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Liang MA · Damien CHABLAT · Fouad BENNIS · Wei ZHANG · Bo HU ·

François GUILLAUME

Abstract Virtual human techniques have been used a lot in
industrial design in order to consider human factors and er-
gonomics as early as possible. The physical status (the phys-
ical capacity of virtual human) has been mostly treated as
invariable in the current available human simulation tools,
while indeed the physical capacity varies along time in an
operation and the change of the physical capacity depends
on the history of the work as well. Virtual Human Status
is proposed in this paper in order to assess the difficulty
of manual handling operations, especially from the physi-
cal perspective. The decrease of the physical capacity be-
fore and after an operation is used as an index to indicate
the work difficulty. The reduction of physical strength is
simulated in a theoretical approach on the basis of a fa-
tigue model in which fatigue resistances of different mus-
cle groups were regressed from 24 existing maximum en-
durance time (MET) models. A framework based on digi-
tal human modeling technique is established to realize the
comparison of physical status. An assembly case in airplane
assembly is simulated and analyzed under the framework.
The endurance time and the decrease of the joint moment
strengths are simulated. The experimental result in simu-
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lated operations under laboratory conditions confirms the
feasibility of the theoretical approach.

Keywords Virtual human simulation· muscle fatigue
model· fatigue resistance· physical fatigue evaluation·
human status

1 Introduction

Although automation techniques have played a very impor-
tant role in industry, there are still lots of operations re-
quiring manual handling operations thanks to the flexibility
and the dexterity of human. Some of these manual handling
operations deal with relative heavy physical loads, which
might result in physical fatigue in the muscles and joints,
and further generate potential risks for Musculoskeletal Dis-
orders (MSDs) (Li and Buckle, 1999).

In order to improve the work design, digital human mod-
eling (DHM) technique has been used more and more in in-
dustry taking human as the center of the work design system
(Chaffin, 2002, 2007), since it benefits the validation of the
workspace design, the assessment of the accessibility of an
assembly design, the reduction of the production cost, and
the reduction of the physical risks as well.

Several commercial available DHM tools have already
been developed and integrated into computer aided design
(CAD) tools, such as Jack (Badler et al, 1993), 3DSSPP
(Chaffin et al, 1999), RAMSIS (Bubb et al, 2006), AnyBody
(Damsgaard et al, 2006), SantosTM (VSR Research Group,
2004), etc. In general, the virtual human in those tools is
modeled with a large number of degrees of freedom (DOF)
to represent the joint mobility, create the cinematic chain
of human, and complete the skeleton structure of human.
Meanwhile, the graphical appearance of virtual human is
realized by bone, muscle, skin, and cloth models from the
interior to the exterior, from simple stick models to compli-
cated 3D mesh models. Normally, biomechanical database
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and anthropometry database are often set up to determine
virtual human’s dimensional and physical properties.

The main functions of the virtual human simulation tools
are posture analysis and posture prediction. These tools are
capable of determining the workspace of virtual human (Yang
et al, 2008), assessing the visibility and accessibility ofan
operation (Chedmail et al, 2003), evaluating postures (Bubb
et al, 2006), etc. Conventional motion time methods (MTM)
and posture analysis techniques can be integrated into vir-
tual human simulation systems to assess the work efficiency
(Hou et al, 2007). From the physical aspect, the moment
load of each joint (e.g., 3DSSPP) and even the force of each
individual muscle (e.g., AnyBody) can be determined, and
the posture is predictable for reach operations (Yang et al,
2006) based on inverse kinematics and optimization meth-
ods. Overall, the human motion can be simulated and an-
alyzed based on the workspace information, virtual human
strength information, and other aspects. However, there are
still several limitations in the existing virtual human simula-
tion tools.

There is no integration of physical fatigue model in most
of the human simulation tools. The physical capacity is of-
ten initialized as constant. For example, the joint strength
is assigned as joint maximum moment strength in 3DSSPP,
and the strength of each muscle is set proportional to its
physiological cross section area (PSCA) in AnyBody. The
physical capacity keeps constant in the simulation, and the
fatigue effect along time is not considered enough. However,
the change of the physical status can be experienced every-
day by everyone, and different working procedures generate
different fatigue effects. Furthermore, it has been reported
that the motion strategy depends on the physical status, and
different strategies were taken under fatigue and non-fatigue
conditions (Chen, 2000; Fuller et al, 2008). Therefore, it is
necessary to create a virtual human model with a variable
physical status for the simulation.

Some fatigue models have been incorporated into some
virtual human tools to predict the variable physical strength.
For example, Wexler’s fatigue model (Ding et al, 2000) has
been integrated into SantosT M (Vignes, 2004), and Giat’s fa-
tigue model (Giat et al, 1993) has been integrated based on
Hill’s muscle model (Hill, 1938) in the computer simulation
by Komura et al (2000). However, either the muscle fatigue
model has too many variables for ergonomic applications
(e.g. Wexler’s model), or there is no confidential physiolog-
ical principle for the fatigue decay term (Xia and Frey Law,
2008) in the previous studies. It is necessary to find a simple
fatigue model interpretable in muscle physiological mecha-
nism for ergonomics applications.

In addition, some assessments in those tools provide in-
dexes generated by traditional evaluation methods (e.g., Rapid
upper limb assessment (RULA)). Due to the intermittent record-
ing procedures of the conventional posture analysis meth-

ods, the evaluation result cannot analyze the fatigue effect
in details. In this case, a new fatigue evaluation tool should
be developed and integrated into virtual human simulation.

In order to assess the variable human status, a prototype
of a digital human modeling and simulation tool developed
in OpenGL is presented in this paper. This human model-
ing tool is under a virtual environment framework involving
variable physical status on the basis of a fatigue model.

The structure of the paper is as follows. First, a vir-
tual human model is introduced into the framework for pos-
ture analysis based on kinematic, dynamic, biomechanical,
and graphical modeling. Second, the framework is presented
with a new definition called Human Status. Third, the fatigue
model and fatigue resistance for different muscle groups are
introduced. At last, an application case European Aeronau-
tic Defence & Space (EADS) Company is assessed using
this prototype tool under the framework with experimental
validation.

2 Digital human modeling

2.1 Kinematic modeling of virtual human

In this study, the human body is modeled kinematically as a
series of revolute joints. The Modified Denavit-Hartenberg
(modified DH) notation system (Khalil and Dombre, 2002)
is used to describe the movement flexibility of each joint.
According to the joint function, one natural joint can be de-
composed into 1 to 3 revolute joints. Each revolute joint has
its rotational joint coordinate, labeled asqi, with joint limits:
the upper limitqU

i and the lower limitqL
i . A general coordi-

nateq = [q1,q2, . . . ,qn] is defined to represent the kinematic
chain of the skeleton.

The human body is geometrically modeled by 28 rev-
olute joints to represent the main movement of the human
body in Fig. 1. The posture, velocity, and acceleration are
expressed by the general coordinatesq, q̇, andq̈. It is fea-
sible to carry out the kinematic analysis of the virtual hu-
man based on this kinematic model. By implementing in-
verse kinematic algorithms, it is able to predict the posture
and trajectory of the human, particularly for the end effec-
tors (e.g., the hands). All the parameters for modeling the
virtual human are listed in Table 1.[Xr,Yr,Zr] is the Carte-
sian coordinates of the root point (the geometrical center of
the pelvis) in the coordinates defined byX0Y0Z0.

The geometrical parameters of the limb are required in
order to accomplish the kinematic modeling. Such informa-
tion can be obtained from anthropometry database in the lit-
erature. The dimensional information can also be used for
the dynamic model of the virtual human. The lengths of dif-
ferent segments can be calculated as a proportion of body
statureH in Table 2.
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Table 1 Geometric modeling parameters of the overall human body

j a( j) u j σ j γ j b j α j d j q j r j qini

1 0 1 0 0 Zr − π
2 Xr θ1 Yr 0

2 1 0 0 0 0 π
2 0 θ2 0 π

2
3 2 0 0 0 0 π

2 0 θ3 0 π
2

4 3 0 0 0 0 π
2 0 θ4 Rlb 0

5 4 0 0 0 0 − π
2 0 θ5 0 0

6 5 0 0 0 0 π
2 0 θ6 Rub

π
2

7 6 0 0 0 0 π
2 0 θ7 0 π

2
8 7 0 0 0 0 π

2 0 θ8 0 0
9 5 1 0 − π

2 0 0 Dub θ9 −Ws
2 0

10 9 0 0 0 0 − π
2 0 θ10 0 − π

2
11 10 0 0 0 0 − π

2 0 θ11 −Rua − π
2

12 10 0 0 0 0 − π
2 0 θ12 0 0

13 11 0 0 0 0 π
2 0 θ13 0 0

14 5 1 0 − π
2 0 0 Dub θ14

Ws
2 0

15 14 0 0 0 0 − π
2 0 θ15 0 − π

2
16 15 0 0 0 0 − π

2 0 θ16 −Rua − π
2

17 16 0 0 0 0 − π
2 0 θ17 0 0

18 17 0 0 0 0 π
2 0 θ18 0 0

19 1 1 0 − π
2 0 − π

2 0 θ19 −Ww
2 − π

2
20 19 0 0 0 0 − π

2 0 θ20 0 − π
2

21 20 0 0 0 0 − π
2 0 θ21 −Rul − π

2
22 21 0 0 0 0 − π

2 0 θ22 0 − π
2

23 22 0 0 0 0 0 −Dll θ23 0 0
24 1 1 0 − π

2 0 − π
2 0 θ24

Ww
2 − π

2
25 24 0 0 0 0 − π

2 0 θ25 0 − π
2

26 25 0 0 0 0 − π
2 0 θ26 −Rul − π

2
27 26 0 0 0 0 − π

2 0 θ27 0 − π
2

28 27 0 0 0 0 0 −Dll θ28 0 0

Table 2 Body segment lengths as a proportion of body stature (Chaffin
et al, 1999; Tilley and Dreyfuss, 2002)

Symbol Segment Length

Rua Upper arm 0.186H
Rla Forearm 0.146H
Rh Hand 0.108H
Rul Thigh 0.245H
Dll Shank 0.246H
Ws Shoulder width 0.204H
Ww Waist width 0.100H
Dub,Lub Torso length (L5-L1) 0.198H
Rub Torso length (L1-T1) 0.090H

2.2 Dynamic modeling of virtual human

Necessary dynamic parameters for each body segment in-
clude: gravity center, mass, moment of inertia about the grav-
ity center, etc. According to the percentage distribution of
total body weight for different segments (Chaffin et al, 1999),
the weights of different segments can be calculated using Ta-
ble 3.

It is feasible to calculate other necessary dynamic infor-
mation with simplification of the segment shape. For limbs,
the shape is simplified as a cylinder, head as a ball, and torso
as a cube. The moment of inertia can be further determined
based on the assumption of uniform density distribution. For

Table 3 Percentage distribution of total body weight according to dif-
ferent segmentation plans (Chaffin et al, 1999)

Grouped segments, individual segments
% of total body weight % of grouped-segments weight

Head and neck=8.4% Head=73.8%
Neck=26.2%

Torso=50% Thorax=43.8%
Lumbar=29.4%

Pelvis=26.8%
Total arm=5.1% Upper Arm=54.9%

Forearm=33.3%
Hand=11.8%

Total leg=15.7% Thigh=63.7%
Thigh=63.7%
Shank=27.4%

Foot=8.9%

the virtual human system, once all the dynamic parameters
are known, it is possible to calculate the torques and forces
at each joint following Newton-Euler method (Khalil and
Dombre, 2002).

2.3 Biomechanical modeling of virtual human

The biomechanical properties of the musculoskeletal system
should also be modeled for virtual human simulation. From
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Fig. 1 Geometrical modeling of virtual human

the physical aspect, the skeleton structure, muscle, and joint
are the main biomechanical components in a human. In our
study, only the joint moment strengths and joint movement
ranges are used for the fatigue evaluation.

As mentioned before, with correct kinematic and dy-
namic models, it is possible to calculate torques and forces
in joints with an acceptable precision. Although biomechan-
ical properties of muscles are reachable and different op-
timization methods have been developed in the literature,
the determination of the individual muscle force is still very
complex and not as precise as that of joint torque (Xia and
Frey Law, 2008). Since there are several muscles attached
around a joint, it creates an mathematical underdetermined
problem for force calculation in muscle level. In addition,
each individual muscle has different muscle fiber compo-
sitions, different levers of force, and furthermore different
muscle coordination mechanisms, and the complexity of the
problem will be increased dramatically in muscle level. There-
fore, in our system, only the joint moment strength is taken
to demonstrate the fatigue model.

The joint torque capacity is the overall performance of
muscles attached around the joint, and it depends on the pos-
ture and the rotation speed of joint (Anderson et al, 2007).
When a heavy load is handled in a manual operation, the ac-
tion speed is relatively small, and it is almost equivalent to
static cases. The influence from speed can be neglected, so
only posture is considered. In this situation, the joint strength
can be determined according to strength models in Chaffin
et al (1999). The joint strength is measured in torque and
modeled as a function of joint flexion angles. An example
of joint strength is given in Fig. 2. The shoulder flexion an-
gle and the elbow flexion angle are used to determine the
profile of the male adult elbow joint strength. The 3D mesh
surfaces represent the elbow joint strengths for 95% popula-
tion. For the 50th percentile, the elbow joint strength varies
from 45 to 75 N according to the joint positions.
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2.4 Graphical modeling of virtual human

The final step for modeling the virtual human is its graphi-
cal representation. The skeleton is divided into 11 segments:
body (1), head and neck (1), upper arms (2), lower arms (2),
upper legs (2), lower legs (2), and feet (2). Each segment is
modeled in 3ds file (3D Max, Autodesk Inc.) (Fig. 3(a)) and
is connected via one or more revolute joints with another
one to assemble the virtual skeleton (Fig. 3(b)). For each
segment, an original point and two vectors perpendicular to
each other are attached to it to represent the position and the
orientation in the simulation, respectively. The positionand
orientation can be calculated by the kinematic model of the
virtual human.

(a) 3DS model (b) virtual skeleton

Fig. 3 Virtual skeleton composed of 3DS models

3 Framework for evaluating manual handling
operations

The center of the framework is the objective work evalua-
tion system (OWES) in Fig. 4. The input module includes:
human motion, interaction information, and virtual environ-
ment. Human motion is either captured by motion capture
system or simulated by virtual human simulation. The inter-
action information is either obtained via haptic interfaces or
modeled in simulation. Virtual environment is constructed
to provide visual feedback to participants or workspace in-
formation in simulation. Input information is processed in
OWES. With different evaluation criteria, different aspects
of human work can be assessed as in the previous human
simulation tools.

A new conceptionhuman status is proposed for this
framework to generalize the discussion.Human Status: it
is a state, or a situation in which the human possesses dif-
ferent capacities for an industrial operation. It can be further
classified into mental status and physical status. Human sta-
tus can be described as an aggregation of a set of human
abilities, such as visibility, physical capacity (joint strength,
muscle strength), and mental capacity. Virtual human sta-
tus can be mathematically noted asHS= {V1,V2, . . . ,Vn}.

OWES
Objective 

Work 
Evaluation 

SystemVirtual 
Environment

Virtual Human

Virtual Interaction

Fatigue Criteria

Posture Criteria

Efficiency Criteria

Comfort Criteria

Environment

Human Motion

Interaction

Motion Capture
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Virtual Reality

Simulated Human 
Motion

Human Simulation

F
atigue A

nalysis

C
om

fort A
nalysis

P
osutre A

nalysis

Posture Prediction Algorithm

Virutal 
Human 
Status

Update

Fig. 4 Framework for the work evaluation

EachVi represents one specific aspect of human abilities,
and this state vector can be further detailed by a vectorVi =

{vi1,vi2, . . . ,vimi}. The change of the human status is defined
as∆HS=HS(t+δ t)−HS(t) = {∆V1,∆V2, . . . ,∆Vn}. For
example, one aspect of the physical status can be noted as
HS= [S1,S2, . . . ,Sn], whereSi represents the physical joint
strength of theith joint of the virtual human.

In order to make the simulation as realistic as in real
world, it is necessary to know how the human generates a
movement. The bidirectional communication between hu-
man and the real world in an operation decides the action
to accomplish a physical task: worker’s mental and physical
status can be influenced by the history of operation, while
the worker chooses his or her suitable movement according
to his or her current mental and physical statuses. Hence the
framework is designed to evaluate the change of human sta-
tus before and after an operation, and furthermore to predict
the human motion according to the changed human status.

The human is often simplified for posture control as a
sensory-motor system in which there are enormous external
sensors covering the human body and internal sensors in the
human body capturing different signals, and the central ner-
vous system (CNS) transfer the signals into decision making
system (Cerebrum and Vertebral disc); the decision mak-
ing system generates output commands to generate forces in
muscles and then drives the motion and posture responding
to the external stimulus. Normally, most of the external in-
put information is directly measurable, such as temperature,
external load, moisture, etc. However, how to achieve all the
information for such a great number of sensors all over the
human body is a challenging task. In addition, the internal
perception of human body, which plays also an important
role in motor sensor coordination, is much more difficult to
be quantified. The most difficult issue is to know how the
brain handles all the input and output signals while perform-
ing a manual operation. In previous simulation tools, the ex-
ternal input information has been already provided and han-
dled. Visual feedback, audio feedback, and haptic feedback
are often employed as input channel for a virtual human sim-
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ulation. One limitation of the existing methods is that the in-
ternal sensation is not considered enough. Physical fatigue
is going to be modeled and integrated into the framework to
predict the perceived strength reduction and the reactionsof
the human body to the fatigue, which provides a close-loop
for the human simulation (Fig. 5).

Fig. 5 Human status in human simulation tools

The special contribution in this framework is that the
reduction of the physical strength can be evaluated in the
framework based on a muscle fatigue model. And then the
changed physical strength is taken as a feedback to the vir-
tual human simulation to update the simulation result.

The framework performs mainly two functions: posture
analysis and posture prediction (human simulation). The func-
tion of posture prediction is to simulate the human motion
based on the current virtual human status. Posture analysis
focuses on assessing the difficulty of the manual operation.
The difficulty of the work is assessed by the change of hu-
man status before and after the operation∆HS=∆HSphysical.
Physical fatigue is one of the physical aspects, and this as-
pect is evaluated by the decrease of the strength in joints.
The posture analysis function of the framework is our focus
in this paper.

More precisely in this paper, the joint strengths models
are used to determine the initial joint moment capacity, and
then the fatigue in the joints can be further determined by the
external load in the static operation and the fatigue model in
Section 4, and then the change of the physical status can be
assessed.

4 Fatigue modeling and Fatigue analysis

4.1 Fatigue modeling

A new dynamic fatigue model based on muscle motor unit
recruitment principle was proposed in (Ma et al, 2009). This
model was able to integrate task parameters (external load)
and temporal parameters for predicting the fatigue of static
manual handling operations in industry. Equation 1 is the

original form of the fatigue model to describe the reduction
of the capacity. The descriptions of the parameters for Eq.
1 are listed in Table 4. The detailed explanation about this
model can be found in Ma et al (2009).

dFcem(t)
dt

=−k
Fcem(t)
MVC

Fload(t) (1)

Table 4 Parameters in dynamic fatigue model

Item Unit Description

MVC N Maximum voluntary contraction, maximum
capacity of muscle

Fcem(t) N Current exertable maximum force, current
capacity of muscle

Fload(t) N External load of muscle, the force which the
muscle needs to generate

k min−1 Constant value, fatigue ratio
%MVC Percentage of the voluntary maximum con-

traction

fMVC %MVC/100,
Fload(t)
MVC

Maximum endurance time (MET) models can be used
to predict the endurance time of a static operation. In static
cases,Fload(t) is constant in the fatigue model, and then
MET is the duration in whichFcem falls down toFload. Thus,
MET can be determined in Eq. (2) and (3).

Fcem(t) = MVC e
∫ t
0−k

Fload(u)
MVC

du
= Fload(t) (2)

t = MET =−
ln

Fload(t)
MVC

k
Fload(t)
MVC

=−
ln( fMVC)

k fMVC
(3)

This model was validated in comparison with 24 MET
models summarized in El ahrache et al (2006). The previous
MET models were used to predict the maximum endurance
time for static exertions and they were all described in func-
tions with fMVC as the only variable. High Pearson’s corre-
lations and interclass correlations (ICC) between the MET
model in Eq. 3 and the other previous MET models validated
the availability of our model for static cases. Meanwhile, the
comparison between our model and a dynamic motor unit
recruitment based model (Liu et al, 2002) suggested that our
model was also suitable for modeling muscle fatigue in dy-
namic cases.

In (Ma et al, 2009), the fatigue ratiok was assigned 1
min−1. However, from the literature, substantial variability
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in fatigue resistance in the population, and the variability re-
sults from several factors, such as age, career, gender, mus-
cle groups, etc. The parameterk can handle the effects on
the fatigue resistance globally. Therefore, it is necessary to
determine the fatigue resistances for different muscle groups
to complete the muscle fatigue model.

4.2 Fatigue resistance based on MET models

Thanks to the high linear relationship between our MET
model and the previous MET models, it is proposed that
each static MET modelf (x) can be described mathemati-
cally by a linear equation (Eq. 4). In Eq. 4,x is used to re-
placefMVC andp(x) represents Eq. 3.m andn are constants
describing the linear relationship between static model and
our model, and they need be determined in regression. Here,
m = 1/k indicates the fatigue resistance of the static model,
andk is fatigue ratio or fatigability of different static model.

f (x) = m p(x)+ n (4)

Due to the asymptotic tendencies of MET models, when
x→ 1 (%MVC → 100), f (x)→ 0 andp(x)→ 0 (MET → 0),
we assumen = 0. Since some MET models are not suit-
able for %MVC ≤ 15%, the regression is carried out from
x = 0.16 tox = 0.99. With a step length 0.01,N = 84 MET
values are calculated to determine the parameterm of each
MET model by minimizing the function in Eq. 5.

M(x) =
N

∑
i=1

( f (xi)−m p(xi))
2 = am2+ bm+ c (5)

From Eq. 5,m can be calculated by Eq. 6.

m =
−b
2a

=

N
∑

i=1
p(xi) f (xi)

N
∑

i=1
p(xi)2

> 0 (6)

The regression result represents the fatigue resistance
of the muscle group. In comparison with 6 general MET
models, 6 elbow models, 5 shoulder models, and 6 hip/back
models, different muscle fatigue resistances for correspond-
ing muscle groups were calculated and listed below in Table
5. The mean value ¯m andσm can be used to adjust our MET
model to cover different MET models, and they can be fur-
ther used to predict the fatigue resistance of a muscle group
for a given population. The prediction with mean value and
its deviation in general MET models is shown in Fig.6. It
is observable that the bold solid curve and two slim solid
curves cover most of the area formed by the previous empir-
ical MET models.

It should be noted that the fatigue resistance for differ-
ent muscle groups are only regressed based on the empirical
data grouped in the literature, and the results (Table 6) for
shoulder and hip/back muscle groups did not conform to the
normal distribution. For the shoulder joint, the subjects in
these models were not only from different careers but also
from different gender mixture. Therefore, the fatigue resis-
tance result can only provide a reference in this study.

Table 5 Fatigue resistance ¯m for different muscle groups

Segment ¯m σm

General 0.8135 0.2320
Shoulder 0.7562 0.4347
Elbow 0.8609 0.4079
Hip 1.9701 1.1476
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Fig. 6 Prediction of MET in the dynamic MET model in comparison
with that in the general models

Table 6 Fatigue resistances of shoulder MET models

Model Subjects m

Sato et al (1984)
5 male 0.427

Rohmert et al (1986)
6 male and 1 female students 0.545

Mathiassen and Ahsberg
(1999)

20 male and 20 female mu-
nicipal employees

0.698

Garg et al (2002)
12 female college subjects 1.393
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4.3 Workflow for fatigue analysis

The general process of the posture analysis has been dis-
cussed in Section 3, and here is the flowchart in Fig. 7 to
depict all the details in processing all the input information.

Fig. 7 Workflow for the fatigue evaluation

First, human motion obtained either from human simu-
lation or from motion capture system is further processed to
displacementq, speeḋq, and acceleration̈q in general coor-
dinates.

The external forces and torques on the human body are
either measured directly by force measurement instruments
or estimated in the simulation. The external loads are trans-
formed toΓi andFi in the coordinates attached toqi in the
modified DH method.

Human motion and interaction (forces, torques) are mapped
into the digital human model which is geometrically and
dynamically modeled from anthropometry database and the
biomechanical database. Inverse dynamics is used to calcu-
late the torque and force at each general joint. If it goes fur-
ther, the effort of each individual muscle can be determined
using optimization method as well.

Once the loads of the joints are determined, the fatigue
of each joint can be analyzed using the fatigue model. The
reduction of the physical strength can be evaluated, and fi-
nally the difficulty of the operation can be estimated by the
change of physical strengths.

5 Analysis Results for EADS Application Cases -
Drilling

5.1 Operation description

The application case is the assembly of two fuselage sec-
tions with rivets from the assembly line of an airplane in
European Aeronautic Defence & Space (EADS) Company.
One part of the job consists of drilling holes all around the

cross section. The tasks is to drill holes around the fuselage
circumference. The number of the holes could be up to 2,000
on an orbital fuselage junction of an airplane. The drilling
machine has a weight around 5 kg, and even up to 7 kg in
the worst condition with consideration of the pipe weight.
The drilling force applied to the drilling machine is around
49N. In general, it takes 30 seconds to finish a hole. The
drilling operation is illustrated in Fig. 8. The fatigue hap-
pens often in shoulder, elbow, and lower back because of
the heavy load. Only the upper limb is taken into consider-
ation in this demonstration case to decrease the complexity
of the analysis.

Fig. 8 Drilling case in CATIA

5.2 Endurance time prediction

The drilling machine with a weight 5 kg is taken to calcu-
late the maximum endurance time under a static posture with
shoulder flexion as 30◦ and elbow flexion 90◦ for maintain-
ing the operation in a continuous way. The weight of the
drilling machine is divided by two in order to simplify the
load sharing problem. The endurance result is shown in Ta-
ble 7 for the population falling in the 95% strength distribu-
tion. It is found that the limitation of the work is determined
by the shoulder, since the endurance time for the shoulder
joint is much shorter than that of the elbow joint.

The difference in endurance results has two origins. One
is the external load relative to the joint strength. The second
comes from the fatigue resistance difference among the pop-
ulation. These differences are graphically presented from
Fig. 9 to Fig. 12. Figure 9 and Figure 10 show the vari-
able endurance caused by the joint strength distribution in
the adult male population with the mean fatigue resistance.
Larger strength results in longer endurance time for the same
external load. Figure 11 and Figure 12 present the endurance
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Table 7 Maximum endurance time of shoulder and elbow joints for
drilling work

MET [sec] S−2σ S−σ S S+σ S+2σ
Shoulder

m̄−σm 19.34 45.05 75.226 108.81 145.16
m̄ 45.489 105.96 176.94 255.94 341.44

m̄+σm 71.639 166.87 278.65 403.07 537.71

Elbow

m̄−σm 230.61 424.27 640.47 873.52 1120.1
m̄ 438.27 806.3 1217.2 1660.1 2128.6

m̄+σm 645.92 1188.3 1793.9 2446.6 3137.2

time for the population with the average joint strength but
different fatigue resistances, and it shows that larger fatigue
resistance leads to longer endurance time. Combining with
the strength distribution and the fatigue resistance variance,
the MET can be estimated for all the population.
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Fig. 9 Endurance time prediction for shoulder with average fatigue
resistance

5.3 Fatigue evaluation

The fatigue is evaluated by the change of the joint strength
in a fatigue operation. The working history can generate in-
fluence on the fatigue. Therefore, the fatigue for drilling a
hole is evaluated in a continuous working process up to 6
holes. Only the population with the average strength and
the average fatigue resistance is analyzed in fatigue evalu-
ation in order to present the effect of the work history. The
reduced strength is normalized by dividing the maximum
joint strength, and it is shown in Fig. 13. It takes 30 seconds
to drill a hole, and the joint strength is calculated and nor-
malized every 30 seconds until exhaustion for the shoulder
joint.
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Fig. 10 Endurance time prediction for the elbow with average fatigue
resistance
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Fig. 11 Endurance time for the population with average strength for
shoulder joint

In our current research,HS includes only the joint strength
vector. The evaluation of the fatigue is measured by the change
of the joint strength for drilling a hole. The result is shown
in Table 8. Three measurements are given in this table: one
is the normalized physical strength every 30 seconds, noted

as
HSi

HSmax
; one is the difference between the joint strength

before and after finishing a hole, noted as
HSi −HSi+1

HSmax
; the

last one if the difference between the joint strength and the

maximum joint strength, noted as
HSmax −HSi

HSmax
. In Table 8,

only the reduction of the shoulder joint strength is presented,
since the relative load in elbow joint is much smaller.

From Fig. 13 and Table 8, the joint strength keeps the
trend of descending in the continuous work. The ratio of
the reduction gets smaller in the work progress due to the
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Table 8 Normalized shoulder joint strength in the drilling operation

Time [s] 0 30 60 90 120 150 180

m̄

HSi

HSmax
100% 82.2% 67.2% 54.9% 44.8% 36.6% 30.1%

HSi −HSi+1

HSmax
0% 17.8% 15.0% 12.3% 10.1% 8.2% 6.5%

HSmax −HSi

HSmax
0% 17.8% 32.8% 45.1% 55.2% 63.4% 69.9%
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Fig. 12 Endurance time for the population with average strength for
elbow joint
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Fig. 13 Fatigue evaluation after drilling a hole in a continuous drilling
process

physiological change in the muscle fiber composition. More
time consumed to work leads more reduction in physical
strengths. The reduction relative to the maximum strength
is able to assess the difficulty of the operations.

5.4 Experiment validation

Simulated drilling operations were tested under laboratory
conditions in Tsinghua University. A total of 40 male in-
dustrial workers were asked to simulate the drilling work in
a continuous operation for 180 seconds. Maximum output
strengths were measured in the simulated operations at dif-
ferent periods of the operation. Fatigue was indexed by the
reduction of the joint strength along time relative to the ini-
tial maximum joint strength. Three out of the 40 subjects
could not sustain the external load for a duration of 180
seconds, and 34 subjects had a shoulder joint fatigue resis-
tance (Mean=1.32, SD=0.62) greater than the average shoul-
der joint fatigue resistance in Table 5, which means that the
sample population has a higher fatigue resistance than the
population grouped in the regression.

The physical strength has been measured in simulated
job static strengths, and the reduction in the operation varies
from 32.0% to 71.1% (Mean=53.7% and SD=9.1%). The re-
duction falls in the fatigue prediction of the theoretical meth-
ods in Table 9 (Mean=51.7%, SD=12.1%).

Table 9 Normalized torque strength reduction for the population with
higher fatigue resistance

HSmax −HS180

HSmax
S−2σ S−σ S S+σ S+2σ

m̄ - - 69.9% 62.5% 56.3%
m̄+σm - 63.2% 53.2% 46.4% 40.8%
m̄+2σm 64.9% 51.9% 43.0% 36.7% 31.9%

5.5 Discussion

Under the proposed framework, the conception of the virtual
human status is introduced and realized by a virtual human
modeling and simulation tool. The virtual human is kine-
matic modeled based on the modeling method in robotics.
Inverse dynamics is used to determine the joint loads. With
the integration of a general fatigue model, the physical fa-
tigue in a manual handling operation in EADS is simulated
and analyzed. The decrease in human joint strengths can be
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predicted in the theoretical approach, and it has been vali-
dated with experimental data.

Human status is introduced in this framework in order to
generalize all the discussion for the human simulation. We
concentrate only on the physical aspect of the virtual human,
in particular on joint strengths. Physical status can be ex-
tended to other aspects, either measurable using instruments
(e.g., heart rate, oxygen consumption, electromyograph of
muscle, etc.) or predicable using mathematical models (e.g.,
vision, strength, etc.). Similarly, the mental status of human
can also be established by similar terms (e.g., mental capac-
ity, mental workload, mental fatigue, etc.). Under the con-
ception of human status, different aspects of the human can
be aggregated together to present the virtual human com-
pletely. The changed human status caused by a physical job
or a mental job can be measured or predicted to assess differ-
ent aspects of the job. It should be noted that the definition
of human status is still immature and it requires great effort
to form, extend, and validate this conception.

The main difference between the fatigue analysis in our
study and the previous methods for posture analysis is: in
previous methods (Wood et al, 1997; Iridiastadi and Nuss-
baum, 2006; Roman-Liu et al, 2005), intermittent proce-
dures were used to develop the fatigue model with job spe-
cific parameters; in contrast, all the related physical expo-
sure factors are taken into consideration in a continuous ap-
proach in our model. In this way, the analysis of the manual
handling operation can be generalized without limitationsof
job specific parameters. Furthermore, the fatigue and recov-
ery procedures can be decoupled to simplify the analysis in
a continuous way. Although only a specific application case
is presented in this paper, the feasibility of the general con-
cept has been verified by the introduction of human status
and the validation of the fatigue model.

It should be noted that the recovery of the physical strength
has not been considered yet. Although there are several work-
rest allowance models in the literature, substantial variabil-
ity was found among the prediction results for industrial op-
erations (El ahrache and Imbeau, 2009) and it is still ongoing
to develop a general recovery model.

6 Conclusions

In this study, human status is introduced into the work eval-
uation system, especially for the physical status. It provides
a global definition under which different aspects of human
abilities can be integrated and assessed simultaneously. The
effect of the work on the human status, either positive or
negative, can be measured by the change of the human sta-
tus before and after the operation. We concentrate our study
on physical aspects, especially on joint moment strengths.
The physical fatigue analysis in a drilling case under the
work evaluation framework demonstrates the work flow and

the functions of the virtual human simulation. The change
of joint moment strength, a specific aspect of human phys-
ical status, has been simulated based on a general fatigue
model with fatigue resistances. The similar results between
the analysis and the experimental data suggests that the frame-
work may be useful for assessing the physical status in con-
tinuous static operations.

The new conception human status and the theoretical
method for assessing the physical status may provide a new
approach to generalize the virtual human simulation and eval-
uate the physical aspect in continuous static manual han-
dling operations. This approach is useful to assess the phys-
ical load to prevent industrial workers from MSD risks, and
it can also be used to assess mental load with extension of
mental status.

However, it should be noted that great effort has to be
done to extend different aspects in human status to make it
more precise. Even only for physical fatigue, it is still nec-
essary to develop a recovery model to complete the fatigue
prediction.
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