialect that made the user responsible
for creating and managing distribution and parallel computations and for explicit
communication between the processors.

In this paper, we show how a sequential object oriented language such as Eiffel
(featuring strong encapsulation, static type checking, multiple inheritance, dynamic
binding and genericity) can be used to override these drawbacks. The idea is to build
easy-to-use parallel object-oriented libraries permitting an efficient and transparent
use of DCSs. We use the EPEE framework [11] to encapsulate the tricky parallel
codes in object-oriented software components that can be reused, combined and cus-
tomized in confidence by application programmers. Section 2 describes the principles
underlining our method for designing an object-oriented linear algebra library for
DCSs. We illustrate our approach with the example of PALADIN, an object-oriented
library devoted to linear algebra computation on DCSs, whose design and implemen-
tation is outlined in Section 3. We then investigate the various aspects of dealing
with multiple representations of linear algebra objects (Section 4). In the conclusion,
we enumerate the advantages of our approach and make a few prospective remarks.

2 E n c a p s u l a t i n g Para l l e l i sm and D i s t r i b u t i o n

2.1 A Simple Parallel Programming Model

The kind of parallelism we consider is inspired from Valiant's Block Synchronous
Parallel (BSP) model [13]. A computation that fits the BSP model can be seen as a

20

succession of parallel phases separated by synchronizations and sequential phases.
In EPEE, Valiant's model is implemented based on the Single Program Multi-

ple Data (SPMD) programming model. Each process executes the same program,
which corresponds to the initial user-defined sequential program. The SPMD model
preserves the conceptual simplicity of the sequential instruction flow: a user can
write an application program as a purely sequential one. At runtime, though, the
distribution of data leads to a parallel execution.

When data parallelism is involved, only a subset of the data is considered on
each processor: its own data partition. On the other hand, when control parallelism
is involved, each processor runs a subset of the original execution flow (typically some
parts of the iteration domain). In both cases, the user still views his program as a
sequential one and the parallelism is derived from the data representation. Although
EPEE allows the encapsulation of both kinds of parallelism in Eiffel classes, we
mainly focused on the encapsulation of data parallelism so far. Yet, some work is
now in progress to incorporate control parallelism in EPEE as well [9].

Our method for encapsulating parallelism within a class can be compared with
the encapsulation of tricky pointer manipulations within a linked list class that pro-
vides the user with the abstraction of a list without any visible pointer handling.
Opposite to concurrent OO languages along the line of POOL-T [2], ABCL/1 [14],
or more recently p C + + [6], which were designed to tackle problems with explicit
parallelism, our goal is to completely hide the parallelism to the application pro-
grammer.

A major consequence of this approach is that there exists two levels of program-
ming with EPEE: the class user (or client) level and the class designer level. The aim
is that, at client level, nothing but performance improvements appear when running
an application program on a parallel computer. For a user of a library designed
with EPEE, it must be possible to handle distributed objects just like local - - i . e.
non-distributed-- ones.

The problem is thus for the designer of the library to implement distributed
objects using the general data distribution and/or parallelization rules presented
in this paper. While implementing these objects, the designer must notably ensure
their portability and efficiency, and preserve a "sequential-like" interface for the sake
of the user to whom distribution and parallelization issues must be masked.

2.2 . P o l y m o r p h l e Aggrega tes

The SPMD model is mostly appropriate for solving problems that are data-oriented
and involve large amounts of data. This model thus fits well application domains that
deal with large, homogeneous data structures. Such data structures are referred to
as aggregates in the remaining of this paper. Typical aggregates are lists, sets, trees,
graphs, arrays, matrices, vectors, etc.

A computation can be efficiently parallelized only if the cost of synchronization,
communications and other processing paid for managing parallelism is compensated
by the performance improvement brought by the parallelization.

Most aggregates admit several alternative representation layouts and must thus
be considered as polymorphic entities, that is, objects that assume different forms
and whose form can change dynamically. Consider the example of matrix aggregates.

2]

Although all matrices can share a common abstract specification, they do not neces-
sarily require the same implementation layout. Obviously dense and sParse matrices
deserve different internal representations. A dense matrix may be implemented quite
simply as a bi-dimensional array, whereas a sparse matrix requires a smarter internal
representation, based for example on lists or trees. Moreover, the choice of the most
appropriate internal representation for a sparse matrix may depend on whether the
sparsity of this matrix is likely to change during its lifetime. This choice may also
be guided by considerations on the way the matrix is to be accessed (e.g regular vs
irregular, non-predictable access), or by considerations on whether memory space or
access t ime should be primarily saved.

The problem of choosing the most appropriate representation format of a ma-
trix is even more crucial in the context of distributed computation, since matr ix
aggregates can be partitioned and distributed on multi-processor machines. Each
distribution pattern for a matrix (distribution by rows, by columns, by blocks, etc.)
can then be perceived as a particular implementation of this matrix.

When designing an application program that deals with matrices, the choice
of the best representation layout for a give n matrix is a crucial issue. PALADIN for
example encapsulates several alternative representations for matrices (and for vectors
as well, though this part of PALADIN is not discussed in this paper), and makes it
possible for the application programmer to change the representation format of a
matr ix at any time during a computation. For example, after a few computat ion
steps an application program may need to convert a sparse matrix into a dense
one, because the sparsity of the matrix has decreased during the first part of the
computation. Likewise, it may sometimes be necessary to change the distribution
pattern of a distributed matrix at run-time in order to adapt its distribution to the
requirements of the computation. PALADIN thus provides a facility to redistribute
matrices dynamically, as well as a facility to transform dynamically the internal
representation format of a matrix (see section 4).

2.3 One A b s t r a c t i o n , Severa l I m p l e m e n t a t i o n s

To implement polymorphic aggregates - - b e they distributed or n o t - - using the
facilities of EPEE, we propose a method based on the dissociation of the abstract
and operationM specifications of an aggregate. The fundamental idea is to build a
hierarchy of abstraction levels. Application programs are written in such a way that
they operate on abstract data structures, whose concrete implementation is defined
independently from the programs that use them.

Eiffel provides all the mechanisms we need to dissociate the abstract specification
of an aggregate from the details relative to its implementation. The abstract spec-
ification can be easily encapsulated in a class whose interface determines precisely
the way an application programmer will view this aggregate.

The distribution of an aggregate is usually achieved in two steps. The first step
aims at providing transparency to the user. It consists in performing the actual
distribution of the aggregate on the processors of a DCS, while ensuring that the
resulting distributed aggregate can be handled in a SPMD program just like its local
counterpart in a sequential program. The second step mostly addresses performance

22

issues. It consists in parallelizing some of the features that operate on the distributed
aggregate.

One or several distribution patterns must be chosen to spread the aggregate over
a DCS. Since we opted for a data parallel approach, each processor will only own
a part of the distributed aggregate. The first thing to do is thus to implement a
mechanism ensuring a transparent remote access to non local data, while preserving
the semantics of local accesses.

When implementing distributed aggregates with EPEE, a fundamental principle
is a location rule known as the Owner Write Rule, which states that only the proces-
sor that owns a part of an aggregate is allowed to update this part. This mechanism
is commonly referred to as the Exec mechanism in the community of data paral-
lel computing. Similarly, the Refresh mechanism ensures that remote accesses are
properly dealt with. Both mechanisms have been introduced in [4], and described
formally in [3]. The EPEE toolbox provides various facilities for implementing these
mechanisms, as illustrated in the following sections with the implementation of dis-
tributed matrices.

2.4 Matrices and Vectors in PALADIN

PALADIN is built around the specifications of the basic entities of linear algebra:
matrices and vectors.

The abstract specifications of matrices and vectors are encapsulated in classes
MATRIX and VECTOR. Both classes are generic and can thus be used to instanti-
ate integer matrices and vectors, real matrices and vectors, complex matrices and
vectors, etc.

Classes MATRIX and VECTOR are deferred classes: they provide no details about
the way matrices and vectors shall be represented in memory. The specification
of their internal representation is thus left to descendant classes. This does not
imply that all features are kept deferred. Representation-dependent features are
simply declared, whereas other features are defined i.e., implemented-- directly
in MATRIX and VECTOR, as shown below.

In the following we mainly focus on the content of class MATRIX. Class VECTOR
is designed in a very similar way. The class MATRIX simply enumerates the features
that are needed to handle a matrix object, together with their formal properties
expressed as assertions (preconditions, postconditions, invariants, etc.), as illustrated
in example 2.1.

For the sake of conciseness and clarity, the class MATRIX we consider here is
a simplified version of the real class implemented in PALADIN. The class notably
includes some of the most classical linear algebra operations (sum, difference, multi-
ply, transpose, etc.) as well as more complex operations (e.g., LU, LDL T and QR
factorization, triangular system solvers, etc.). It also encapsulates the definition of
infix operators that make it possible to write in application programs an expression
such as R := A + B, where A, B and R refer to matrices.

The resulting class can be thought of as a close approximation of the abstract
data type of a matrix entity [1, 5]. A matrix is mainly characterized by its size,
stored in attributes nrow and ncolumn. Routines can be classified in two categories,
accessors and operators.

23

E x a m p l e 2 .1
d e f e r r e d c lass MATRIX [T->NUMERIC]
f e a t u r e - - Attr ibutes

nrow: INTEGER - - Number of rows
ncolumn: INTEGER - - Number of columns

f e a t u r e - - Accessors
item (i, j: INTEGER): T is

- - Return current value of item(i, j)
r e q u i r e

valid i: (i > O) a n d (i < = nrow)
~aidj: 0 > 0) and (j <= ncohmn)

deferred
e n d - - i tem

put (v: T; i, j: INTEGER) is
- - Pu t value v into item(i, j)

r e q u i r e
valid_i: (i > 0) a n d (i < = nrow)
valid j : (j > 0) a n d (j < = ncolumn)

d e f e r r e d
e n s u r e

item (i, j) = v
e n d - - pu t

row (i: INTEGER): VECTOR [T] is do ... e n d
column (j: INTEGER): VECTOR IT] is do ... e n d
diagonal (k: INTEGER): VECTOR IT] is do ... e n d
submatrix (i, j, k, h INTEGER): SUBMATRIX [T] is do ...

[' e a t u r e - - - - Operators
trace: T is do ... e n d
random (min, max: T) is do ... e n d
add (B: MATRIX IT]) is do ... e n d
mult (A, B: MATRIX IT]) is do ... e n d
LU is do ... e n d
LDLt is do ... e n d
Cholesky is do ... e n d

. . .

e n d - - class M A T R I X

10

15

20

e n d 25

30

35

A c c e s s o r s " Accessors are the features t ha t pe rmi t to access a m a t r i x in read or
wri te mode . PALADIN provides rout ines for accessing a m a t r i x a t different levels.
Basic rou t ines pu t and i t e m give access to an i t em of the m a t r i x . The i m p l e m e n -
t a t i o n of accessors depends on the fo rma t chosen to represent a m a t r i x ob jec t in
memory . Consequent ly , in class MATRIX, bo th accessors p u t and i t e m are given a
full specif icat ion (s ignature and precondi t ions and pos tcondi t ions) , b u t are left de-
ferred.

Higher level accessors allow the user to hand le a row, a c o l u m n or a d i agona l
of the m a t r i x as a vector enti ty, and a rec tangula r sect ion of the m a t r i x (func t ion
Submatr ix) . Assume tha t A is a newly created 5 x 5 integer m a t r i x . The fol lowing

24

code illustrates the use of accesser submatriz to fill a section of A with random values
(originally all items are set to zero). (00000) (i0o0i/

0 0 0 0 0 A.submatrix(2,4,2,5).random 6 1 9
00 2 7 2 A = 0 0 0

0 0 0 0 0 7 3 5
0000 '0 000

An important feature about accessors is that most of the time they imply no copy
of data. They simply provide a "view" of a section of a matrix. Thus modifying this
view is equivalent to modifying the corresponding section. Views necessitate spe-
cial implementations, which are encapsulated in classes Row, COLUMN, DIAGONAL,
SUBMATRIX, and SuBVI,~CTOR.

The set of multilevel accessors actually provides the same abstractions as the
syntactic short-cuts frequently used in books dealing with linear algebra, such as [?].
Assuming that A is a n x rn matrix, the expression A.gubmatriz Ci,], k, l) is equivalent
to the notation A(i :] , k : i) . Likewise, A.~wCi) and A.column(j)are equivalent to
A(i, :) and A(:,]) respectively.

Operators : Operators of class MATRIX are high level routines used for performing
computations implying a matrix as a whole and possibly other arguments (i. e., other
matrices or vectors). Typical operators include routines that perform scalar-matrix,
vector-matrix and matrix-matrix operations. The class also contains more compli-
cated routines for performing such computations as the Cholesky, LDL T and LU
factorizations, for solving triangular systems, etc. Since PALADIN provide accessors
at different levels (item, vector, submatrix), defining new operators is not a difficult
task. Any algorithm presented in a book can be readily reproduced in the library.

Although the class MATRIX encapsulates the abstract specification of a matrix
object, this does not imply that all features must be kept deferred in this class. Unlike
accessors put and item, operators such as trace, random, add, etc. are features that
can generally be given an operational specification based on calls to accessors and
other operators. Consequently, the implementation of an operator does not directly
depend on the internal representation format of the aggregate considered, because
this representation format is masked by the accessors.

The organization of class VECTOR is quite similar to that of MATRIX. In addition
to the basic features (attribute length, accessors put and item, etc.), this class con-
tains routines that perform scalar-vector, vector-vector (sazpy) and matrix-vector
(gazpy) operations.

3 R e p l i c a t e d a n d D i s t r i b u t e d M a t r i c e s

3.1 S e que n t i a l I m p l e m e n t a t i o n o f a M a t r i x

Once the abstract specification of an aggregate has been encapsulated in a class, it
is possible to design one or several descendant classes (i.e., classes that inherit from
the abstract class), each descendant encapsulating an alternative implementation

25

of the aggregate. This implementation can either consist in the description of a
representation format to store the aggregate in the memory of a mono-processor
machine, or it can be the description of a pattern to distribute the aggregate on a
DCS.

Fig. 2. Inheritance structure for matrix aggregates (partial view)

In the following, we show how the mechanism of multiple inheritance helps de-
signing classes that encapsulate fully operational specifications of matrix objects.
We first illustrate the approach by describing the design of class LOCAL_MATRIX,
which encapsulates a possible implementation for local- - i , e., non-distributed-- ma-
trix objects. In this class we specify that an object of type LOCAL_MATRIX must be
stored in memory as a traditional bi-dimensional array.

The class LOCAL_MATRIX simply combines the abstract specification inherited
from MATRIX together with the storage facilities provided by the class ARRAY2
available in most Eiffel libraries (see also figure 2). The text of LOCAL_MATRIX
is readily written, thanks to the mechanism of multiple inheritance: the effort of
design only comes down to combining the abstract specification of class MATRIX
with the implementation facilities offered by ARRAY2, and ensuring that the names
of the features inherited from both ancestor classes are matched correctly. In the
example 3.1, the attributes height and width of class ARRAY2 are matched with the
attributes nrow and ncoinmn of class MATRIX through renaming.

A library designed along these lines may easily be augmented with new classes
describing other kinds of entities such as sparse matrices and vectors, or symmet-
ric, lower triangular and upper triangular matrices, etc. Adding new representation
variants for matrices and vectors simply comes down to adding new classes in the
library. Moreover, each new class is not built from scratch, but inherits from already
existing classes. For the designer of the library, providing a new representation vari-
ant for a matrix or a vector usually consists in assembling existing classes to produce
a new one. Very often this process does not imply any development of new code.

26

Example 3.1
class LOCALMATRIX [T->NUMERIC]
inherit

MATRIX IT]
ARRAY2 IT]

rename height as nrow, width as ncolumn end

reation
make

nd -- class LOCALMATRIX

Unlike the abstract class MATRIX, the class LOCAL_MATRIX is a concrete (or
effective) class, which means that it can be instantiated (Assuming that no operator
has been left deferred in class MATRIX). It is thus possible to create objects of type
LOCAL_MATRIX in an application program, and to invoke on these objects some of
the accessors and operators defined in MATRIX.

3.2 D i s t r i b u t i o n o f M a t r i c e s in P a l a d i n

The PALADIN approach to the distribution of matrices is quite similar to that of
High Performance Fortran (HPF) [10]. The main difference is that HPF is based on
weird extensions of the FORTRAN 90 syntax (distribution, alignment and mapping
directives) whereas PALADIN only uses normal constructions of the Eiffel language.

Distributed matrices are decomposed into blocks, which are then mapped over
the processors of the target DCS. Managing the distribution of a matrix implies a
great amount of fairly simple but repetitive calculations, such as those that aim at
determining the identity of the processor that owns the item (i, j) of a given matrix,
and the local address of this item on this processor. The Features for doing such
calculations have been encapsulated in a class DISTRIBUTION-2D, which allows the
partition and distribution of 2-D data structures. The class DISTRIBUTION-2D is ac-
tually designed by inheriting two times from a more simple class DISTRIBUTION_I D.
Hence, a class devoted to the distribution of 3-D data structures could be built just
as easily.

The application programmer describes a distribution pattern by specifying the
size of the index domain considered, the size of the basic building blocks in this
domain, and how these blocks must be mapped on a set of processors. The definition
of the mapping function has intentionally been left out of class DISTRIBUTION_2D
and encapsulated in a small hierarchy of classes devoted to the mapping of 2-D
structures on a set of processors (see class MAPPING_2D in example 3.2).

PALADIN includes two effective classes that permit to map the blocks of a dis-
tributed matr ix either row-wise or column-wise on a set of processors. In the class
Row_WISE..1VIAPPING, for example, the feature map_block is implemented as shown
in example 3.3.

The keyword expanded in the first line of this code implies that instances
of class Row_WISE_MAPPING are value objects. Any attribute declared as be-
ing of type I:{.ow_WISE-I~IAPPING can be directly handled as an object of type
Row_WISE_MAPPING.

27

E x a m p l e 3.2
defer red class MAPPING 2D
ea ture

map_block (bi, bj, bimax, bjmax, nproc: INTEGER): INTEGER is
- - - Maps block(hi, bj) on a processor whose identifier
- - must be in the range [0, nproc]

require
bi_valid: (bi > = O) and (bi < = bimax)
bj_valid: (bj > = O) and (bj < = bjmax)

defer red
e n s u r e

(Result > = 0) and (Result < nproc)
e n d - - map_block

md - - class MAPPING_~D

10

E x a m p l e 3.3
expanded class ROW_WISE_MAPPING
inher i t MAPPINGfiD
feature

mapblock (bi, bj, bimax, bjmax, nproc: INTEGER): INTEGER is
do

Resul t := (bi * (bjma.x + 1) + bj) \ \ nproc
end - - map_block

end - - class ROW_WISE MA P P ING

The implementation of COLUMN_WISE..MAPPING is of course very similar to
that of Row_WIsE_MAPPING. Any user could easily propose alternative mapping
policies (random mapping, diagonal-wise mapping, etc.): the only thing a user must
do is design a new class that inherits from MAPPING_2D and that encapsulates an
original implementation of the feature map_block.

Figure 3 shows the creation of an instance of DISTRIBUTION_2D. The creation
feature takes as parameters the size of the index domain considered, the size of the
building blocks for partit ioning this domain, and a reference to an object whose
type conforms to - - i . e . , is a descendant o f - - MAPPING_2D: The instance of DIS-
TRIBUTION_2D created in figure 3 will thus permit to manage the distribution of a
10 x 10 index domain partit ioned into 5 x 2 blocks mapped column-wise on a set
of processors. Figure 3 also shows the resulting mapping on a parallel architecture
providing 4 processors.

Each distributed matr ix must be associated at creation t ime with an instance of
DISTItlBUTION_2D, which plays the role of a distribution template for this matrix.
The distribution pattern of a matr ix can either be specified explicitly - - i n tha t case
a new instance of DISTRIBUTION-2D is created for the ma t r ix - - , or implicitly by
passing either a reference to an already existing distributed matr ix or a reference
to an existing distribution template as a parameter. Several distributed matrices

28

local
my_dist: DISTRIBLPPION_2D;
my_mapping: COLUMNWISE_MAPPING;

do

iimy_diJt.make (10, 10, 5, S, my_mapping);

I IO

I l t l
I I I . I P a r t i t i o n i n g

IIII !
f i l l |
I I I I |

N I I I !

Processor #

I I I I I I I E 0 ~ 2 ~ 0 ~ 2 ~ 0]
I I I I I I I

I I I I Mapping i | | l i i i !
' I I , , , , , , , , , , , , I I I
,
, I l l III
I I l l I I I
I I I I I l l I I I I I I I I I I I

Fig. 3. Example of a distribution allowed by class DISTRmUTION_2D

can thus share a common distribution pattern by referencing the same distribution
template.

3,3 Implementation of Distributed Matrices

The accessors declared in class MATRIX must be implemented in accordance with
the Exec and Refresh mechanisms introduced in section 2.3. This is achieved in a
new class DIST..MATRIX that inherits from the abstract specification encapsulated
in class MATRIX (see example 3.4).

Accessors such as put that modify the matrix are defined so as to conform to
the Owner Write Rule: when an SPMD application program contains an expression
of the form M.put(v, i, j) --with H referring to a distributed matrix-- the pro-
cessor that owns item (i, j) is solely capable of performing the assignment. In the
implementation of the feature put, the assignment is thus conditioned by a locality
test using the distribution template (feature dist) of the matrix (see the lines 20-25
of the example 3.4).

Accessors such as item must be defined so that remote accesses are properly
dealt with: when an SPMD application program contains an expression such as v :=
X. item(i, j), the function item must return the same value on all the processors.
Consequently, in the implementation of the feature item, the processor that owns
item (i, j) broadcasts its value so that all the other processors can receive it (see
the lines 16-19 of the example 3.4). The invocation H. item(i, j) thus returns the
same value on all the processors implied in the computation (the communication
primitives are provided by the class POM of the EPEE toolbox).

The same principle applies to row, column and submatrix accessors as well. The
the distribution of data is thus dealt with, but the actual access to local data. This
problem must be tackled in the local accessors local_put and local_i~em, etc. whose
implementation is closely dependent on the format chosen to represent a part of the
distributed matrix on each processor. Since there may be numerous ways to store a
distributed matrix in memory (e.g., the distributed matrix may be dense or sparse),
these local accessors are left deferred in class DIST..MATRIX. They must be defined in

29

E x a m p l e 3.4
index ing

description: "Abstract matrix distributed along a template"

deferred class DIST_MATRIX [T->NUMERIC]
inherit

MATRIX [T] -- Abstract specification

feature-- Creation
make (rows, cols, bfi, bfj: INTEGER; alignment: MAPPING 2D) is

deferred end
make_~om (new_dist: DISTRIBUTION_2D) is deferred end 1o
make like (other: DIST MATRIX) is deferred end

feature - - Distribution template
dist: DISTRIBUTIONflD

feature - - Accessors
item (i, j: INTEGER): T is 15

- - element (i,j) of the Matrix, read using the Refresh mecanism

do
if dist.item_is_local(i, j) t hen

Resul t := local_item (i, j) - - I am the owner
POM.broadcast (Result) - - so I send the value to others 2c

else - - I 'm not the owner, I wait for the value to be sent to me
Resul t := POM.receive_from (dist.owner_of_item (i, j))

e n d - - if
e n d - - item

put (v: T; i, j: INTEGER) is 25
- - write the element (i,j) of the Matrix, the Owner Write Rule

do
if dist.item_is_local(i, j) t hen

local_put (v, i, j) - - Only the owner writes the data
e n d - - ff 3c

end -- put

feature {DIST_MATRIX} - - Communication]eatures

POM: POM

end - - D I S T M A T R I X [T]

35

classes that descend from DIST-MATRIX and that encapsulate all the details relative
to the internal representation of distributed matrices.

The class DBLOCK_MATRIX presented in example 3.5 is one of the many possi-
ble descendants of DIST_MATRIX (see figure 2). It inherits from DIST..MATRIX as
well as from ARRAY2[LOCAL_MATRIX], and therefore implements a dense mat r ix
distributed by blocks as a 2-D table of local matrices. Each entry in this table ref-
erences a building block of the distributed matrix, stored in memory as an instance
of LOCAL_MATRIX (see figure 4). A void entry in the table means that the local
processor does not own the corresponding block matrix. In DBLOCK_MATRIX, the

30

I I I I l l l l l l l
I I I I I I I I I I I

item (4, 6) ~ Owner = 0

" I I I', 1 slo k
I I I I I I I I I I I
I I I I I I I I I I I
I I I I I I I I I I I

Distributed matr ix

Local Local
matrix ~ matrix

matrix

xxx /'x.

Table o f blocks
on processor 0 X means "not owner ~

Fig. 4. Internal representation of a matrix distributed by blocks

E x a m p l e 3.5
indexing

description: "Natrix distributed by blocks"

class DBLOCK MATRIX [T->NUMERIC]
inherit

DIST_MATRIX [T]
ARRAY2 [LOCAL_MATRIX[T]]

rename
make as maketable,
put as put_block, item as localblock

end
feature - - ...
nd - - class D B L O C K M A T R I X [T - > N U M E R I C]

local accessors local_put and locaLitem are defined so as to take into account the
indirection due to the table.

The class hierarchy that results from this approach is clearly organized as a
layering of abstraction levels. At the highest level, the class MATRIX encapsulates
the abstract specification of a matrix entity. The class DIST..MATRIX corresponds to
an intermediate level, where the problem of the distribution of a matrix is solved,
while the problem of the actual storage of the matrix in memory is deferred. At the
lowest level, classes such as DBLOCK_MATRIX provide fully operational and efficient
implementations for distributed matrices (up to 1.7 Gflops for a matrix multiply on
a 56 nodes Paragon XP/S [8]).

Besides DBLOCK-MATRIX, the class hierarchy of PALADIN includes two classes
DCOL_MATRIX and DROW_MATRIX that encapsulate alternative implementations
for row-wise and column-wise distributed matrices. In these classes, distributed ma-
trices are implemented as tables of local vectors. This kind of implementation fits
.well application programs that perform many vector-vector operations. Other kinds
of distribution patterns or other kinds of representation formats could be proposed.

3]

One could for example think of exotic distribution patterns based on a decompo-
sition into heterogeneous blocks or on a random mapping policy. One could also
decide to provide an implementation ad hoc for triangular or band distributed ma-
trices. With the object-oriented approach, the extensibility of a class hierarchy such
as that of PALADIN has virtually no limit. It is always possible to incorporate new
classes seamlessly in a pre-existing class hierarchy.

4 D e a l i n g w i t h m u l t i p l e r e p r e s e n t a t i o n s

4.1 I n t e r o p e r a b i l i t y

One of the major advantages of this class organization is that it ensures the interoper-
ability of all matrices and vectors. A feature declared - - a n d possibly implemented--
in class MATI~IX is inherited by all the descendants of this class. Hence a feature
such as cholesky, which performs a Cholesky factorization, can operate on any matrix
that satisfies the preconditions of the feature: the matrix must be square symmetric
definite positive. This feature therefore operates on a local matrix as well as on a
distributed one. In the library, a parallel version of the Cholesky algorithm is ac-
tually provided for distributed matrices, but this optimization remains absolutely
transparent for the user who keeps using the feature the same way.

Interoperability also goes for algorithms that admit several arguments. For exam-
ple class MATRIX provides an infix operator that computes the sum of two matrices
A and B and returns the resulting matrix R. The user may write an expression
such as R := A + B while matrix R is duplicated on all processors, A is distributed
by rows and B is distributed by columns. Interoperability ensures that all internal
representations can be combined transparently.

4.2 D y n a m i c R e d i s t r i b u t i o n

Complementary to the interoperability of representation variants, a conversion mech-
anism is available for adapting the representation of a matrix or vector to the re-
quirements of the computation. A row-wise distributed matrix, for example, can be
"transformed" dynamically into a column-wise distributed matrix, assuming that
this new representation is likely to lead to better performances in some parts of
an application program. The conversion mechanism therefore plays the role of a
redistribution facility.

An algorithm that permits to redistribute a matrix can be obtained quite sim-
ply using the communication facilities provided by class POM and the distribution
facilities provided by class DISTRmUTION_2D. Such a redistribution facility was im-
plemented as shown below in class DBLOCK_MATRIX.

In this code, a temporary instance of DBLOCK_MATttIX named tmp_matrix is
created according to the desired distribution pattern. Block matrices are then trans-
ferred one after another from the current matrix to trap_matrix. Once the transfer
is over, the attribute dist of the current matrix is re-associated with the new dis-
tribution template. Its former distribution template can then be collected by the
garbage collector of the runtime system, unless this template is still used by another

32

E x a m p l e 4.1
redistribute (new_dist: DISTt~IBUTION 2D) is

require
new dist valid: (new dist / = ~oid)
compat_dlst: (dist.bfi -- new dist.bfi) and (dist.bfj = new dist.bfj)

local 5
bi, bj, source, target: INTEGER
tmp matrix: DBLOCKMATRIX [T]

do
!!t mp_mat rix.make_from (new_dist)
f rom ~ bi := 0 until bi > dist.nbimax loop 10

f rom bj := 0 until bj > dist.nbjmax loop
source :-- dist.owner of block (bi, bj)
target :-- trap matrix.dist.owner of_block (bi, bj)
i f (source = POM.my node) then

---- Send block matrix to target 15
local_block (bi, bj).send (target)

e n d - - i f
i f (target = POM.my node) then

- - Receive block matrix from source
tmp matrix.local block (bi, bj).recv_from (source) 20

e n d - - i]
bj := bj + 1

e n d - - loop
bi := bi -b 1

end - - loop 25
dist := tmp_matrix.dist
area := trap_matrix.area

end - - redistribute

distributed matrix. Likewise, the attribute area, which actually refers to the table
of block matrices of the current matrix, is re-associated so as to refer to the table of
trap_matrix. The former block table can then be also collected by the garbage col-
lector. When the feature redistribute returns, the current matrix is a matrix whose
distribution to the pattern described by new_dist and its internal representation
relies on the newly created table of block matrices.

Notice that this implementation of the feature redistribute can only redistribute
a matrix if the source and the target distribution patterns have the same block size
(see the precondition in the code of the feature redistribute). The code of the feature
redistribute reproduced here is actually a simplified version of the code implemented
in DBLOCK_MATRIX. The real code is more flexible (a matrix can be redistributed
even if the size of blocks must change during the process), it does not rely on a
temporary matrix but directly creates and handles a new table of block matrices.
Moreover, the garbage collection is performed on the fly: on each processor the
local blocks that are sent to another processor are collected by the garbage collector
immediately after they have been sent. Data exchanges are also performed more
efficiently: the sequencing constraints imposed by the Refresh /Exec model in the

33

Ex~*mpl e 4.2
local

A, B: DBLOCK MATRIX [DOUBLE]
do

!!A.make (100, 100, 5, 2, ROWWISEMAPPING)
!!B.make (100, 100, 7, 3, COLUMNWISEMAPPING)

...(1)...
B.redistribute (A.dist)

...(~)...
end

former code are relaxed so that the resulting implementation of redistribute allows
more concurrency. The real code encapsulated in the feature redistribute is thus more
efficient than the code reproduced above, but it is also longer and more complex. This
is the reason why we preferred to reproduce a simple implementation of redistribute
here.

Anyway, whatever the actual complexity of the algorithm encapsulated in the fea-
ture redistribute, it does not shows through the interface of class DBLOCK_MATRIX.
From the viewpoint of the application programmer, an instance of DBLOCK_MATRIX
can thus be redistributed quite simply. Consider the small SPMD application pro-
gram of the example 4.2.

Imagine that in this application the requirements of the computation impose
that matrices A and B be distributed differently in the first part of the concurrent
execution. On the other hand, the second part of the computation requires that A
and B have the same distribution. Then the redistribution facility encapsulated in
class DBLOCK_MATRIX can be used to achieve the redistribution.

Other classes of PALADIN (e.g., DIST_MATRIX, DCOL_MATRIX, DROW_MATRIX)
also encapsulate a version of the feature redistribute, whose implementation fits the
characteristics of their distribution pattern.

4.3 Matrix type conversion

Eiffel, like most statically typed object-oriented languages, does not allow for objects
to change their internal structure at runtime: once an object has been created, its
internal organization is in a way "frozen". Thus, in PALADIN, there is for example
no way one can transform an object of type LOCAL_MATRIX in an object of type
DBLOCK_MATRIX. However, we can go round this constraint and propose a close
approximation of "polymorphic" matrices, using the only really polymorphic entities
available in Eiffel: references.

Whenever we need to change the internal representation of a matrix aggregate,
the conversion must be performed in three steps. At first, a new matrix aggregate
must be created, whose dynamic type conforms to the desired internal representation.
Next, data must be "transferred" from the original aggregate into the new one.
Finally, the reference associated with the original aggregate must be re-associated
with the newly created one. This conversion procedure is illustrated below.

34

LOCAL.MATRIX

m N ~ o n v ~ ~

DBLOCK MATRIX

Fig. 5. Example of matrix conversion

Assume that in an application program a local matrix is created and associated
with reference M. After some computation (part 1) it becomes necessary to transform
this local matrix into a distributed one. An instance of type DBLOCK_MATRIX is

created and associated with a temporary reference l . The information encapsulated
in the original local matrix is copied in the distributed one using routine convert.
Once the copy is complete, attribute M is re-associated with the newly created
matrix thanks to a polymorphic assignment, so that the programmer can still refer
to the matrix using attribute M in the remaining of the application program. The
computation goes on using the distributed matrix (part 2). The conversion process
is illustrated in figure 5.

Conceptually, the feature convert simply performs a copy from the source matrix
into the target one. It simply requires that both matrices have the same size. In
class MATRIX, the feature convert can be given a very simple implementation, based
on two nested loops and calls to accessors put and item. However, this implemen-
tation, which does not depend on the internal representation formats of the source
and target matrices, should only be considered as a default implementation. Better
implementations of convert can be encapsulated in descendants of class MATRIX,
using some of the optimization techniques discussed in [8].

Notice that this method to change the type of an aggregate actually requires
that a new object be created. This is acceptable, since the Eiffel garbage collector
ensures that the object corresponding to the "obsolete" representation of the aggre-
gate will be collected after the conversion is over. Actually, the main problem with
this conversion mechanism lies in the lack of transparency for the application pro-
grammer, who must explicitly declare a temporary reference, create a new aggregate
of the desired dynamic type, invoke the feature convert on this object and eventually
reassign the reference bound to the original object so that it now refers to the new
object.

Another problem concerns aliases. An application program may reference the
same matr ix through many variables. The type conversion method presented above
does not deal with this aliasing problem. A number of approaches have been proposed
to solve this kind of problem. For example, we can maintain a table referencing all

35

E x a m p l e 4.3
s POLY_MATRIX
feature {NONE} - - Reference to a matrix container

container: MATRIX
feature - - - Basic Accessors

item (i, j: INTEGER): DOUBLE is do Result := container.item (i, j) end 5
put (v: like item; i, j: INTEGER) is do container.put (v, i, j) end

f e a t u r e - - - Operators

end - - POLY_MATRIX lo

the objects that may be subject to type conversions. All subsequent accesses to these
objects then go through this table. Another method consist in keeping a list of client
objects in each polymorphic object. Such an object can then inform its clients upon
type conversion.

Because they are costly to implement, none of these approaches is fully satisfac-
tory. A better solution would be to encapsulate the type conversions.

4.4 Towards Full P o l y m o r p h i c Matr ices

The only feasible solution to provide full polymorphic matrices in the context
of a language such as Eiffel is to introduce a level of indirection. This boils down
to introducing a distinction between the data structure containing the matr ix data
and the concept of a polymorphic matrix. A polymorphic matr ix is just a client
of the matrix class defined previously, and is thus able to dynamically change its
representation.

A POLY_MATRIX has the same interface as the class MATRIX, but privately
uses a MATRIX for its implementation (this is the meaning of the clause {NONE} in
example 4.3). Its basic accessors put and i tem are defined so as to access the data
stored in the container, which can be any subtype of the class MATRIX. In the same
way, each operator of the class POLY_MATRIX is defined as to call the corresponding
operator in the container.

A new set of routine is also available in the POLY_MATRIX class for it to be able
to dynamically change its internal representation, that is to polymorph itself. For
example, a POLY_MATRIX can acquire a LOCAL_MATRIX representation with the
procedure become_local presented in example 4.4).

The performance overhead of the extra indirection is paid only once for each
operation. It is thus negligible with respect to the algorithmic complexity of the
operations on the large matrices considered in PALADIN.

4.5 U s i n g P o l y m o r p h i c Matrices

In PALADIN, the powerful abstraction of polymorphic matrices, together with fea-
tures such as become_xzz, redistribute or convert are made available to the applica-
tion programmer. Yet, they could also be invoked automatically within the library

36

E x a m p l e 4.4
class POLY MATRIX

. . .

~ature - - - Internal representation conversion
become local is

local
new_container: llke container;

do
---- Create a new matrix container with type as required
!LOCAL_MATRIX!new container.make (nrow, ncolumn);
- - Transfer data from old matrix container to new one
new_cont ainer .convert (container);
- - Adopt new matrix container and discard old one
container := new container;

e n d ; - - become local
. . .

r i d - - class P O L I ' M A T R I X

10

15

whenever an operator requires a particular distribution pattern of its operands. For
example, any operator dealing with a distributed matrix could be implemented so
as to systematically redistribute this matrix according to its needs prior to begin-
ning the actual computation. If all operators in PALADIN were implemented that
way, the application programmer would not have to care about distribution pat-
terns anymore, all matrices being redistributed transparently as and when needed.
Yet, redistributing a matrix - -o r changing its type--- is a costly operation, so that
this approach would probably lead to concurrent executions in which most of the
activity would consist in redistributing matrices or vectors. The best approach is
probably an intermediate between manual and automatic redistribution.

5 Conclus ion

An OO library is built around the specifications of the basic data structures it deals
with: The principle of dissociating the abstract specification of a data structure
(somewhat its abstract data type) from any kind of implementation detail enables
the construction of reusable and extensible libraries of parallel software components.
Using this approach, we have shown in this paper that existing sequential OO lan-
guages are versatile enough to enable an efficient and easy use of DCSs. Thanks
to the distributed data structures of a parallel library such as PALADIN, any pro-
grammer can write an application program that runs concurrently on a DCS. The
parallelization can actually proceed in a seamless way: the programmer first designs
a simple application using only local aggregates. The resulting sequential application
can then be transformed into a SPMD application, just by changing the type of t h e
aggregates implied in the computation. For large computations, we have shown that
the overhead brought about by the higher level of OO languages remains negligible.
Using the same framework, we are in the process of extending PALADIN to deal with
sparse computations and control parallelism.

Although our approach hides a lot of the tedious paral le l ism management , the
appl ica t ion p rogrammer still remains responsible for deciding which representa t ion
fo rmat is the most appropr ia te for a given aggregate. Hence, when t ransforming a
sequential p rogram into an SPMD one, the p rogrammer must decide which aggregate
shall be d is t r ibu ted and how it shall be dis t r ibuted. This m a y not always be an easy
choice. F ind ing a "good" dis tr ibut ion may be quite difficult for complex appl ica t ion
programs, especially since a dis tr ibut ion pa t te rn tha t may seem appropr ia t e for a
given computa t ion step of an appl icat ion may not be appropr ia te anymore for the
following computa t ion step. Dynamical ly redis t r ibut ing aggregates as and where
needed (as is possible in PALADIN) might be a way to go round this problem. The
redis t r ibut ion could be controlled by the user, or even encapsula ted with the me thods
needing special dis t r ibut ions to perform an operat ion efficiently. On this topic the OO
approach has an impor t an t edge over H P F compilers tha t can only bind me thods to
objec ts s tat ical ly, thus producing very inefficient code if the dynamic redis t r ibut ion
pa t t e rn is not tr ivial .

R e f e r e n c e s

1. H. Abelson, G. Jay Sussman, and J. Sussman. - Structure and Interpretation of Com-
puter Programs. - MIT Press, Mac Graw Hill Book Company, 1985.

2. P. America. - Pool-T: A paxalld object-oriented programming. - In A. Yonezawa,
editor, Object-Oriented Concurrent Programming, pages 199-220. The MIT Press, 1987.

3. F. Andrd, J.L. Pazat, aJad H. Thomas. - Pandore: a system to manage data distribu-
tion. - In ACM International Conference on Supercomputing, June 11-15 1990.

4. D. Callahan and K. Kennedy. - Compiling programs for distributed-memory multi-
processors. - The Journal of Supercomputing, 2:15t-169, 1988.

5. L. Cardelli and P. Wegner. - On understanding types, data abstraction, and polymor-
ph i sm. - ACM Computing Surveys, 17(4):211-221, 1985.

6. D. Gannon, J. K. Lee, and S. Narayama. - On using object oriented p~rallel program-
ming to build distributed algebraic abstractions. - In Proc. of CONPAR92, 1992.

7. G.H. Golub and C.F. Van Loan. - Matrix Computations.- The Johns Hopkins Uni-
versity Press, 1991.

8. F. Guidec. - Un cadre conceptuel pour la programmation par objets des architec-
tures parall~les distribuJes : application d l'alg~bre lin~aire. - Th~se de doctorat, IF-
SIC / Universitd de Rennes 1, juin 1995.

9. F. Hamelin, J.-M. Jdzdquel, and T. Pr io l . - A Multi-paradigm Object Oriented Parallel
Environment. - In H. J. Siegel, editor, 1at. Parallel Processing Symposium IPPS'94
proceedings, pages 182-188. IEEE Computer Society Press, April 1994.

i0. HPF-Forum. - High Performance Fortran Language Specification. - Technical Report
Version 1.0, Rice University, May 1993.

11. J.-M. Jdzdquel. - EPEE: an Eiffel environment to program distributed memory parallel
computers. - Journal of Object Oriented Programming, 6(2):48-54, May 1993.

12. C. Pancake and D. Bergmark. - Do parallel languages respond to the needs of scientific
programmers? - IEEE COMPUTER, pages 13-23, December 1990.

13. Leslie G. Valiant. - A bridging model for parallel comlTutation. - CACM, 33(8), Aug
1990.

14. Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. - Object-oriented con-
current programming in ABCL/1. - In OOPSLA '86 Proceedings, September 1986.

