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Abstract

Visualizing graphs containing many nodes and edges efficiently is quite challenging. Drawings of such graphs

generally suffer from visual clutter induced by the large amount of edges and their crossings. Consequently, it is

difficult to read the relationships between nodes and the high-level edge patterns that may exist in standard node-

link diagram representations. Edge bundling techniques have been proposed to help solve this issue, which rely

on high quality edge rerouting. In this paper, we introduce an intuitive edge bundling technique which efficiently

reduces edge clutter in graphs drawings. Our method is based on the use of a grid built using the original graph

to compute the edge rerouting. In comparison with previously proposed edge bundling methods, our technique

improves both the level of clutter reduction and the computation performance. The second contribution of this

paper is a GPU-based rendering method which helps users perceive bundles densities while preserving edge

color.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Graphs play an important role in many research areas,
such as biology, microelectronics, social sciences, data min-
ing, and computer science. Improvements in data acquisition
techniques drive the need for visualization, as the size and
the complexity of acquired graphs prohibit manual draw-
ing. The graph drawing and information visualization com-
munities focus on designing effective visualizations of such
large graphs. For particular classes of graphs, such as trees,
planar graphs or directed acyclic graphs, effective solutions
have been found that give very good results ; not only in
terms of time and space complexity but also in terms of aes-
thetic criteria. However, real-world graphs from application
domains usually do not belong to these classes. To find an
algorithm that gives good results (in terms of computation
time, aesthetic criteria and information emphasized) for ar-
bitrary graphs is a difficult problem. As it produces visually
pleasant and structurally significant results, the most pop-
ular approaches to draw such graphs are the force-directed
approaches (e.g., [FLM94,HJ04]).

However, due to data complexity, we cannot expect force-
directed approaches to give readable representations of all

graphs. To the best of our knowledge, there exists for in-
stance no drawing algorithm that offers a satisfying layout
of a scale-free network (i.e. a graph whose degree distribu-
tion follows a power law). Furthermore, in some applica-
tion domains, such as geography, nodes positions cannot be
changed as they bring information. In such cases, informa-
tion discovery becomes difficult as edge crossings and node-
edge overlaps clutter the representation. Reducing the clutter
in a graph representation is therefore of utmost importance
to identify relationships and high-level edge patterns.

In the past, clutter reduction had been achieved using
two main techniques : compound visualization and edge
bundling. In a compound visualization (e.g [vv04, AvK06,
AMA07]), an abstraction of the original network is built
by collapsing clusters into metanodes and the result is then
displayed on the screen. This technique reduces the clutter-
ing of the representation as inter-cluster edges are merged
into metaedges. However, complex interactions for collaps-
ing/expanding metanodes are necessary to retrieve the in-
formation. Furthermore, the compound visualization is not
suitable when nodes positions cannot be changed as clusters
may overlap.
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Recently, edge bundling techniques [PXY∗05, Hol06,
CZQ∗08, Hv09] are of increasing interest in the graph
visualization community. Put under the spotlight by
Holten [Hol06], this technique routes edges into bundles in
order to uncover high level edge patterns and to emphasize
relationships in relational data.

In this paper, we focus on a novel approach to gener-
ate edge-bundled representations of graphs. We introduce an
intuitive edge bundling algorithm which efficiently reduces
edge clutter in graphs drawings. Our method discretizes the
plane into regions. Boundaries of these regions are used as
roads to route edges. The main contribution of this paper is
therefore a new edge bundling technique that improves com-
putation times when compared to existing methods but also
avoids node-edge overlaps. The second contribution of this
paper is a GPU-based rendering method which enables users
to perceive bundle densities while preserving edge color.
Our algorithm and rendering technique have been imple-
mented as two plugins for the Tulip graph visualization soft-
ware [Aub03].

The remainder of this paper is structured as follows. Sec-
tion 2 reviews related work on edge clutter reduction meth-
ods and techniques to enhance edge bundles visualization.
In section 3 and 4, we present the main steps of our method
and several implementation issues. We next explain a way to
parametrize the level of clutter reduction in section 5. Sec-
tion 6 refers to rendering techniques necessitated by edge
bundling visualization. Finally, we draw a conclusion and
give directions for future work in section 7.

2. Previous Work

As mentioned above, we focus in this paper on a repre-
sentation of edges whose extremities have fixed positions. In
this section, we investigate existing techniques for edge clut-
ter reduction but also techniques for enhancing edge bun-
dles visualization. For a general overview of clutter reduc-
tion methods and not only edge clutter reduction techniques,
we recommend the survey of Ellis and Dix [ED07].

2.1. Edge Clutter reduction

Edge routing : One of the first attempts to reduce clutter
in graphs drawings was made by the graph drawing com-
munity. Indeed, to increase the readability of a graph draw-
ing, one should try to bound the number of edge crossings
but also to avoid node-edge overlaps (to use non-point-size
nodes for instance). In [DGKN98], Dobkin et al. give a novel
method using visibility graphs and shortest-path edge rout-
ing to remove node-edge overlaps. The technique was ported
to tangent visibility graphs by [WMS06]. Finally, Dwyer and
Nachmanson [DN10] give a fast heuristic to compute an ap-
proximation of the visibility graph to reduce the time com-
plexity of the approach and therefore to support large graph

edge routing. These approaches efficiently reduce edge clut-
ter by avoiding node-edge overlaps, however they do not
help the user to identify high level edge patterns.

Interactive techniques : Wong et al. give in [WCG03,
WC05] interaction techniques to remove clutter around the
user’s focii. Edges close to one of the focii are pushed away
in a fisheye-like manner while preserving nodes positions.
The representation is locally uncluttered around each focus,
but this technique does not reduce the clutter of the entire
representation.

Confluent Drawing : The graph drawing community fo-
cused on a particular representation of graph, called con-

fluent graph drawing. In a confluent graph drawing, a
non-necessarily planar graph is represented without edge
crossing. In this techniques, groups of crossing edges are
drawn as curved overlapping lines. For instance, Dicker-
son et al. [DEGM03] give an algorithm to compute a con-
fluent graph drawing which is based on the detection of
maximum cliques and bi-cliques (complete bipartite graph).
Then, edges are bundled to obtain a “planar” representation
of these unplanar subgraphs. Even though confluent graph
drawing techniques give interesting results, they cannot by
applied to all classes of graphs (see [DEGM03] for more de-
tails).

Node clustering : Phan et al. present in [PXY∗05], a flow
map layout technique based on geometrical node clustering.
Edges are routed along the hierarchy tree branches. This idea
has also been used by Holten in [Hol06] to enhance relation-
ship in hierarchical (and relational) data. The main drawback
of both methods is that edges are routed using a hierarchy
tree which can be restrictive in the general case.

Edge clustering : In [GK06], Gansner and Koren give an
improved circular layout algorithm where edges are routed
either on the outer face of the circle or in its inner face. Edges
routed inside the circle are bundled using an edge cluster-
ing algorithm that tries to optimize area utilization. Another
edge clustering method is given by Cui et al. [CZQ∗08]. In
this paper they propose a geometric approach to create bun-
dles of edges. The main idea is to build a control mesh based
on user interaction or a Delaunay triangulation. The mesh is
then used to compute regions where edges should be merged.
The merging of edges is done according to a clustering al-
gorithm based on the orientation of edges. A post processing
step is applied to reduce the “zigzag” effect of edges. Finally,
Holten and van Wijk introduced in [Hv09] a force-directed
heuristic to bundle edges and therefore, to unclutter a rep-
resentation of a graph where nodes positions are fixed. In
this heuristic, dummy nodes are inserted to split edges into
segments. A similarity measure between edges is computed
to determine which of them should interact. Dummy nodes
of any two interacting edges are linked by inserting dummy
edges. Bundles are obtained by running a force-directed al-
gorithm preserving positions of the original nodes.
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2.2. Enhancing edge-bundled graph visualizations

Smoothing curves : The main feature common to each
edge-bundled graph visualizations is the drawing of edges
as curves. Indeed, rendering graph edges as curves makes
the task of following them easier and gives a more visually
appealing graph drawing.In [Hol06], Holten renders bundled
edges piecewise with cubic B-splines. By using this type of
splines, which offered local control on the curve shape, one
can produce distinct and coherent bundles. In [ZYC∗08],
Zhou et al. use others models of splines to render bundled
edges which are Bézier curves and Catmull-Rom splines.
Another method used by Holten et al. [Hv09] and Weiwei
et al. [CZQ∗08] is to apply a smoothing technique on the
edges drawn as polylines to morph them into curves.

Coloring edges : Another method of enhancing edge-
bundled graph visualization is to use edge colors and opac-
ities to encode information. In [CZQ∗08], edge colors are
mapped to the directions of the original links. A similar tech-
nique is used in [Hol06] but edge direction is encoded by an
interpolated color gradient running from a fixed color for the
source to a fixed color for the target. In [Hol06] edge opaci-
ties are mapped to their length with long curves being more
transparent than short ones, preventing short curves to be-
come obscured. In [CZQ∗08], the opacity of each segment
of the polyline representing an edge is mapped to the den-
sity of lines overlapping it. Another technique for estimat-
ing the quantity of edge segments merged together is pro-
posed in [Hv09]. A GPU-based method is used to compute
the amount of overdraw for each pixel of the produced graph
visualization. This value is then used to map pixel colors to a
user-defined gradient color scale after a minimum and max-
imum value of overdraw have been computed.

3. Routing edges for bundling

The main idea of our technique is to use edge routing to
bundle edges. We first create a grid graph according to the
node positions. This grid is then used to compute the shortest
routes for each edge. Like highways attract more drivers than
smaller roads, we use frequent paths to bundle edges.

3.1. Grid computation

To compute the shortest paths of each original edge, we
create a grid graph on which we connect the original nodes.
This graph is computed by discretizing the plane into cells
using nodes positions. In the following paragraph, we inves-
tigate several approaches to create the grid graph.

Cui et al. [CZQ∗08] use a regular grid to discretize the
plane. This grid is used to aggregate edges that have the same
orientation together. Using a fine regular grid would resolve
in large grid graph sizes. Indeed the grid must be very pre-
cise to route edges through highly dense regions. However,
using a large grid raises two major problems. First, it gener-
ates a multitude of routes and therefore reduces the bundling

of long edges. Secondly, the grid graph may contain many
times more than |V |2 nodes, making the approach expensive
in terms of shortest paths computation and memory.

To obtain a multi-resolution grid graph, one can use a
quad tree [FB74]. In a quad tree, the plane is decomposed in
four parts until it contains at most one element. In figure 1(a),
one can see the grid graph generated on the 2000 air traffic
network. Such an approach is efficient in terms of computa-
tion time since its complexity is O(|V | · log(|V |)). However,
on one hand it generates a large grid (37,395 nodes/69,102
edges for the 2000 AT network) and on the other hand,
large cells promote horizontal and vertical paths. Voronoï di-
agrams [Vor08] can also be used to generate the grid graph.
In a voronoï diagram, cells are regions of the plane in which
points of a cell are closer to the cell’s site (here original
nodes) than to any other site. Figure 1(b) shows the grid
graph obtained with the Voronoï approach. Using classi-
cal Voronoï diagram does not guarantee to avoid node edge
overlap in case of non point size node. However that prob-
lem can be easily addressed using a constrained Voronoï di-
agram (taking node sizes into account). This method gener-
ates a small grid graph (4,531 nodes/13,558 edges for the
2000 AT network) and can be computed in O(|V | · log(|V |))
time [For86]. However, it generates large cells for sparse re-
gion. Due to our routing method, these large cells will cre-
ate large detours. In this work, we propose a hybrid algo-
rithm based on both quad trees and Voronoï diagrams. In
our algorithm, the size of quad tree cells are parametrized to
generate different levels of clutter reduction (see section 5).
Voronoï diagrams are then used to construct the final grid
graph. Figure 1(c) shows the grid graph obtained with this
hybrid approach. Since the quad tree adds O(|V |) nodes,
the O(|V | · log|V ]) time complexity is preserved. Therefore,
the resulting grid graph is of reasonable size (10,146 nodes/
30,315 edges on 2000 AT network).

3.2. Edge routing

The next step of our method consists of routing edges in
the original graph onto the grid we obtained in the previ-
ous step. We can use a shortest path algorithm directly to
achieve this operation. Since the grid is planar, we obtain a
polyline drawing of the graph. However, this method does
not guarantee that edges follow the same path and thus it
creates few bundles. To augment the bundling effect, we use
the metaphor of roads and highways. The idea is to trans-
form regular roads into larger ones if they are highly used.
We reproduce this effect by first computing all the shortest
paths between linked nodes on the original graph. Then, ac-
cording to the number of shortest paths passing through an
edge of our grid, we adjust the weights of the edge. Reduc-
ing the weights of an edge is equivalent to transforming it
into a highway, since using that edge enables it to go faster
from one point to another. We then compute a shortest path
for each edge of the original graph. This weights adjust-
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(a) (b) (c)

Figure 1: Grid graphs generated on the 2000 Air Traffic (AT) network with (a) a quad tree (37395 nodes/69102 edges), (b) a

Voronoi diagram (4531 nodes/13558 edges) and (c) the hybrid quad tree/Voronoï approach (10146 nodes/30315 edges).

ment create new bundles, since the new distance matrix of
our graph promotes frequently used edges. To compute the
shortest paths we use the well-known Dijkstra’s algorithm,
leading toO(|Vgrid | · |Egrid |+ |Vgrid |

2 · log(|Egrid |) time com-
plexity. To speed up the edge routing process we introduce
in the next section several optimizations.

4. Implementation issues

A naive implementation of our approach can bundle
graphs in a reasonable amount of time. In figure 2, one can
see that on the US migration graph [Hv09,CZQ∗08] it takes
75 seconds to bundle the graph with our approach. This ex-
ecution time is faster than [Hv09] but significantly slower
than [CZQ∗08]. This benchmark was ran on an Intel(R)
Core(TM)2 Extreme CPU Q9300 2.53GHz. To improve the
efficiency of our method and make it usable on larger graphs,
several optimizations must be done. In this section, we pro-
pose optimizations that reduce the overall computation time.
These optimizations consist of minimizing the number of
shortest paths computed and taking advantage of modern
multi-core architectures. These improvements do not change
the output of the algorithm when compared to the straight-
forward implementation. However, the execution time can
be reduced by a factor of ten or more, depending on the num-
ber of CPUs and the topology of the graph.

First optimization : The first optimization consists of re-
ducing the time to compute the shortest paths. In our imple-
mentation, we use Dijkstra’s algorithm [Dij71]. The weights
of the edges are modified according to the paths we want
to promote. Thus, we must use the weighted shortest path
algorithm, and we can not use faster Euclidian graph short-
est path methods [SV86]. If we use this straightforward ap-
proach, we have to compute the shortest paths for each node
of the original graph to each node of the grid. These op-
erations can be done in O(|Vgraph|.|Egrid |.log|Vgrid |) time.

However, we only need the shortest path between each ad-
jacent nodes of the original graph on the grid. With a slight
modification to Dijkstra’s algorithm, we can stop the com-
putation of paths when all candidates in the Dijkstra’s pri-
ority queue are at a distance greater than all the neighbors
of our source node. In figure 2(a), 2(b) and 2(c) one can see
that this modification significantly decreases running time.
In figure 2(c), one can see that the running time has been re-
duced by a gain of factor 6.4. This call graph has been drawn
with a force-directed algorithm [HJ04] which tries to lay out
as close as possible connected nodes. Thus, this optimiza-
tion allows us to restrict the exploration to a small part of the
grid each time. This makes our algorithm efficient for graphs
drawn with this kind of algorithm.

Second optimization : The second optimization aims to
reduce the number of calls to the shortest path algorithm
and also increases the efficiency of the previous one. After
computing the shortest paths from one node to its neighbors,
we don’t need to consider that node again during the com-
putation. Minimizing the number of nodes to treat in order
to consider each edge of the graph is the so called vertex
cover problem [Hoc97]. Unfortunately this problem is NP-
complete. However, it is possible to compute a minimal (but
not optimal) vertex cover of a graph. Instead of using the
original graph for computing the neighbors of a node in the
first optimization, we construct a copy of that graph, called
vertex cover graph, in which we delete a node after it has
been treated. Deleting this node in the vertex cover graph re-
duces the degree of its neighbors and thus it will reduce the
set of nodes considered by the first optimization. In figure 2,
one can see that in all cases this improvement significantly
decreases the running time of our technique.

Third optimization : The third optimization aims to re-
duce the number of critical sections in the parallel imple-
mentation of our algorithm and to create tasks of equiva-
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(a) (b) (c)

Figure 2: Computation time of our method applied : (a) on the US migration graph used by [Hv09, CZQ∗08] (1715
vertices/9780 edges), (b) on the 2000 air traffic network (1525 vertices/16479) and (c) on the call graph (5741 vertices/11442
edges).

lent size for each thread. Our method needs to run a short-
est paths algorithm for each vertex of our cover set. This
approach can be parallelized by computing several short-
est paths simultaneously. However, there are critical sections
that one needs to address. For instance, the update of the
number of shortest paths passing through a particular edge
can be done by several threads in parallel. To remove these
critical sections, we use a preprocessing step that creates sets
of nodes which do not conflict with each other. We have tried
the graph coloration heuristic of Welsh and Powell [WP67].
Our experimentation shows that it does not improve the run-
ning time and it seems better to use critical sections instead.
After several experiments, we found that the key is to cre-
ate a local coloration before starting each parallel section.
The algorithm maintains a list of nodes ordered according
to the distances in the original layout to their neighborhood.
Before each parallel section, we select the k (where k cor-
responds to the number of threads) first nodes that are not
connected. This operation prevents treating the same edge
several times and generates a set of tasks with a more ho-
mogeneous size. Indeed, the first optimization speeds up the
computation of shortest paths if the neighbors are close to
each other in the layout. Thus, if one treats in parallel nodes
having close neighbors and far neighbors, the execution time
of each thread can be significantly different. Using our or-
dering, we ensure that we take a set of nodes in which the
shortest path computation time is similar. In figure 2, one
can see that even if the scheduling adds extra computation
time it allows us to speed up the overall running time.

5. Level of Clutter Reduction

As described in previous sections, our method consists of
routing the original edges on the grid graph using the well-
known Dijkstra’s algorithm. Weighted shortest paths allow
us to define different levels of clutter reduction by either
adapting edge weights or avoiding a particular path. In fig-
ure 3, one can see the different levels of clutter reduction that
we propose.

5.1. Edge-edge clutter reduction

The edge-edge clutter reduction we define corresponds
to the one used in [CZQ∗08, Hv09], i.e. only clutter due
to edge crossings is reduced. In this case bundles of edges
can overlap with nodes of the original graph. For instance,
figure 3.(b) shows the result obtained on the graph of fig-
ure 3.(a) using only edge-edge clutter reduction. One can see
in the zoomed view that blue edges are routed through nodes
of the network. To obtain this level of clutter reduction, one
just has to consider each edge of the grid graph when routing
the edges. In particular, a node-grid edges (i.e. edges linking
original nodes to nodes of the grid graph) can be used when
computing the shortest paths on the grid graph.

5.2. Node-edge clutter reduction

Edge-edge clutter reduction only allows us to reduce the
clutter due to edge crossings. Still, one may want to unclutter
the representation by reducing clutter due to node-edge over-
laps. We can forbid routing node through the original graph.
For instance, in figure 3.(c), one can see that the blue edges
are routed around nodes in the graph while these edges cross
the nodes using edge-edge clutter reduction only. We obtain
node-edge clutter removal by filtering out node-grid edges
during Dijkstra’s algorithm. As these node-grid edges are
not taken into account when computing the shortest paths,
no original edge can be routed through a node of the original
graph. Of course, path ending on original nodes are allowed.

5.3. Uncluttering highly dense zones

We can further improve clutter reduction by promoting
paths to pass through sparse regions. For instance, in fig-
ure 3.(d), one can see that all blue edges have been routed
around the dense subgraph (in the middle of figure 3.(d)).
Our method naturally produces this effect since paths pass-
ing through dense regions are quite twisty. As the density in
this part of the drawing is high, the corresponding region of
the grid graph contains many cells. Therefore, the length of
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(a) (b) (c) (d)

Figure 3: Different clutter reductions of a graph representation (a), using edge-edge clutter reduction method (b), avoiding

node-edge overlap (c) and uncluttering dense zones (d).

an edge routed through this part of the graph is longer than
the Euclidian distance between its extremities. To augment
this phenomena, dummy nodes are added around the original
node when applying our quadtree method (see section 3). We
are able to unclutter even more dense regions by adapting the
initial weights of the grid edges. Let l be the Euclidian dis-
tance between two nodes in our grid (i.e. length of an edge).
We compute the new weights using the following formula
w(e) = length(e)α, the α parameter can be used to increase
or decrease the uncluttering of dense regions. An α less than
one promotes path outside dense regions. In figure 6.(b) one
can see that edges going from bottom left to the bottom right
corner are bundled on the south pole. It thus reduces clutter
in the center of the map.

6. Interactive rendering of edge-bundled graphs

6.1. Smoothing the edges with curves

Once the bundling process has been performed on the
graph, edges become polylines due to the routing phase
which adds bends to them. With respect to the size of the
graph and the grid used to compute the bundles, the number
of edge bends can be quite high. When rendering the edge-
bundled graph layout, these bends induce a “zigzag” effect
on the edges making them hard to follow. In order to smooth
edges, we offer the possibility of rendering them as curves in
our visualization system using edge bends as curves control
points. Several kinds of parametric curves are proposed in-
cluding Bézier curves and cubic B-splines. Moreover, edges
going to the same region of the graph and sharing succes-
sive bends remain merged, giving a nicer impression of flows
between different areas of the graph. However, even if this
result is more visually appealing, one drawback of this tech-
nique is that we re-introduce edge-node clutter in the draw-
ing. Due to the high computational cost of rendering curves
with a large number of control points , especially Bézier
curves, we have developed a GPU-based implementation.

It allows us to draw a large number of curves defined by
an arbitrary number of control points in real time, giving us
the ability to smoothly interact with the graph drawing. As
an example, a comparison between the polyline and Bézier
curve rendering of the graph edges is shown in figure 4.

6.2. Edge splatting

When edges have been merged into bundles, high-level
edge patterns emerge on the graph drawing, giving a nice
impression of flows between different regions of the graph.
However, the information regarding the number of edges
contained in a bundle is not easily seen in the drawing. In
order to distinguish strong bundles from weak ones, we pro-
pose an edge splatting technique to visually enhance them.

Our method is inspired from the GraphSplatting technique
introduced by van Liere et al. in [vd03]. In this work, the au-
thors represent a graph as a 2D continuous scalar field and
calculate a splat field. GraphSplatting provides a way to vi-
sualize continuous variations in the density of vertices which
can help determine the structure of the underlying graph.
Another work sharing similar features to this technique is the
one by Chiricota et al. [CJM04]. They propose a technique
to select points in a scatterplot representation by applying a
Gaussian blur on the associated image. This blurring effect
melts points forming a dense subregion of the scatterplot into
a large patch that can help a user to identify and select clus-
ters in the underlying data.

The following presents our rendering pipeline to visualize
the density of edges that have been merged into bundles. It
is based on a combination of common image processing and
computer graphics technique and each stage entirely runs
on the GPU. In a similar way than the GraphSplatting tech-
nique, the idea is to compute a splat field encoding contin-
uous variations in the density of merged edges. This splat
field can then be displayed on screen in a various ways. We
explored two solutions to visually encode bundles density.
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(a) (b)

Figure 4: Comparison between two representations of an edge-bundled graph. In (a), edges are drawn as polylines while in (b)

they are drawn as Bézier curves. When edges are rendered as Bézier curves, their shapes are smooth and a nice impression of

flows between different regions of the graph emerges from the drawing. However, edges can overlap nodes due to the lack of

local control proper to Bézier curves.

The first one simply maps density values to colors based on
a user-defined color scale. The second one preserves edges
colors and uses a per-pixel shading technique mapping den-
sity values to heights giving the impression than strong bun-
dles appears higher than weak ones.

6.2.1. Computing and rendering the splat field

The first stage of our edge splatting rendering pipeline
is to compute the number of edges crossing each pixel of
the drawing. As in [Hv09], this operation can be done by
performing an offscreen rendering of the graph edges in an
accumulation buffer. Using the OpenGL graphics API, we
can implement it with a render-to-texture technique using a
Frame Buffer Object with a single precision floating point
texture attached to it. Then, we assign the same color to
each edge and activate additive blending during the render-
ing stage.

Next stage of the rendering pipeline is the splat field com-
putation. The resulting texture of the previous stage is a field
of discrete values encoding edges density per pixel. The goal
of this stage is to transform it into a continuous scalar field.
This process can be performed by convoluting the discrete
density values field with a Gaussian kernel defined by a ra-
dius r and a standard deviation σ. This operation can still
be performed on the GPU by rendering to a texture and by
writing an OpenGL fragment shader to perform the convolu-
tion. A shader program allows to modify the default behav-
ior of some processing units in the GPU rendering pipeline.
A fragment shader aims to customize the pixel processing
unit of the pipeline whose role is to calculate the colors of
the pixels to display. In OpenGL, shader programs can be
written using a C-like language called GLSL (the OpenGL

Shading Language). Shaders offer tangible benefits since
they are well suited for parallel processing as most modern
GPUs have multiple shader pipelines. Because a fragment
shader allows reads of pixels from a texture stored in graph-
ics memory, implementing the convolution of the discrete
density values with a Gaussian kernel is an easy task. Our

Figure 5: Linear edge splatting generated with a Gaussian

kernel of radius 5 and standard deviation 3.

implementation takes advantage of the fact that a Gaussian
filter is linearly separable. Therefore, we can divide the pro-
cess into two passes [Smi97]. In this way, performances do
not degrade as the radius of the kernel increases. The source
code of this fragment shader is generated dynamically with
respect to the kernel radius requested by the user. The stan-
dard deviation of the Gaussian kernel can also be modified
dynamically. The larger the kernel radius and standard devi-
ation, the more the splat field is smoothed.

In order to visualize the computed splat field, a gradient-
based rendering is performed, mapping the splatting value
associated to each pixel to a user-defined color scale. To
achieve this task, the minimum and maximum value of the
splat field are determined with a GPU texture reduce op-
eration [KW03]. A quadrilateral with the same size as the
splat field texture is then drawn to the screen and pixel col-
oring is performed by a dedicated fragment shader, mapping
splatting values to the user-defined gradient. The result of
the edge splatting technique on the US migration graph is
presented in figure 5.

6.2.2. Enhancing the splatting with shading

As a way of improving the splat field representation, we
propose an extra rendering stage based on a bump mapping
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technique. Bump mapping is a computer graphics technique
introduced by Blinn [Bli78] allowing a rendered surface to
appear more realistic without modifying geometry. It adds a
per-pixel shading that makes the surface appears bumpy, by
changing the surface normals. The colors and brightnesses
of the pixels are then altered with respect to these normals
using a lighting algorithm. The modified normal for each
pixel are stored in a texture called a normal map. RGB com-
ponents of the pixels colors store the X, Y and Z values of
the normal vectors. This normal map is generated from a
heightmap, another texture storing the height values for each
pixel of the surface. Bump mapping is classified in the per-
pixel displacement mapping methods. An exhaustive survey
of these displacement mapping algorithms is presented by
Szirmay-Kalos et al. [SKU08].

Recently, Willems et al. proposed a geographical visual-
ization of vessel movements [Wvv09] where they used shad-
ing to highlight significant maritime areas, like highways
or anchoring zones. Their visualization is based on density
fields that are derived from the convolution of dynamic ves-
sel positions with a kernel. In our case, if we map splat-
ting values to heights, we can use bump mapping to enhance
edge-bundled graph visualizations. Bundles with high den-
sity edges will appear higher than others with this rendering
technique and will visually emerge from the layout. In order
to achieve this task, we first need to generate a heightmap
from the computed splat field. This map can be generated by
mapping the splatting values to a black to white color scale :
black representing minimum height and white representing
maximum height. Then, we can generate the associated nor-
mal map by obtaining the heightmap gradient using for in-
stance the Sobel or Prewitt filter [GW06]. This operation can
be performed on the GPU with a fragment shader. This pro-
gram compute for each pixel the heightmap derivatives in
horizontal and vertical directions using the gradient operator
and construct the associated normal from these.

Once the normal map associated with the splat field has
been generated, bump mapped rendering can be performed.
The bump mapped is generated by a dedicated shader pro-

gram reading the modified normals from the normal map
texture and performing a per-pixel illumination using Blinn-
Phong [Bli77]. The final colors of the pixels are computed
from the lighting properties and another texture called the
diffuse map. In our case, the diffuse map can correspond to
the splat field color mapping or the original edge colors. To
perform a global illumination, the light is set to be direc-
tional with each light ray parallel to the Z-axis. Our visual-
ization system then lets the user configure the ambient, dif-
fuse and specular color of the light source. Results of this
rendering technique are presented in figure 6.

6.2.3. Rendering performances

In table 1, we introduce an estimation of the running time
for the edge splatting rendering pipeline. The benchmarks

have been ran on two different edge-bundled graphs con-
taining at least ten thousands edges. The table provides esti-
mation for the whole pipeline traversal but also for its three
main stages : density map generation, splat field computa-
tion (includes Gaussian convolution and GPU reduction) and
bump mapping rendering (includes diffuse map, heightmap
and normal map generation). The introduced performances
have been measured by executing one hundred times the
edge splatting pipeline and by computing the average ren-
dering times. As shown by the results, the most expensive
stage is the density map generation. During that process, the
rendering of the whole graph edges set is required. Bundled
edges can have a high number of bends so the number of
vertices sent to the GPU is much larger when compared to
straight line rendering. Obviously, the Bézier curve render-
ing is more expensive than the polyline one due to the high
computational cost of curves generation. The two remaining
stages of the rendering pipeline can be executed in real time
with respect to the measured framerates. Eventually, perfor-
mances are acceptable with respect to the number of edges
bends. For instance, the whole pipeline traversal for the US
migration graph, which contains ten thousands edges with
a large number of bends, takes around 0.1 seconds for the
polyline rendering and around 0.5 seconds when rendering
edges as Bézier curves.

graph US Migration Air Traffic
#nodes / #edges 1715 / 9778 1533 / 16525
#bends per edges

(#control points for curves)

from 1 to 213
mean : 30

from 0 to 203
mean : 29

Whole edge splatting

rendering pipeline

(shape : polyline)

0.103 s.
(9.7 FPS)

0.17 s.
(5.74 FPS)

Whole edge splatting

rendering pipeline

(shape : Bézier)

0.52 s.
(1.92 FPS)

0.57 s.
(1.74 FPS)

Density map generation

(shape : polyline)

0.09 s.
(11.1 FPS)

0.15 s.
(6.15 FPS)

Density map generation

(shape : Bézier)

0.51 s.
(1.96 FPS)

0.56 s.
(1.78 FPS)

Splat field computation
0.012 s.
(85 FPS)

0.011 s.
(94.8 FPS)

Bump mapping rendering
0.00044 s.
(2250 FPS)

0.00046 s.
(2185 FPS)

Table 1: Performances of edge splatting rendering for dif-

ferent edge-bundled graphs. Rendering is performed in a

viewport whose size in pixels is 800 x 800. Edge splatting

is performed with a Gaussian kernel of radius 3. The nor-

mal map needed for bump mapping is generated with a 5 x

5 Prewitt Filter. The CPU used to perform these tests is an

Intel(R) Core(TM)2 Extreme CPU X9100 @ 3.06GHz and

the graphic card is a NVidia Quadro FX 1700M.

7. Conclusion

In this paper, we have presented a novel and intuitive tech-
nique to route edges into bundles. This technique reduces
the clutter of the representation and also emphasizes high-
level edge patterns. Optimizations of our technique allow us
to outperform the execution times of existing methods and
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(a)

(b)

Figure 6: Illustrations of the bump mapping based rendering of edge splatting with the edge-bundled representations of the

US migration graph and 2000 AT network. Strong bundles appears higher than other ones with this technique making them

visually emerge from the graph drawing. For the US migration graph, heights are linearly mapped to the splat field and the

diffuse map used for the bump mapping rendering corresponds to the splat field linear color mapping. For the AT graph, heights

are logarithmically mapped to the splat field and the original edges colors are used as diffuse map.

scale to larger graphs. In addition to edge-edge clutter reduc-
tion, our method can guarantee that no node-edge overlaps
occurred in the drawing. Moreover, by promoting long grid
edges, we can further reduce edge cluttering in highly dense
regions and preferably bundle edges in sparse ones.

Using curves when rendering edges facilitate informa-
tion discovery as it eases the following of bundles. We ex-
tend the GraphSplatting technique to edge splatting in or-
der to depict bundles densities. Finally, a bump mapping
technique enhances the edge splatting and also makes it
possible to preserve the color encoding of the edges. Our
GPU-implementation allows fast enough rendering to sup-
port smooth interaction.

An interesting direction for future work is to explore dif-
ferent methods to build the grid graph such as constrained
Delaunay triangulations. More specifically, a grid support-
ing non-uniform node sizes would allow bundles to avoid

regions of the image in order to display nodes labels, cap-
tions, color scales or any other information. We also plan
to adapt our method to the sphere, to surfaces having other
topologies, or even 3D space.

Improving the curves smoothing technique also remains
future work. On one hand, we want to constrain our curves
to avoid nodes. On the other hand, we want to speed up the
rendering by minimizing the number of bends, while also
guarantying that no node-edge overlap is created.
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