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Abstract. In medical imaging, segmenting accurately lung tumors stay
a quite challenging task when touching directly with healthy tissues.
In this paper, we address the problem of extracting interactively these
tumors with graph cuts. The originality of this work consists in (1) reduc-
ing input graphs to reduce resource consumption when segmenting large
volume data and (2) introducing a novel energy formulation to inhibit
the propagation of the object seeds. We detail our strategy to achieve
relevant segmentations of lung tumors and compare our results to hand
made segmentations provided by an expert. Comprehensive experiments
show how our method can get solutions near from ground truth in a fast
and memory efficient way.
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1 Introduction

Since last years, accurate measurements of lung tumors sizes has become a chal-
lenging task for staging, for the assessing tumor response to treatments, or its
progression. Revised RECIST criterions, largely used by radiologists, are based
on the measurement of one diameter on a few number of lesions [23], and suffer of
a reproducibility [22]. Alternatively, tumor volumetry has been proposed to over-
come those difficulties that would improve the staging of nodules [6], the evalua-
tion of tumor aggressiveness [19,7], tumor response to chemotherapy [4,18,25] or
to radiotherapy [3,17] and progression rate of tumors [19,14] or metastases [16].

Among semi-automatic approaches based on level-sets and (geodesic) active
contours, graph cuts have become in few years a leading method since the intro-
duction of a fast maximum-flow/minimum-cut algorithm [2]. In contrast to other
methods, graph cuts have the ability to solve quickly a wide range of problems
in computer graphics as N-D image segmentation [1] while achieving a global
minimum of the energy function.
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Recently, Ye et al. have used this technique for automatically segmenting lung
nodules using a volumetric shape index [24]. Since nodules have presumably
an elliptical shape, they can select the appropriate range of index values for
segmenting nodules. However, segmenting lung tumors of various shapes is a
much more difficult task. Tumors might indeed be connected to healthy tissues
and it is not possible, based on gray level in a CT image to distinguish the tumor
and the healthy tissue. The correct segmentation can therefore only be achieved
thanks to the interaction of an expert. To our knowledge, this is the first paper
to tackle this problem using graph cuts. We propose a semi-interactive graph
cut-based method for lung tumors segmentation. An overview of the approach
appears on Figure 1. First, we compute a distance map from the object seeds

Fig. 1: Flow diagram of our approach.

for lowering the “seeds propagation”. Then during the graph construction, we
reduce the input graph by deciding locally which nodes are really useful for the
minimum-cut computation according to [12]. Typically, the nodes are located
around the contours of the object to segment. Finally, we compute the minimum-
cut and get the final solution.

The rest of this paper is organized as follows. In section 2, we review the
graph-cuts framework. We detail our strategy for reducing graphs in section 3
while we introduce our novel energy formulation in section 4. Finally, our algo-
rithm in validated experimentally in section 5.

2 Graph cuts framework

Let us first review the graph cuts framework. In this setting, an image I is a
function defined over a finite discrete set P ⊂ Z

d (d > 0) that maps each point
p ∈ P to a value I(p). Usually, P correspond to a square when d = 2, a cube
when d = 3 and a cube during a time interval when d = 4. A binary segmentation
of the image is defined by a mapping u that assigns to each element of P the
value 0 for the background and 1 for the object. We write u ∈ {0, 1}P .

In [1], Boykov and Jolly showed that the image segmentation problem can
be efficiently solved by minimizing a Markov Random Field of the form:

E(u) = β ·
∑

p∈P

Ep(up) +
∑

p,q∈P

q∈N (p)

Ep,q(up, uq), (1)



Fast and Memory Efficient Segmentation of Lung Tumors Using Graph Cuts 3

among u ∈ {0, 1}P and for β > 0. The neighborhood system N (p) is in practice
either

N0(p) = {q :
∑d

i=1 |qi − pi| = 1} ∀p ∈ P, or
N1(p) = {q : |qi − pi| ≤ 1, ∀1 ≤ i ≤ d} ∀p ∈ P,

where pi denote the ith coordinate of the point p and |.| denotes the modulus.
(in this paper |.| also denotes the cardinality of a set, the notations will note not
be ambiguous once in context). The above neighborhood systems correspond to
the classical 4-connectivity and 8-connectivity when d = 2. Beside on the border
of the image/volume, we have for any d and any p ∈ P: |N0(p)| = (2d) and
|N1(p)| = 3d − 1. In practice, larger neighborhood systems (i.e. N1) yield better
results but increase running time and memory consumption. Typically, we have
|En| ∼ |P|.|N |, where |.| denotes cardinality. In the sequel, the terms “connec-
tivity 0” and “connectivity 1” will denote the use of a N0 and N1 neighborhood,
respectively.

As is common, in (1) the region term Ep(.) favors the belonging of each
pixel/voxel to either the background or to the object. It is deduced from the
input data, an object seed O and a background seed B. The regularity term
Ep,q(.) penalize neighboring pixels p and q having different labels. The weight
of the penalization depend on the difference |I(p) − I(q)| and favor boundaries
located at pixels/voxels with a strong gradient. Generally speaking, the definition
of Ep and Ep,q depend on the considered application.

According to [10], the minimizer of the energy (1) corresponds to a minimum-
cut in a graph that can be efficiently computed by the algorithm proposed in [2].
In this context, the directed weighted graph G = (V, E , c) consists of a set of nodes
V = P∪{s, t}, a set of edges E ⊂ V×V and a positive weighting function c : E →
R

+ defining the edge capacity. Notice that two special nodes are distinguished
from V: the source node s (“object” terminal) and the sink node t (“background”
terminal). After the computation of the minimum cut we set up = 1, if p is
connected to s and up = 0, otherwise. The set of edges E is split into two disjoint
sets En and Et denoting respectively n-links and t-links. The t-links are the edges
connecting the terminal nodes s or t to the pixels/voxels and the n-links are the
edges connecting pixels/voxels.

3 Reducing graphs

To obtain high-resolution output, graph cuts must build huge graphs containing
several billions of nodes and even more edges. Such graphs may sometimes do
not fit in central memory. To get round this problem, some authors have recently
proposed heuristics [13,5,15,21,9]. Nevertheless, these algorithms can easily get
trapped in local minima of the energy and sometimes fail to recover details. In
medical imaging, this is a real drawback since such thin structures like blood
vessels or nodules are ubiquitous. The only exact alternative is [11], but it has
not been developed for the purpose of image segmentation.

Thus, segmenting high-resolution data using graph cuts require a prohibitive
amount of memory. For instance, the maximum-flow algorithm described in [2] al-
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locates 24|P|+14|En| bytes 1. Table 1 shows that for a fixed amount of RAM, the
maximum volume size decreases quickly as dimension d increases. Nevertheless,

❅
❅❅

Connectivity 0 Connectivity 1

2D 6426 4459

3D 319 219

4D 68 45

Table 1: Maximum size of a square image for which the graph fits in 2GB of
RAM.

as showed in a previous paper [12], most of the nodes in the graph are useless
during the maximum-flow computation. They are indeed not traversed by any
flow. Then, one would like to extract the smallest possible graph G′ = (V ′, E ′, c)
from G while keeping a minimum cut u′ identical (or very close) to u. In other
words, we want to minimize |V ′| under the constraint that u ≃ u′. In fact, this
is an ideal optimization problem which we will not try to solve, because the
method for determining G′ also needs to be (very) fast. We will rather consider
heuristics aiming at that goal.

First, let us introduce some definitions before describing our method for
building G′. In accordance with the graph construction given in [10], we consider
(without loss of generality) that a node is linked to at most one terminal:

(s, p) ∈ Et ⇒ (p, t) 6∈ Et, ∀p ∈ P.

We also summarize the capacities on the t-links connected to any node p ∈ P:

c(p) = c(s, p)− c(p, t).

Let us consider a square window B of size (2r + 1) (r > 0) centered at the origin.

We denote by B̃p the translation of B at a point p ∈ P by p: B̃p = {b+p | b ∈ B}.

For Z ⊂ P, we also denote Z̃B =
⋃

p∈Z B̃p.
The intuitive idea to build G′ is the following: removing the nodes in any

Z ⊂ P such that pixels/voxels in Z are not directly connected to the sink t and

the flow that might come into the region Z̃B \ Z suffice to saturate the edges

located around Z̃B (see Figure 2). Building such sets Z is done by testing each
pixel p of Z. Thus, the nodes in G′ are typically located around the contours of
the object to segment. Assuming that all capacities on n-links are smaller than
one (which remains true for all the energy models in segmentation), we use a
more conservative condition for testing each individual pixel p ∈ Z [12]:





(
∀q ∈ B̃p, c(q) ≥ δ

)
or(

∀q ∈ B̃p, c(q) ≤ −δ
)
,

(2)

1 This corresponds to the max-flow algorithm v2.2 freely available at http://www.cs.
cornell.edu/People/vnk/software.html



Fast and Memory Efficient Segmentation of Lung Tumors Using Graph Cuts 5

Fig. 2: Principle of the reduction. The nodes from Z are removed because every
node p ∈ Z satisfy (2). Remaining nodes are typically located in the narrow

band Z̃B \ Z.

where δ = P (B)
(2r+1)2−1 , with

P (B) = max(|{(p, q) : p ∈ B, q 6∈ B and p ∈ N (q)}|,
|{(p, q) : p ∈ B, q 6∈ B and q ∈ N (p)}|).

For any p satisfying (2), p is only connected to s (respectively t) and the flow that

might come in (respectively out) through t-links in B̃p \ {p} suffices to saturate

the n-links going out (respectively in) of B̃p. The pixel/voxel p is not needed in
the graph. The subgraph G′ is now fully determined by the set of nodes

V ′ = {p ∈ P not satisfying (2)} ∪ {s, t}.

Experiments presented in [12] confirm the intuitive dependence between the
reduction rates and the model’s parameters. For instance, the capacities c(q) are
obtained by multiplying a quantity by the parameter β of (1). Looking at (2), it
is straightforward to see that the test is satisfied on a smaller set of pixels/voxels
if β decreases. In fact, β small corresponds to a strong regularization. In such
a situation, we need a larger window radius to obtain a smaller δ. The latter
results in wide bands around the object contours. Conversely, this results in
narrow bands around the object contours when β is large. The result of such a
reduction is illustrated in Figure 3. In our experiments, we always take β = 3 and
r = 1. Additionally, the condition (2) can be tested through an easy to implement
“non-optimized” algorithm with a worst-case complexity of O(|B|). However for
large window radii, such an algorithm cannot handle images of large size and
large dimensions d. Decomposing the condition along the dimensions d speed
up significantly the previous algorithm. This yields a test whose computation is
of complexity O(1) (except for image borders). In particular, its complexity is
independent of the window radius (see [12] for details). Finally, we have both
theoretical and empirical evidence suggesting that this reduction scheme provides
an exact solution (see [12]).

4 Energy function

The most famous energy model for image segmentation with graph cut is the
model proposed by Boykov and Jolly in [1] (see below). Total Variation-based
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(a) Image and seeds (b) Graph G
′ (c) Segmentation

Fig. 3: Illustration of the reduction for segmenting a CT image (r = 1). Light gray
pixels correspond to the nodes belonging to G′ (middle). Object and background
seeds are superimposed on the original image (left). On the right image, the
segmentation is superimposed in blue.

models have also been proposed (see [20]). To obtain good results, those models
require the colors in the object to be different from the colors of the background.
This requirement is not efficient when segmenting lung tumors in CT images,
because tumors and healthy tissues appear in the same range of intensities.
Moreover, in many cases (and in our experiments), the tumor is attached to the
healthy tissue and the corresponding zone of the image has a uniform color.

To get round this problem, we propose to add in our energy a prior on the
location of the tumor. The prior is obtained from the location of the object seed.
This leads to a modification of the original Boykov/Jolly’s energy model [1]. We
take the same regularity criterion:

Ep,q(up, uq) = g(p, q) · |up − uq| and g(p, q) = exp
(
−

||I(p)− I(q)||2

2σ2

)
,

where I is the original image and σ > 0. The region term is defined as

{
Ep(up = ”bkg”) = −log

[
Pr(I(p) | p ∈ O)× exp

(
− (d(p,O)

σa

)2
)]

Ep(up = ”obj”) = −log
[
Pr(I(p) | p ∈ B)

]
,

(3)

where the sets O and B correspond respectively to object and background seeds
provided by the user, the probability distributions are estimated according to [1],
the function d(p,O) is a distance between the point p ∈ P and the set O ⊂ P
and σa > 0 is a parameter. The parameter σa controls how far the object seeds
propagate from their location and then define an area of influence Aσa

. Although
it is an important parameter that impact the way the seed construction, we
always take σa = 10 in our experiments.

The main difference when compared to the energy in [1] is the distance term.
The distance d is according to d(p,O) = min{d(p, q) | q ∈ O}, where d is a
distance between two points 2. We have made two attempts for the distance d:

2 By an abuse of language we write d for both the distance between a point and a set
and between two points.
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– The euclidean distance. In this case, the distance between a set and a point
is computed with the algorithm described in [8]. We mostly use it for the
purpose of illustration.

– The geodesic distance is according to the graph metric where the distance
between a node p ∈ P and a node q ∈ P is

d(p, q) =

{√
(I(p)− I(q))2 + |p− q|2 if q ∈ N (p),

0 otherwise.

In this latter case we compute the distance with the algorithm described
in [8].

We display on Figure 4, the zone of influence of the object seed for the above
two metrics. We draw the region where the exponential in (3) is greater than
some ǫ ≃ 0. Beyond this area, the nodes are only linked to the sink t, ensuring
that the algorithm always categorizes them as background pixels/voxels. Notice
that the geodesic distance better fit the the tumor boundaries. In particular, it
only has a limited overflow on the healthy tissue.

(a) Image and seeds (b) Euclidean dis-
tance

(c) Geodesic distance

Fig. 4: Area of influence of the object seed for the Euclidean and the geodesic
distances. In this experience, we set σa = 40.

5 Experimental results

In this section, we present some experiments for segmenting a set of 10 3D CT
images of size 512 × 512 × 50 consisting both of nodules/masses and tumors
(see Table 2 for image characteristics). All experiments presented are performed
in connectivity 1. Since the images haven’t been acquired in the same way, the
contrast is different. Thus, we are constrained to use different values of σ for
some images. Here, we use σ = 0.2 for all images except for T8 where σ = 2
and for T7 where σ = 0.05. Note that we extract automatically a sub-volume by
considering an extra border of 100 pixels around the object seeds for speeding
up the segmentation.

First, we evaluate our algorithm for segmentation algorithm against hand
made segmentations provided by an expert, for all CT images. Table 3 contains
statistics on the differences between our segmentation and the ground truth. We
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use several evaluation measures 3. Table 3 shows encouraging results. For all
images, we get a Dice Coefficient always greater than 70% while having a mean
maximum distance of about 10 millimeters between the ground truth and the
segmentation.

Moreover, we also evaluate our method in a qualitative manner. Figure 7
shows the segmentations obtained at equally spaced z-values for images T1, T8
and T9 (see Figure 5). For illustrating the propagation of seeds, the seeds in the
Figure were chosen on equally spaced on z but for different values. Thus, one
can observe how the seeds propagate around object seeds, avoiding us to mark
every z. While the segmentation of T1 is very close to the ground truth, the
segmentations obtained for T8 and T9 also illustrate the difficulty of extracting
tumors/nodules with a large connection to healthy tissues.

Secondly, we compare the performance of standard graph cuts against our
method in terms of speed and memory consumption (see Table 4) for segmenting
the CT images using the same set of seeds and parameters as in the previous
experiments. Experiments were performed on an Athlon Dual Core 6000+ 3GHz
with 2GB RAM. Times are averaged over 10 runs. Table 4 shows that our method
performs a little bit faster using 6 to 20x less memory while getting exactly the
same solution. We also indicate the proportion of object seeds with respect to the
tumor volume in Table 4. This provides an objective measure of the interaction
for assessing the effort required by the user for positioning the seeds. Observe
that a relatively small amount of seeds is necessary for all images.

Generally, the segmentation time depends on the image size and the skill of
the user placing the seeds. The computation of the distance map, the building of
the graph and the computation of the minimum-cut takes only few seconds. Thus,
our method demonstrates its ability to segment lung tumors quickly without
requiring much effort if it is supported by a good graphical user interface.

Fig. 5: Overall context of lung tumors T1 (left), T8 (middle) and T9 (right).

References

1. Y. Boykov and M-P. Jolly. Interactive graph cuts for optimal boundary and region
segmentation of objects in n-d images. In ICCV, volume 1, pages 105–112, 2001.

3 A detailed view of these measures is available at http://lts08.bigr.nl/about.php



Fast and Memory Efficient Segmentation of Lung Tumors Using Graph Cuts 9

Tumor Type Resolutions (x,y,z) Description

T1 Nodule 0.683× 0.683× 3 Mass of the upper right lobe (CT)

T2 Nodule 0.707× 0.707× 1 Nodule of the right apex (CT)

T3 Nodule 0.683× 0.683× 3 Nodule of the lower right lobe (CT)

T4 Tumor 1.171× 1.171× 1.5 Marge left hilar tumor inducing a peripheral
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T9 Tumor 0.707× 0.707× 1 Same as T8, after chemo-radiotherapy (CE-
CT)

T10 Nodule 1.171× 1.171× 1.5 Right hilar lymph node mass

Table 2: Characteristics of images containing lung tumors. Resolutions are given
in millimeters.

Tumor Dice
Coefficient

(%)

Volume
Overlap

(%)

Volume
Difference

(%)

Average
Surface
Distance
(mm)

RMS
Surface
Distance
(mm)

Maximum
Surface
Distance
(mm)

T1 90.24 82.22 2.57 1.11 1.48 7.39

T2 81.24 68.41 7.59 1.19 1.46 6.63

T3 72.25 56.56 16.99 1.26 1.49 5.86

T4 71.33 55.44 42.31 3.28 3.98 14.34

T5 80.53 67.40 29.23 3.61 4.53 16.56

T6 87.40 77.62 17.85 1.31 1.52 5.90
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T10 74.04 58.79 41.09 4.95 5.54 15.99

Average 79.89 67.08 23.01 2.11 2.52 9.56

Table 3: Comparison between our method and the segmentations provided by
the expert.



10 N. Lermé, F. Malgouyres, J-M. Rocchisani

Tumor
Standard graph cuts Our method

Object seeds (%)
Time Memory Time Memory

T1 5.01 472.34 3.23 24.71 2.46

T2 6.07 573.07 4.31 83.42 2.73

T3 6.01 580.78 4.25 83.42 2.51
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T5 7.98 737.41 5.38 36.37 10.22

T6 5.12 489.97 3.47 37.07 3.19

T7 6.35 544.74 4.48 83.42 9.66

T8 11.65 793.95 9.10 125.13 2.45

T9 4.94 496.79 3.46 37.07 8.01

T10 14.62 1150.97 10.46 125.13 9.01

Table 4: Speed (secs) an memory usage (Mb) for our method and the graph cuts
without reduction.

Fig. 6: Seeds placement for segmenting lung tumors T1 (top), T8 (middle) and
T9 (bottom). Object seeds (blue) and background seeds (red) are superimposed
on the original image.
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Fig. 7: Segmentation of lung tumors T1 (top), T8 (middle) and T9 (bottom).
Ground truth is superimposed in red while segmentation is superimposed in
blue. Purple color corresponds to the intersection.
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