
HAL Id: hal-00495307
https://hal.science/hal-00495307

Submitted on 25 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Edge Bundling for Geographical Data Visualization
Antoine Lambert, Romain Bourqui, David Auber

To cite this version:
Antoine Lambert, Romain Bourqui, David Auber. 3D Edge Bundling for Geographical Data Visu-
alization. IV 2010 - 14th International Conference on Information Visualization, Jul 2010, London,
United Kingdom. pp.329-335. �hal-00495307�

https://hal.science/hal-00495307
https://hal.archives-ouvertes.fr

3D Edge Bundling for Geographical Data Visualization

A. Lambert, R. Bourqui, D. Auber

LaBRI, UMR5800, University Bordeaux 1, Talence, France

lambert@labri.fr, bourqui@labri.fr, auber@labri.fr

Abstract

Visualization of graphs containing many nodes and

edges efficiently is quite challenging since representations

generally suffer from visual clutter induced by the large

amount of edge crossings and node-edge overlaps. That

problem becomes even more important when nodes po-

sitions are fixed, such as in geography were nodes posi-

tions are set according to geographical coordinates. Edge

bundling techniques can help to solve this issue by visu-

ally merging edges along common routes but it can also

help to reveal high-level edge patterns in the network and

therefore to understand its overall organization. In this pa-

per, we present a generalization of [18] to reduce the clut-

ter in a 3D representation by routing edges into bundles

as well as a GPU-based rendering method to emphasize

bundles densities while preserving edge color. To visualize

geographical networks in the context of the globe, we also

provide a new technique allowing to bundle edges around

and not across it.

1 Introduction
International air interconnections, as well as theirs anal-

ysis, are becoming more and more dense and complex.

Complexity of air traffic networks drives the need for vi-

sual analysis techniques which aim at solving three main

issues :

• Emphasize major trends in air traffic and highlight

most important airports.

• Determine interconnected but also interdependent

regions.

• Show world wide air traffic organizational schemes

To answer these questions, an intuitive modeling of such

a network consists in using a graph where nodes represent

airports and edges interconnections between these airports.

International air traffic visualization raises a very strong

constraint, namely geographical positioning of airports. In-

deed, when dealing with international air traffic, nodes po-

sitions cannot be changed as they bring some information.

This makes unusable classical approaches where nodes po-

sitions are computed by a drawing algorithm to emphasize

central airports and/or important patterns. In that case, in-

formation discovery becomes difficult as edge crossings

and node-edge overlaps clutter the representation. Reduc-

ing the clutter in such data representation is therefore of

utmost importance to identify relationships and high-level

edge patterns of the network.

In the past, clutter reduction had been achieved us-

ing three main techniques: compound graph visualization,

edge routing and edge bundling. In a compound graph

visualization (e.g [20, 1, 2]), the original network is ab-

stracted by collapsing clusters into metanodes and the re-

sult is then displayed on the screen. This technique reduces

the cluttering of the representation as inter-cluster edges

are merged into metaedges. However, the compound visu-

alization is not suitable for geographical data visualization

as nodes positions cannot be changed and therefore as clus-

ters may overlap.

To increase the readability of a graph representation, the

graph drawing community offers techniques to reduce the

number of edge crossings and node-edge overlaps by rout-

ing edges (e.g. [8, 10, 24, 11]). Among theses techniques,

one can find the confluent drawing method (e.g [8]) but

also heuristics based on the visibility graph and shortest

path edge routing (e.g [10, 24, 11]). These approaches ef-

ficiently reduce edge clutter by either reducing edge cross-

ings or avoiding node-edge overlaps. However they do not

help the user to identify high level edge patterns and there-

fore to understand the overall organization of the network.

Recently, edge bundling techniques [19, 15, 4, 7, 16, 18]

are of increasing interest in the graph visualization commu-

nity. Put under the spotlight by Holten [15], this technique

routes edges into bundles in order to uncover high level

edge patterns and to emphasize relationships in a 2D rep-

resentation of the network.

In this paper, we focus on a novel approach to generate

3D edge-bundled representations of graphs, this approach

generalizes the work of Lambert et al. [18]. We introduce

an intuitive edge bundling algorithm which efficiently re-

duces edge clutter in graphs drawings. Our method dis-

cretizes the space into regions. Boundaries of these re-

gions are used as roads to route edges. The main contri-

bution of this paper is therefore a new 3D edge bundling

technique that avoids node-edge overlaps. We also present

GPU-based rendering method which enables users to per-

ceive bundle densities while preserving edge color.

The remainder of this paper is structured as follows.

Section 2 reviews related work on edge clutter reduction

methods and techniques to enhance edge bundles visualiza-

tion. In section 3, we present the main steps of our method

and several implementation issues. Section 4 refers to ren-

dering techniques necessitated by edge bundling visualiza-

tion. We then present some results on 2000 and 2004 inter-

national air traffic in section 5. Finally, we draw a conclu-

sion and give directions for future work.

2 Related work

As mentioned above, we focus in this paper on a 3D

representation of edges whose extremities have fixed posi-

tions. In this section, we present existing methods for edge

clutter reduction but also techniques for enhancing edge

bundles visualization. For a general overview of clutter re-

duction methods and not only edge clutter reduction tech-

niques, we recommend the survey of Ellis and Dix [12].

2.1 Edge Clutter reduction

Most of the previous work focused on clutter reduction

in 2D representation of the graph. Even if some of the fol-

lowing techniques can be adapted to take the third dimen-

sion into account, Balzer and Deussen presented in [4] the

only technique (to the best of our knowledge) for clutter

reduction in a 3D representation.

Edge routing: One of the first attempts to reduce clut-

ter in graphs drawings was made by the graph drawing

community. Indeed, to increase the readability of a graph

representation, one can try to reduce the number of edge

crossings but also to avoid node-edge overlaps (to use non-

point-size nodes for instance). In [10], Dobkin et al. give

a novel method using visibility graphs and shortest-path

edge routing to remove node-edge overlaps. The technique

was ported to tangent visibility graphs by [24]. Finally,

Dwyer and Nachmanson [11] give a fast heuristic to com-

pute an approximation of the visibility graph to reduce the

time complexity of the approach and therefore to support

large graph edge routing. These approaches efficiently re-

duce edge clutter by avoiding node-edge overlaps, how-

ever they do not help the user to identify high-level edge

patterns.

Interactive techniques : Wong et al. give in [23, 22]

interaction techniques to remove clutter around the user’s

focii. Edges close to one of the focii are pushed away in a

fisheye-like manner while preserving nodes positions. The

representation is locally uncluttered around each focus, but

this technique does not reduce the clutter of the entire rep-

resentation. Therefore, it does not help in understanding

the overall organization of the network.

Edge bundling : Phan et al. present in [19], a flowmap

layout technique based on geometrical node clustering.

Edges are routed along the hierarchy tree branches.This

idea has also been used by Holten in [15] to enhance re-

lationship in hierarchical (and relational) data. Balzer and

Deussen [4] present a multilevel compound visualization

technique using implicit surfaces and edge bundling tech-

nique similar to [15] to render an hierarchical clustering in

a 3D visualization. Then the transparency of each implicit

surface and the bundling “factor” are dynamically updated

according to the distance to the viewpoint resulting in a

smooth animation when zooming in or out on a focus clus-

ter. The main drawback of these methods is that edges are

routed using a hierarchy tree which can be restrictive in the

general case.

In [13], Gansner and Koren give an improved circular

layout algorithm where edges are routed either on the outer

face of the circle or in its inner face. Edges routed inside

the circle are bundled using an edge clustering algorithm

that tries to optimize area utilization. Another edge clus-

tering method is given by Cui et al. [7]. In this paper they

propose a geometric approach to create bundles of edges.

The main idea is to build a control mesh based on user in-

teraction or a Delaunay triangulation. The mesh is then

used to compute regions where edges should be merged.

The merging of edges is done according to a clustering al-

gorithm based on the orientation of edges. Finally, Holten

and van Wijk introduced in [16] a force-directed heuristic

to bundle edges and therefore, to unclutter a representation

of a graph where nodes positions are fixed. In this heuris-

tic, dummy nodes are inserted to split edges into segments.

A similarity measure between edges is computed to deter-

mine which of them should interact. Dummy nodes of any

two interacting edges are linked by inserting dummy edges.

Bundles are obtained by running a force-directed algorithm

preserving positions of the original nodes.

Recently, Lambert et al. [18] presented a novel ap-

proach for bundling edges in order to unclutter 2D drawing

but also reveal high-level edge patterns . The technique is

based on plane discretization and shortest path edge rout-

ing. In this paper, we present a generalization of this tech-

nique to 3D representation of graphs.
2.2 Enhancing edge-bundled graph vizualisa-

tions

Smoothing curves: The main feature common to each

edge-bundled graph visualizations is the drawing of edges

as curves. Indeed, rendering graph edges as curves makes

the task of following them easier and gives a more visu-

ally appealing graph drawing. In [15], Holten renders bun-

dled edges piecewise with cubic B-splines. In [25], Zhou

et al. use others models of splines to render bundled edges

which are Bézier curves and Catmull-Rom splines. An-

other method used by Holten et al. [16] and by Cui et al. [7]

Figure 1: The main steps of our edge bundling technique. (a) Original network (here embedded in a 2D plane); (b) dis-

cretization of the space; (c) Edge routing on the grid graph; (d) Resulting graph layout.

is to apply a smoothing technique on the edges drawn as

polylines to morph them into curves.

Coloring edges: Another mean of enhancing edge-

bundled graph visualization is to use edges colors and

opacities to encode informations. In [7], edges colors are

mapped to the orientations of the original links. The same

technique is used in [15] with the difference that an edge

direction is encoded by an interpolated color gradient run-

ning from a fixed color for the source to a fixed color for the

target. In [15] edges opacities are mapped to their length,

long curves being more translucent than short ones, pre-

venting short curves to become obscured by long ones. In

[7], the opacity of each segment of a polyline representing

an edge is mapped to the density of lines overlapping it.

Perceiving bundles density: Recent work on edge-

bundled graph visualizations address the issue of estimat-

ing the quantity of edges segment merged together. In [16],

a GPU-based method is used to compute the amount of

overdraw for each pixel of the produced graph visualiza-

tion. That value is then used to map pixels colors with

a user defined gradient colorscale after the minimum and

maximum value of overdraw have been retrieved. A simi-

lar technique is used in [18] where the overdraw densities

are mapped to heights and rendered with a bump mapping

technique making dense bundles appear higher than sparse

ones. That technique allow users to perceive bundles den-

sities while preserving edges colors.

3 Routing edges in a 3D space
3.1 Technique overview

Our technique generalized the idea presented in [18]

and therefore uses an edge routing algorithm to bundle

edges. Pipeline shown in figure 1 summarizes the differ-

ent steps of our method. In this example, the original net-

work is embedded in a 2D plane, nevertheless this figure

illustrates the main idea of our technique. First of all, we

discretize the space into regions according to nodes posi-

tions. Boundaries of these regions define a grid that is then

used to compute the shortest routes for each edge of the

original network. Like highways attract more drivers than

little roads, we use frequent routes to bundle edges.

Grid computation : The first step of our method con-

sists in building a grid graph used to compute the shortest

routes of each original edge (i.e. edge of the original net-

work). This is achieved by discretizing the space into cells

or regions using nodes positions. In following, we investi-

gate several approaches to create the grid graph.

Our first attempt was to build a regular 3D grid to dis-

cretize the 3D space. However, using such a discretization

method forces us to create really large grid graph to obtain

a granularity thin enough to bundle edges even in highly

dense regions of the network. To solve that problem, one

can build a multi-resolution grid using for instance an oc-

tree [17] or 3D Voronoı̈ diagram (for a survey on Voronoı̈

diagrams, the reader can refer to [3]). In an octree, the

space is decomposed in height parts until it contains at

most one element. Such approach is efficient in term of

computation since its time complexity isO(|V | · log(|V |)).
However, using such grid to route edges raises two main is-

sues : the shortest paths computational cost (as the size of

the generated grid is large), and the quality of the result (as

such grid promotes horizontal and vertical routes).

In [18], Lambert et al. propose to use an hybrid algo-

rithm based on both quad trees and Voronoı̈ diagrams. We

follow this principle by using a combination of octree and

3D Voronoı̈ diagram.

Edge routing : The second step of the method consists

in routing edges of the original graph on the grid graph

built in the previous step. One can use a shortest paths al-

gorithm, such as the so called Dikjstra’s algorithm [9], to

achieve that operation. However, that method cannot guar-

Figure 2: The main preprocessing steps for bundling edges on the globe. (a) Original globe; (b) Adding dummy nodes

outside the globe; (c) Adding dummy nodes inside the globe

antee that the edges will follow common routes, and there-

fore, that the edges will be bundled. To create bundles, we

use the metaphor of real life roads. The principle is to make

attractive regular roads if highly used (i.e. if many edges

are routed along these roads). We reproduce that effect by

computing all the shortest paths between linked nodes of

the original graph twice. During the first computation, the

weight of an edge is set to the euclidean distance between

its extremities. Then, according to the number of short-

est paths passing through an edge of our grid, we adjust

the weight of each edge. Reducing the weight of an edge

is equivalent to transform it into a highway since follow-

ing that edge allow to go faster from one point to another.

Recomputing the shortest paths creates bundles as the new

matrix distance in our graph promotes the use of highly

frequent edges.

3.2 Routing edges on the globe

One of the possible applications of our method is the vi-

sualization of international air interconnections in the con-

text of the globe. In that case, we need to adapt our method

to route edge around the globe and not across it. We thus

have to guarantee that for each edge of the original net-

work, there exists at least one route in the grid graph not

crossing the globe. This is achieved by a preprocessing

step adding dummy nodes before computing the grid graph

(see figure 2). Dummy nodes are first added outside the

globe in regular and spherical manner (see figure 2.(b)) to

ensure that the 3D Voronoı̈ diagram will contain for each

site (node of the original network) a finite cell with bound-

aries (at least) partially outside the globe. However, adding

these dummy nodes is not sufficient to guarantee that no

edge of the grid will cross the globe. To overcome that

problem we also add dummy nodes inside the globe on

sphere having a smaller radius than the globe. By set-

ting the radius of the internal and the external spheres of

dummy nodes correctly, we can guarantee that there exists

at least one route for each original edge on the grid graph

not crossing the globe.

The space discretization step of our algorithm is then

applied, creating cells inside but also outside the globe. To

speed up the edge routing step and to forbid routes cross-

ing the globe, we remove all nodes (resp. edges) of the

generated grid graph inside (resp. crossing) the globe.

3.3 Optimizations

One the main advantages of the edge routing technique

to bundle edges is that some optimizations can be done to

improve computation time.

As mentioned in section 3, we use the so the so called

Dijkstra’s algorithm [9]. A straightforward optimization

consists in not computing shortest paths between all pairs

of nodes but only between each edge extremities of the

original graph edge. Moreover with a slight modification

of the Dijkstra algorithm, we can stop the computation of

paths when all candidate nodes (in the Dijkstra’s priority

queue) are at a distance greater than all the neighbors of our

source node. The second optimization consists in reduc-

ing the number of calls to the Dijkstra’s algorithm. More

precisely, it consists in minimizing the number of nodes to

treat in order to consider each edge of the graph. That prob-

lem is also known as the vertex cover problem [14] and had

been proved as been NP-complete. However, it is possible

to compute a minimum (but not minimal) vertex cover of a

graph. Finally, our method run a shortest paths algorithm

for each of our vertex cover set and can therefore be paral-

lelized by computing several shortest paths simultaneously.

However, there are several critical sections that one needs

to address. To remove some critical sections (due to the

parallelization) but also generate a set of tasks with more

homogeneous sizes, we use a preprocessing step that cre-

ates sets of nodes that do not conflict with each other.

These improvements do not change the theoretical com-

plexity but it can significantly reduce execution time.

4 Rendering bundling on the sphere

Visualizing edge-bundled graphs leverage two main is-

sues. First, edges can have a quite high number of bends

after the edge routing process of our technique. Conse-

quently, following an edge from its source node to its tar-

get node can be quite challenging when rendering edges

as polylines. Second, the density of edges that have been

merged into a bundle is not easily seen in the drawing. The

following sections introduce the rendering techniques we

applied to solve these issues.

4.1 Smoothing the edges with curves

Once the bundling process has been performed on the

graph, edges become polylines due to the routing phase

which adds bends to them. When rendering the edge-

bundled graph layout, these bends induce a “zigzag” ef-

fect on the edges making them hard to follow. In or-

der to smooth edges, we offer the possibility of render-

ing them as curves in our visualization system using edge

bends as curves control points. Several kinds of parametric

curves are proposed including Bézier curves, Catmull-Rom

splines and cubic B-splines. Moreover, edges going to the

same region of the graph and sharing successive bends re-

main merged, giving a nicer impression of flows between

different areas of the graph. Due to the high computa-

tional cost of rendering curves with a large number of con-

trol points , especially Bézier curves, we have developed

a GPU-based implementation based on dedicated vertex

shaders. It allows us to draw a large number of curves de-

fined by an arbitrary number of control points in real time,

giving us the ability to smoothly interact with the graph

drawing.

4.2 Edge splatting

In order to distinguish dense bundles from sparse ones,

we proposed in [18] an edge splatting technique to visually

enhance them. Our method is inspired from the Graph-

Splatting technique introduced by van Liere et al. in [21].

In that work, the authors represent a graph as a 2D contin-

uous scalar field and calculate a splat field. Our edge splat-

ting rendering pipeline is based on a combination of com-

mon image processing and computer graphics technique

and each stage entirely runs on the GPU. In a similar way

than the GraphSplatting technique, the idea is to compute

a splat field encoding continuous variations in the density

of merged edges. That splat field can then be displayed

on screen in a various ways. We chose to render it as a

height map for preserving edges colors. A per-pixel shad-

ing technique is used mapping splatting values to heights

giving the impression than strong bundles appears higher

than weak ones. Our original edge splatting technique was

restrained to graph embedded in a 2D-plane so we adapted

our rendering pipeline in order to handle graph with nodes

positioned on a sphere surface. The remaining summarizes

the different steps of our edge splatting rendering pipeline.

The first stage of the pipeline is to compute the number

of edges crossing each pixel of the drawing. As in [16],

that operation can be done by performing an offscreen ren-

dering of the graph edges in an accumulation buffer. Due

to the fact that the graph layout is mapped on a sphere, we

have to restrain the pixel overdraw computation to edges

routed on the visible face of that sphere.

Next stage is the splat field computation. The resulting

output of the previous stage is a field of discrete values en-

coding edges density per pixel. The goal of that stage is

to transform it into a continuous scalar field. That process

can be performed by convoluting the discrete density val-

ues field with a Gaussian kernel defined by a radius r and

a standard deviation σ. The larger the kernel radius and

standard deviation, the more the splat field is smoothed.

The final stage performs the splat field rendering using

a classical shading technique called bump mapping. Bump

mapping is a computer graphics technique introduced by

Blinn [6] allowing a rendered surface to appear more real-

istic without modifying geometry. It adds a per-pixel shad-

ing that makes the surface appears bumpy, by changing the

surface normals. These modified normals are computed

from a heightmap generated by mapping the splatting val-

ues to a black to white color scale. A dedicated fragment

shader compute for each pixel the heightmap derivatives in

horizontal and vertical directions using a gradient operator,

like the Sobel or Prewitt filter, and construct the associated

normals from these. Once the normal map associated with

the splat field has been generated, bump mapped render-

ing can be performed. Because we want to perform bump

mapping on a sphere surface and not on a flat one, we add

an extra process to our original pipeline. Its goal is to com-

pute for each pixel of the sphere’s visible face the transfor-

mation of the light vector and the eye vectors into tangent

space. That space is locally tangent to the surface and is

used to compute the final colors of the pixels in a bump

mapping context. That process is performed by rendering

a sphere in an offscreen buffer, whose center and radius

are the same as the graph layout, with tangent space infor-

mations attached to each vertex of the mesh. A dedicated

shader program then transforms the light and eye vectors

provided as parameters into tangent space and stores the re-

sults in two floating point textures. The final bump mapped

drawing is then generated by another shader program read-

ing the modified normals from the normal map texture, the

transformed light and eye vectors from the two previous

generated textures, and performing a per-pixel illumination

using Blinn-Phong [5]. The final colors of the pixels are

computed from the lighting properties and another texture

called the diffuse map. In our case, the diffuse map corre-

sponds to the original edge colors. To perform a global il-

(a) (b) (c)

(d) (e) (f)

Figure 3: (a) 2000 international air interconnections network, containing 1524 airports and 16397 flights, embedded on

the globe; (b) Result when applying the 3D edge routing method and using spline curves;(c) Result when routing edge

around the globe and using cubic b-spline curves and bump mapping ; (d) 2004 international air interconnections network,

containing 1501 airports and 12360 flights, embedded on the globe ;(e) Result when applying the 3D edge routing method

and using cubic b-spline curves and bump mapping ; (f) Zoomed view.

lumination, the light is set to be directional with each light

ray parallel to the Z-axis. Our visualization system then

lets the user configure the ambient, diffuse and specular

color of the light source. The view can also be zoomed,

panned and rotated for interactive exploration.

5 Results
We experimented our algorithm on the international air

interconnection networks of year 2000 and year 2004 (see

figure 3). Figures 3.(a) and (d) show the original layout

of both air traffic networks when nodes are laid out ac-

cording to their latitudes and longitudes. An edge color

is computed according to the geographical regions its ex-

tremities belong to (for instance, european flight are repre-

sented by red edges while north american ones are in dark

green). These representations are difficult to understand

due to the visual complexity of such networks and to oc-

clusion problems raised by 3D visualization. Using our

3D edge bundling technique (see figure 3.(b)) reduces the

clutter of the representation. One can already see some of

the major trends, such as really dense intra european and

north american networks. However as the number of pos-

sible routes for each original edge is large, edges are not

bundled enough and the representation still suffers from

occlusion problems.

Figures 3.(c) and .(e) show the result we obtained when

routing the edges around the globe and not across it. To in-

crease the readability of that drawing, we added a texture to

render the continents and seas. These drawings had been

computed in 90 seconds for the 2000 air traffic network

and 84 seconds for the 2004 air traffic network 1. When

looking closer to the results one can notice that edges col-

ors in each bundle are more or less uniform, meaning that

1Computation time obtained with an Intel Core Duo 2.4 GHz processor with 4GB RAM.

edges bundled together are linking the same geographical

regions. For instance, figure 3.(f) is a zoomed view on the

2004 air traffic network, one can see that all edges between

Europe and North America were bundled together in the

light brown bundles. In these figures, one can see major

trends, such as the central positioning of Europe within

both networks or that Africa is mainly related to european

and middle east countries. Our technique clearly improves

the readability of these representations and help to reveal

high-level edge patterns.

Conclusions
In this paper, we have presented A 3D edge bundling

technique based on edge routing. This technique allows to

reduce clutter of a 3D representation but also reveals high-

level edge patterns. We have also introduced the needed

modifications to bundle the edges on the sphere in or-

der support visualization geographical networks, such as

the international air traffic networks, in the context of the

globe.

To facilitate edge bundle density perception, we pre-

sented a GPU-based rendering method that allows a fast

enough rendering to support smooth exploration. That

method is an extension of the bump-mapping technique

of [18] which allows to preserve edge colors in order to

encode another information.

An interesting direction for future work is to explore

different methods to build the grid graph such as a grid sup-

porting non-uniform nodes sizes or avoiding regions of the

representation. Another direction is to adapt our method to

surfaces having other topologies. Finally we plan to speed

up the rendering by minimizing the number of bends. This

bends simplification should also guarantee that no node-

edge overlap is created.

References
[1] J. Abello, F. van Ham, and N. Krishnan. ASK-

GraphView : A Large Graph Visualisation System.

IEEE Transactions on Visualization and Computer

Graphics, 12(5):669–676, 2006.

[2] D. Archambault, T. Munzner, and D. Auber. Grouse:

Feature-Based and Steerable Graph Hierarchy Explo-

ration. In Ken Museth, Torsten Möller, and Anders

Ynnerman, editors, Eurographics/ IEEE-VGTC Sym-

posium on Visualization, pages 67–74, Norrköping,

Sweden, 2007. Eurographics Association.

[3] F. Aurenhammer. Voronoi diagrams—a survey of a

fundamental geometric data structure. ACM Comput.

Surv., 23(3):345–405, 1991.

[4] M. Balzer and O. Deussen. Level-of-detail visualiza-

tion of clustered graph layouts. In Asia-Pacific Sym-

posium on Visualization, pages 133–140, 2007.

[5] James F. Blinn. Models of light reflection for com-

puter synthesized pictures. In SIGGRAPH ’77: Pro-

ceedings of the 4th annual conference on Computer

graphics and interactive techniques, pages 192–198,

New York, NY, USA, 1977. ACM.

[6] James F. Blinn. Simulation of wrinkled surfaces. In

SIGGRAPH ’78: Proceedings of the 5th annual con-

ference on Computer graphics and interactive tech-

niques, pages 286–292, New York, NY, USA, 1978.

ACM.

[7] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li.

Geometry-based edge clustering for graph visualiza-

tion. IEEE Transactions on Visualization and Com-

puter Graphics, 14(6):1277–1284, 2008.

[8] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y.

Meng. Confluent Drawings: Visualizing Non-planar

Diagrams in a Planar Way. In Proc. Graph Drawing

2003 (GD’03), pages 1–12, 2003.

[9] E. W. Dijkstra. A short introduction to the art of

programming. Technische Hogeschool Eindhoven,

1971.

[10] D.P Dobkin, E.R. Gansner, E. Koutsofios, and S.C.

North. Implementing a general-purpose edge router.

In Proc. Graph Drawing 1997 (GD’97), pages 262–

271, 1998.

[11] T. Dwyer and L. Nachmanson. Fast Edge-Routing

for Large Graphs. In Proc. Graph Drawing 2009

(GD’09), page To appear, 2010.

[12] G. Ellis and A. Dix. A taxonomy of clutter reduction

for information visualisation. IEEE Transactions on

Visualization and Computer Graphics, 13(6):1216–

1223, 2007.

[13] E. R. Gansner and Y. Koren. Improved circular lay-

outs. In Proc. Graph Drawing 2006 (GD’06), pages

386–398, 2006.

[14] D. S. Hochbaum. Approximating covering and pack-

ing problems: set cover, vertex cover, independent

set, and related problems. pages 94–143, 1997.

[15] D. Holten. Hierachical Edge Bundles: Visualization

of Adjacency Relations in Hierarchical Data. IEEE

Transactions on Visualization and Computer Graph-

ics, 12(5):805–812, 2006.

[16] D. Holten and J. J. van Wijk. Force-directed

edge bundling for graph visualization. In 11th

Eurographics/IEEE-VGTC Symposium on Visualiza-

tion (Computer Graphics Forum; Proceedings of Eu-

roVis 2009), volume 31, pages 983–990, 2009.

[17] C. L. Jackins and S. L. Tanimoto. Oct-trees and their

use in representing three-dimensional objects. Com-

puter Graphics and Image Processing, 14(3):249–

270, 1980.

[18] A. Lambert, R. Bourqui, and D. Auber. Wind-

ing roads: Routing edges into bundles. In 12th

Eurographics/IEEE-VGTC Symposium on Visualiza-

tion (Computer Graphics Forum; Proceedings of Eu-

roVis 2009). To appear., 2010.

[19] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Wino-

grad. Flow map layout. In Proc. of IEEE Information

Visualization Symposium, pages 219–224, Washing-

ton, DC, USA, 2005. IEEE Computer Society.

[20] F. van Ham and J. J. van Wijk. Interactive Visual-

ization of Small World Graphs. In Proc. of IEEE In-

formation Visualization Symposium, pages 199–206,

Washington, DC, USA, 2004. IEEE Computer Soci-

ety.

[21] R. van Liere and W. de Leeuw. GraphSplatting: Vi-

sualizing graphs as continuous fields. IEEE Trans-

actions on Visualization and Computer Graphics,

9(2):206–212, 2003.

[22] N. Wong and S. Carpendale. Using Edge Plucking

for Interactive Graph Exploration. In Proc. of IEEE

Information Visualization Symposium, Poster Com-

pendium, pages 51–52, Washington, DC, USA, 2005.

IEEE Computer Society.

[23] N. Wong, S. Carpendale, and S. Greenberg. Edge-

Lens: An Interactive Method for Managing Edge

Congestion in Graphs. In Proc. of IEEE Information

Visualization Symposium, pages 51–58, Washington,

DC, USA, 2003. IEEE Computer Society.

[24] M. Wybrow, K. Marriott, and P.J. Stuckey. Incremen-

tal connector routing. In Proc. Graph Drawing 2005

(GD’05), pages 446–457, 2006.

[25] H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen.

Energy-based hierarchical edge clustering of graphs.

In Visualization Symposium, 2008. PacificVIS ’08.

IEEE Pacific, pages 55–61, 2008.

