

Humus profiles and successional development in a rock savanna (Nouragues inselberg, French Guiana): a micro-morphological approach infers fire as a disturbance event

Charlotte Kounda-Kiki, Jean-François Ponge, Philippe Mora, Corinne Sarthou

▶ To cite this version:

Charlotte Kounda-Kiki, Jean-François Ponge, Philippe Mora, Corinne Sarthou. Humus profiles and successional development in a rock savanna (Nouragues inselberg, French Guiana): a micro-morphological approach infers fire as a disturbance event. Pedobiologia, 2008, 52 (2), pp.85-95. 10.1016/j.pedobi.2008.04.002. hal-00495215

HAL Id: hal-00495215 https://hal.science/hal-00495215

Submitted on 25 Jun 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Humus profiles and successional development in a rock savanna: a
2	micromorphological approach pointing to fire as a disturbance event
3	(Nouragues inselberg, French Guiana)
4	
5	Charlotte Kounda-Kiki ^a , Jean-François Ponge ^a *, Philippe Mora ^b , Corinne Sarthou ^a
6	
7	^a Muséum National d'Histoire Naturelle, CNRS UMR 7179, 4 avenue du Petit-Château,
8	91800 Brunoy, France
9	^b Laboratoire d'Écologie des Sols Tropicaux, UMR 137 BioSol, Université Paris 12, 61
10	avenue du Général de Gaulle, 94010 Créteil Cédex, France
11	
12	*Corresponding author: E-mail: ponge@mnhn.fr
13	
14	Running title: Humus profiles and fire in a rock savanna
15	

1 Summary

2

3 The common development of vegetation and soil is a central question of plant succession. We 4 asked whether places where aerial parts of woody vegetation die and accumulate on the 5 ground (zones of destruction or 'micro-chablis') played a role in the successional 6 development of vegetation patches on tropical inselbergs and whether causes could be 7 inferred from the analysis of the organic matter accumulated along a successional gradient. 8 The study was conducted in French Guiana (South America). Nine humus profiles (each 9 comprised of a varying number of layers) were selected in shrub thickets (~1a each) 10 representative of three vegetation types of the rock savanna: canopies of pure Clusia minor 11 (Clusiaceae), C. minor in mixture with Myrcia saxatilis (Myrtaceae) and zones of destruction. 12 A count point optical method for small soil volumes was used to measure under a dissecting 13 microscope the volume ratio of each kind of humus component (107 categories) in the 62 14 layers thus sampled. Micromorphological data were analysed by correspondence analysis 15 (CA). Humus profiles varied according to canopy trees and revealed traits of the past and 16 trends for the future of the plant succession. Zones of destruction differed from other humus 17 profiles by lack of OL and OF horizons and by the presence of charred material, which 18 establishes the role of spatially limited fires or lightning impacts in the cyclic development of 19 vegetation patches.

20

21 Keywords Tropical inselbergs; Humus profiles; Plant succession; Small-scale disturbances

1 Introduction

2

3 Humus results from the biochemical transformation of residual vegetation by 4 decomposer foodwebs (Wolters et al., 2000). The direct observation of the soil under the 5 microscope, also called micromorphology, was developed by Kubiëna (1938) and it has been 6 shown essential to the knowledge of biological processes in surface horizons (Bernier, 1996). 7 Humus forms therefore deserve special attention in studies of plant succession (Emmer and 8 Sevink, 1993; Ponge et al., 1998). Traits of the past and trends for the future at the scale of 9 years to decades can be derived from the observation of successive horizons by quantitative 10 optical methods (Bernier and Ponge, 1994; Gillet and Ponge, 2002) and comparisons can be 11 made among humus profiles by means of multivariate analysis (Peltier et al., 2001).

12

13 Tropical inselbergs are granite or sandstone outcrops which rise abruptly from the 14 surrounding rain forest (Bremer and Sander, 2000) and support a special type of vegetation 15 adapted to harsh and strongly varying environmental conditions. On the Nouragues inselberg 16 (French Guiana) isolated vegetation clumps are mainly comprised of Clusia minor 17 (Clusiaceae) and Myrcia saxatilis (Myrtaceae), two shrubs which characterize respectively 18 successive stages of a primary plant succession in the locally called 'rock savanna' (Sarthou 19 and Grimaldi, 1992). Places $(2-5 \text{ m}^2)$ where dead stems of *C. minor* remain standing or fall on 20 the ground ('micro-chablis') are often seen within shrub thickets (Sarthou, 1992). These zones 21 of destruction, where intense termite activity occurs at the inside of standing dead stems and 22 branches and numerous sporocarps of wood-destroying fungi can be observed (Kounda-Kiki, 23 2007), testify for destructive events of unknown origin and brings up questions regarding 24 dynamic processes generated by disturbance events such as pronounced dryness, fires, storms, 25 and fungal diseases (Finegan, 1984). Previous studies on the Nouragues inselberg (Vaculik et al., 2004; Kounda-Kiki et al., 2004, 2006) showed that parallel changes occur in vegetation,
humus profiles and soil animal communities throughout the plant succession, but the
existence of cyclic processes and the rate at which successional transition occurs are still
under question.

5

6 We described humus profiles found in zones of destruction and compared them with 7 humus profiles previously studied beneath pure C. minor thickets, as an early stage, and C. 8 minor thickets enriched with M. saxatilis and several other Myrtaceae, as a late stage of plant 9 succession (Kounda-Kiki et al., 2006). Based on visual inspection of the rock savanna our 10 hypothesis is that zones of destruction appear within pure, closed C. minor thickets, allowing 11 more, new plant species to establish, in particular longer-lived Myrtaceae. If this hypothesis is 12 true, then the composition of humus profiles in zones of destruction should be in an 13 intermediate position between those under pure *Clusia* canopies and those under mixed 14 Clusia-Myrcia canopies. We also aim at discovering which factors prevail in the destruction 15 of shrub thickets, which could be reflected in the composition of humus profiles as showed by 16 Bernier and Ponge (1994) and Gillet and Ponge (2002) in temperate environments.

17

- 18 Materials and methods
- 19

21

The field work was carried out at the Nouragues inselberg (411 m above sea level), which is located in the Nouragues natural reservation (4°5'N and 52°42'W). The inselberg is composed of a tabular outcrop of Caribbean granite, of pinkish monzonitic-type, containing potassium-feldspar (orthoclase) and 37% plagioclase, along with 33% quartz as coarse-

²⁰ Study site

1 grained crystals and 2% accessory minerals such as pyroxene, corundum, and apatite 2 (Grimaldi and Riéra, 2001). The chemical composition of the whole-rock (Sarthou and 3 Grimaldi 1992) shows that the granite is highly siliceous (76.4% SiO₂) and rich in alkalis 4 (4.6% K₂O, 4.2% Na₂O). The climate is tropical humid, and is characterized by a dry season 5 from July to November and a wet season from December to June interrupted by a very short 6 dry season in March. Mean annual precipitation reaches 3000-3250 mm. The daily 7 temperature ranges between 18-55°C and the daily air humidity between 20-100% (Sarthou 8 and Grimaldi, 1992). The temperature of the bare rock surface may reach 75°C in the dry 9 season. Most of the surface of the granitic outcrop is covered by cyanobacteria (Sarthou et al., 10 1995). Different dynamic stages can be observed in the development of shrub thickets 11 (Sarthou, 2001). The bromeliad *Pitcairnia geyskesii* is the most typical plant of the inselberg. 12 C. minor (Clusiaceae) represents the shrub vegetation unit of the rock savanna, forming dense 13 thickets, 2-8 m tall (Sarthou, 2001; Sarthou et al., 2003). M. saxatilis (Myrtaceae) is the 14 second most important shrub species, further established within C. minor thickets together with some minor other Myrtaceae. Zones of destruction are places from which living woody 15 16 vegetation has disappeared, only decaying stems of C. minor being observed still standing or 17 fallen on the ground, with many signs of fungal attacks and strong activity of termite colonies 18 within dead stems.

19

20 Sampling procedure

21

Nine humus profiles (three in each) were sampled in zones of destruction and in two dynamic stages of the *Clusia* community (pure *Clusia* and *Clusia-Myrcia*), which were subdivided into several layers directly on the field. Different vegetation clumps were selected, thus avoiding pseudo-replication. At the centre of a canopy or a zone of destruction, a block

of surface soil 25 cm² in area and 10 cm depth was cut with a sharp knife, with as little 1 2 disturbance as possible, and the litter and the soil surrounding it were gently excavated. Each 3 humus block was separated in the field by eye into its obvious layers, without reference to any 4 preconceived classification of horizons (Ponge, 1999; Peltier et al., 2001). The different layers 5 were isolated and fixed immediately in 95% ethanol then transported to the laboratory. The layers were classified into OL (entire leaves), OF (fragmented leaves) and OH (humified 6 litter) horizons (Brêthes et al., 1995), other horizons being not present in these shallow 7 8 Histosols. Only OH horizons were observed in zones of destruction. Several layers could be 9 sampled in the same horizon on the basis of visible differences. Nineteen layers in total were 10 sampled in zones of destruction (coded Zd for zones of destruction), 21 under Clusia (coded 11 Clu), and 22 under *Clusia-Myrcia* (coded Clu-Myr).

12

13 All 62 layers were analysed at the laboratory by the small volume micromorphological 14 method developed by Bernier and Ponge (1994). We spread each layer gently with our fingers 15 in a petri dish, taking care not to break the aggregates. The petri dish was then filled with 95% 16 ethanol. The different components were identified under a dissecting microscope at 50 X 17 magnification with a cross reticule in the eyepiece and quantified by the count point method (Jongerius, 1963; Bal, 1970; Bernier and Ponge, 1994). Under the dissecting microscope, a 18 19 transparent film with a 429-point grid was positioned over the material. At each grid point, 20 using the reticule as an aid for fixing the position, we identified and counted the material 21 beneath it. The results were expressed as the relative volume percentage of given component, 22 corresponding to the ratio of the number of points identified for each category of humus 23 component to the total number of points inspected above the petri dish.

1 The various kinds of plant debris were identified visually by comparison with a 2 collection of main plant species growing in the vicinity of the sampled humus profiles. Litter 3 leaves were classified according to plant species and decomposition stages on the basis of 4 morphological features. Dead and living roots were separated by colour and turgescence state, helped when possible by the observation of root sections. Animal faeces were classified by 5 6 the size, the shape, the degree of mixing of mineral matter with organic matter and the colour 7 according to animal groups when possible (Ponge, 1991a, 1991b; Topoliantz et al., 2000, 8 2006). When necessary, the identification of humus components was checked at higher 9 magnification. For that purpose, a small piece of a given humus component was collected 10 with scissors then mounted in a drop of chloral-lactophenol for examination under a phase 11 contrast microscope at 400 X magnification.

12

13 Data analysis

14

Percentages of occurrence of humus components in the 62 layers investigated were subjected to Correspondence Analysis or CA (Greenacre, 1984). The different classes of humus components were the active (main) variables, coded by their percent volume. Passive variables (OL, OF, OH horizons, vegetation types, depth levels) were added in order to make easier the interpretation of factorial charts (Sadaka and Ponge, 2003).

20

All variables were transformed into X=(x-m)/s+20, where x is the original value, m is the mean of a given variable, and s is its standard deviation. The addition to each standardized variable of a constant factor of 20 allows all values to be positive, CA dealing only with positive numbers. Following this transformation, factorial coordinates of variables can be interpreted directly in terms of their contribution to factorial axes (Sadaka and Ponge, 2003). 1

2 **Results**

- 3
- 4 Humus components
- 5

6 A total of 107 humus components were identified. They were pooled into 12 gross 7 categories on the basis of affinities in their composition, which were used for drawing graphs 8 and comparing the three vegetation types (Clu, Myr, Zd). Leaf material (RM) was comprised 9 of leaves of P. geyskesii (Bromeliaceae), Scleria cyperina (Cyperaceae), C. minor 10 (Clusiaceae) and *M. saxatilis* (Myrtaceae). Root material (RM) consisted of dead and living 11 roots and roots attacked by fungi. Miscellaneous plant material (MPM) was mainly made of 12 flower and fruit parts. Decayed plant material (DPM) included plant organs humified and 13 degraded by soil organisms but still recognizable to the nake eye. Fungal material (FM) was 14 mostly made of fructifying organs and rhizomorphs, fungal hyphae being not perceptible 15 under the dissecting microscope. Humified organic matter (HOM) included plant organic 16 material, strongly transformed and not identifiable as plant organs but not included into 17 animal faeces. Holorganic faeces (HF) were made of organic matter ingested then defecated 18 by animals. Organo-mineral faeces (OMF) were a mixture of organic matter and mineral 19 particles ingested then defecated by animals. Charred material (CM) included leaves, roots, 20 bark, wood and charcoal. Notice that these gross categories were not mutually exclusive. For 21 instance, all components comprising pieces of fungi were included in the gross category 22 'Fungal mycelium', while some of them, such as 'Leaf of Scleria covered with fungi' 23 (Appendix) were also included in the gross category 'Leaf material'.

24

25 Humus profiles

1

2 The data thus obtained allowed the construction of charts representing the distribution 3 of gross categories of humus components according to depth (Fig. 1). They showed a great 4 homogeneity among humus profiles except for Zd3, which exhibited a dominance of humified organic matter (up to 81% of the total volume of solid matter) beneath 2 cm. Charred material 5 6 was present in the three samples taken in zones of destruction (Zd1, Zd2 and Zd3) (up to 3% 7 in Zd1, up to 12% in Zd2, up to 21% in Zd3). Leaf material was poorly represented in Zd but 8 largely dominant in the four top cm in Clu and Clu-Myr. It decreased with depth with a 9 corresponding increase of the root system, which was largely dominant beneath 4 cm, except 10 in Zd3 where it was replaced by humified organic matter. Fungal material (in enough amount 11 to be counted under a dissecting microscope) was present in zones of destruction (Zd1 and Zd 12 3 in the top 4 cm, Zd1 and Zd2 beneath). A large increase in humified organic matter was 13 observed beneath 4 cm, especially in Clu-Myr and Zd. In all humus profiles, the examination 14 of faecal material showed that holorganic faeces (millipedes, earthworms, enchytraeids and 15 mites) began to accumulate in the first centimetre and increased with depth (up to 44% at the 16 bottom of Clu-Myr3). They were much less abundant in Zd. Organo-mineral animal faeces 17 (millipedes and earthworms) were only present in Clu. Mineral particles were always in a 18 small amount in the studied profiles, but they were more abundant in Zd3 (up to 8%) and Zd2 19 (up to 4%).

20

21 Multivariate analysis

22

The projection of active and passive variables in the plane of the first two factorial axes of CA (7.8 and 7.1% of the total variance, respectively) showed a marked heterogeneity among horizons (Fig. 2). In general values of Axis 1 and Axis 2 decreased when depth increased (OL, then OF then OH). However, surface layers of Zd (identified as OH horizons) were projected on the positive side of Axis 2, like OL and OF layers of Clu and Clu-Myr, but differed in their Axis 1 values, which were negative, like all other OH horizons. There was a gradient in the composition of horizons in Clu and Myr e.g. decayed plant material followed by miscellaneous plant material followed by humified organic matter, holorganic faeces, organo-mineral faeces then root material. Zd differed by the presence of charred material and by the scarcity of leaf litter, which isolated it from the other two vegetation types.

8

9 The projection of depth level indicators (additional or passive variables) in the plane 10 of Axes 1 and 2 of CA clarified vertical changes in the composition of humus profiles (Fig. 11 2). Linking successive depth levels by straight lines displayed trajectories that help to show 12 changes in humus composition along topsoil profiles under the three vegetation types. Zones 13 of destruction did not exhibit any pronounced change in organic matter composition 14 according to depth (short trajectories), in contrast to Clusia and Clusia-Myrcia. They were 15 characterized by negative values of Axis 1 (only OH horizons were present) and positive 16 values of Axis 2 in the first two cm, which corresponds to the presence of charred material 17 (categories 5, 17, 23, 30, 37, 61) but also of S. cyperina litter (categories 1 to 4). Clusia and 18 *Clusia-Myrcia* were both characterized by positive values of Axes1 and 2 in surface layers 19 and negative values of the same axes in deeper layers. However, there was a better 20 differentiation of OH horizons under Clusia than under Clusia-Myrcia and the passage from 21 OL to OH horizons was more abrupt under Clusia than under Clusia-Myrcia. It should be also 22 noted that, although surface layers may differ between *Clusia* and *Clusia-Myrcia* on one part, 23 and zones of destruction on the other part, deeper layers of the three vegetation types tended 24 to reach a similar composition.

1 **Discussion**

2

3 On the basis of their horizons, all humus profiles under Clusia and Clusia-Myrcia and 4 one humus pr ofile (Zd1) under zones of destruction, seemed rather similar (Fig. 1). However, 5 all three zones of destruction (Zd1, Zd2 and Zd3) exhibited an accumulation of charred 6 material and mineral particles, which points to small-scale disturbances, other than biological, 7 which occurred in zones of destruction. Fire has been reported to occur on the Nouragues 8 inselberg, and charcoal has been found in the summital forest (Tardy et al., 2000), however 9 this is the first report of the existence of spatially-limited fires, probably of lightning strike origin, which locally destroy the vegetation during pronounced dry seasons (El Niño years). 10 11 Wardle et al. (1997) showed that the frequency of lighning strikes on small-sized Sweden 12 lake islands explained why the plant succession could not reach a late stage of development and was renewed at more frequent intervals. In our study site, small size $(10-50 \text{ m}^2)$ and 13 14 isolation of shrub thickets prevent fire to be propagated at longer distance and to destroy the 15 whole rock savanna.

16

17 Charred material could remain in the soil for centuries, constituting an important sink 18 of carbon and a source of persistent soil organic matter (Seiler and Crutzen, 1980; Glaser et 19 al., 2001; Ponge et al., 2006). Charcoal is also an efficient adsorbent of soluble organic and 20 mineral compounds leached from litter and can support microbial communities, due to its 21 high internal surface area made of interconnected micropores (Pietikaïnen et al. 2000). In 22 boreal forests it has been demonstrated that charcoal played a fundamental role in forest 23 regeneration (Zackrisson et al., 1996; Wardle et al., 1998). These features are typical of 24 disturbed areas, favouring the establishment of new species within a community or the renewal of the same community (Grubb, 1977). Combined to charcoal, the absence of leaf 25

1 material in the zones of destruction (Table 1) probably also favours the early establishment by 2 seed of plant species by decreasing the level of chemical and physical interference (Facelli 3 and Pickett, 1991; Wardle et al., 1998). The presence of charcoal, the absence of OL and OF 4 horizons, combined with the presence of plant species typical of open environments, such as S. cyperina (Sarthou and Villiers, 1998), is an argument for the role of zones of destruction in 5 6 the passage from a plant community characterized by the early establishment and vegative 7 spread of the epilithic C. minor to a more species-rich community, including M. saxatilis and 8 a variety of other woody and liana species.

9

Roots could be considered as an important component of humus profiles on the Nouragues inselberg (Fig. 1, Table 1), except in Zd3 where this important source of soil organic matter had been near totally transformed in humified organic matter without being renewed. The development of root systems is an important cause for the distribution of organic matter in mountain (Frak and Ponge, 2002) and boreal soils (Tedrow, 1977) but its role seems even more important in tropical soils on hard, unweatherable parent rocks (Loranger et al., 2003).

17

18 Fungal material was found in higher amounts in the surface layers of zones of 19 destruction (Table 1) which can be compared with our observation of the local attack of 20 woody vegetation by wood-destroying basidiomycetes and the increased termite and 21 xylosidase activity in zones of destruction (Kounda-Kiki, 2007). We also recorded a particular 22 abundance of soil invertebrates in zones of destruction, twice that of Clusia canopies 23 (Kounda-Kiki, 2007). Due to the intense activity of fungi and invertebrates, wood and bark 24 are rapidly converted into humus (humified organic matter and animal faeces), thus they do 25 not accumulate in the humus profiles.

1	
2	It is probable that the vegetation dynamics on the Nouragues inselberg is more
3	complex than previously thought and that biological factors such as fungal and invertebrate
4	activity, following the local action of fires, prevail in the regeneration niche of a variety of
5	non-epilithic rock savanna plants, thereby ensuring renewal and species enrichment of
6	vegetation clumps. However, main limits of our investigations lie in the absence of temporal
7	scales for the observed processes, which should be assessed by long-term monitoring.
8	
9	Acknowledgements
10	
11	We thank the Centre National de la Recherche Scientifique for financial support and
12	commodities, in particular Charles-Dominique and his staff at the Nouragues Field Station.
13	We wish to thank also the Fondation des Treilles for a personal grant given to the junior
14	author.
15	
16	References
17	
18	Bal, L., 1970. Morphological investigation in two moder-humus profiles and the role of soil
19	fauna in their genesis. Geoderma 4, 5-36.
20	
21	Bernier, N., 1996. Altitudinal changes in changes in humus form dynamics in a spruce forest
22	at the montane level. Plant Soil 178, 1-28.
23	
24	Bernier, N., Ponge, J.F., 1994. Humus form dynamics during the sylvogenetic cycle in a

a

mountain spruce forest. Soil Biol. Biochem. 26, 183-220. 25

1	
2	Bremer, H., Sander, H., 2000. Inselbergs, geomorphology and geoecology. In: Porembski, S.,
3	Barthlott, W. (Eds.), Inselbergs. Biotic Diversity of Isolated Rock Outcrops in
4	Tropical and Temperate Regions. Springer, Berlin, pp. 7-35.
5	
6	Brêthes, A., Brun, J.J., Jabiol, B., Ponge, J.F., Toutain, F., 1995. Classification of humus
7	forms, a French proposal. Ann. Sci. For. 52, 535-546.
8	
9	Emmer, I.M., Sevink, J., 1993. Horizon differenciation in humus forms and its relevance for
10	the study of succession related changes in element stocks in primary forest of Pinus
11	sylvestris (L.). Scripta Geobot. 21, 129-134.
12	
13	Facelli, J.M., Pickett, S.T.A., 1991. Plant litter, its dynamics and effects on plant community
14	structure. Bot. Rev. 57, 1-32.
15	
16	Finegan, B., 1984. Forest succession. Nature 312, 109-114.
17	
18	Frak, E., Ponge, J.F., 2002. The influence of altitude on the distribution of subterranean
19	organs and humus components in Vaccinium myrtillus carpets. J. Veg. Sci. 13, 17-26.
20	
21	Gillet, S., Ponge, J.F., 2002. Humus forms and metal pollution in soil. Eur. J. Soil Sci. 53,
22	529-539.
23	

1	Glaser, B., Haumaier, L., Guggenberger, G., Zech, W., 2001. The 'Terra Preta' phenomenon,
2	a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37-
3	41.
4	
5	Greenacre, M.J., 1984. Theory and Applications of Correspondence Analysis. Academic
6	Press, London.
7	
8	Grimaldi, M., Riéra, B., 2001. Geography and climate. In: Bongers F., Charles-Dominique,
9	P., Forget, P.M., Théry, M. (Eds.), Nouragues. Dynamics and Plant-Animal
10	Interactions in a Neotropical Rainforest. Kluwer, Dordrecht, pp. 9-18.
11	
12	Grubb, P.J., 1977. The maintenance of species-richness in plant communities, the importance
13	of the regeneration niche. Biol. Rev. 52,107-145.
14	
15	Jongerius, A., 1963. Optic-volumetric measurements on some humus forms. In: Doeksen, J.,
16	Van der Drift, J. (Eds.), Soil Organisms. North Holland Publishing Company,
17	Amsterdam, pp. 137-148.
18	
19	Kounda-Kiki, C., 2007. Place des invertébrés et des humus dans les successions végétales sur
20	les inselbergs tropicaux (Nouragues, Guyane française). Unpublished doctorate thesis,
21	Paris.
22	
23	Kounda-Kiki, C., Vaçulik, A., Ponge, J.F., Sarthou, C., 2004. Soil arthropods in a
24	developmental succession on the Nouragues inselberg (French Guiana). Biol. Fert.
25	Soils 40, 119-127.

1	
2	Kounda-Kiki, C., Vaçulik, A., Ponge, J.F., Sarthou, C., 2006. Humus profiles under main
3	vegetation types in a rock savanna (Nouragues inselberg, French Guiana). Geoderma
4	136, 819-829.
5	
6	Kubiëna, W.L., 1938. Micropedology. Collegiate Press, Ames.
7	
8	Loranger, G., Ponge, J.F., Lavelle, P., 2003. Humus forms in two secondary semi-evergeen
9	tropical forests. Eur. J. Soil Sci. 54, 17-24.
10	
11	Peltier, A., Ponge, J.F., Jordana, R., Ariño, A., 2001. Humus forms in Mediterranean
12	scrublands with aleppo pine. Soil Sci. Soc.Amer. J. 65, 884-896.
13	
14	Pietikäinen J., Kiikkilä O., Fritze, H., 2000. Charcoal as habitat for microbes and its effects on
15	the microbial community of the underlying humus. Oikos 89, 231-242.
16	
17	Ponge, J.F., 1991a. Succession of fungi and fauna during decomposition of needles in a small
18	area of Scots pine litter. Plant Soil 138, 99-113.
19	
20	Ponge, J.F., 1991b. Food resources and diets of soil animals in a small area of Scots pine
21	litter. Geoderma 49, 33-62.
22	
23	Ponge, J.F., 1999. Horizons and humus forms in beech forest of the Belgian Ardennes. Soil
24	Sci. Soc.Amer. J. 63, 1888-1901.
25	

1	Ponge, J.F., André, J., Zackrisson, O., Bernier, N., Nilsson, M.C., Gallet, C., 1998. The forest
2	regeneration puzzle, biological mechanisms in humus layer and forest vegetation
3	dynamics. BioScience 48, 523-530.
4	
5	Ponge, J.F., Topoliantz, S., Ballof, S., Rossi, J.P., Lavelle, P., Betsch, J.M., Gaucher, P.,
6	2006. Ingestion of charcoal by the Amazonian earthworm Pontoscolex corethrurus, a
7	potential for tropical soil fertility. Soil Biol. Biochem. 38, 2008-2009.
8	
9	Sadaka, N., Ponge, J.F., 2003. Climatic effects on soil trophic networks and the resulting
10	humus profiles in holm oak (Quercus rotundifolia) forests in the high Atlas of
11	Morocco as revealed by correspondence analysis. Eur. J. Soil Sci. 54, 767-777.
12	
13	Sarthou, C., 1992. Dynamique de la végétation pionnière sur un inselberg en Guyane
14	française. Unpublished doctorate thesis, Paris.
15	
16	Sarthou, C., 2001. Plant communities on a granitic outcrop. In: Bongers F., Charles-
17	Dominique, P., Forget, P.M., Théry, M. (Eds.), Nouragues. Dynamics and Plant-
18	Animal Interactions in a Neotropical Rainforest. Kluwer, Dordrecht, pp. 65-78.
19	
20	Sarthou, C., Grimaldi, C., 1992. Mécanismes de colonisation par la végétation d'un inselberg
21	granitique en Guyane Française. Rev. Ecol. (Terre Vie) 47, 329-349.
22	
23	Sarthou, C., Thérèzien, Y., Couté, A., 1995. Cyanophycées de l'inselberg des Nouragues
24	(Guyane française). Nova Hedwigia 61, 85-109.
25	

1	Sarthou, C., Villiers, J.F., 1998. Epilithic plant communities on inselbergs in French Guiana.
2	J. Veg. Sci. 9, 847-860.
3	
4	Sarthou C., Villiers, J.F., Ponge, J.F., 2003. Shrub vegetation on tropical granitic inselbergs
5	(French Guiana). J. Veg. Sci. 14, 645-652.
6	
7	Seiler W., Crutzen, P.J., 1980. Estimates of gross and net fluxes of carbon between the
8	biosphere and the atmosphere from biomass burning. Clim. Chang. 2, 207-247.
9	
10	Tardy, C., Vernet, J.L., Servant, M., Fournier, M., Leprun, J.C., Pessenda, L.C., Sifeddine, A.,
11	Solari, M.E., Soubies, F., Turcq, B., Wengler, L., Vacher, S., Jérémie, S., Ceccantini,
12	G., Cordeiro, R., Scheel, R., 2000. Feux, sols et écosystèmes forestiers tropicaux. In:
13	Servant, M. Servant-Vildary, S. (Eds.), Dynamique à Long Terme des Écosystèmes
14	Forestiers Tropicaux. UNESCO, Paris,, pp. 343-348.
15	
16	Tedrow, J.C.F., 1977. Soils of the Polar Landscape. Rutgers University Press, New
17	Brunswick.
18	
19	Topoliantz, S., Ponge, J.F., Lavelle, P., 2006. Humus components and biogenic structures
20	under tropical slash-and-burn agriculture. Eur. J. Soil Sci. 57, 269-278.
21	
22	Topoliantz, S., Ponge J.F., Viaux, P., 2000. Earthworm and enchytraeid activity under
23	different arable farming systems, as exemplified by biogenic structures. Plant Soil 225,
24	39-51.
25	

1	Vaçulik A., Kounda-Kiki C., Sarthou C., Ponge, J.F., 2004. Soil invertebrate activity in
2	biological crusts on tropical inselbergs. Eur. J. Soil Sci. 55, 539-549.
3	
4	Wardle, D.A., Zackrisson, O., Hörnberg, G., Gallet, C., 1997. The influence of island area on
5	ecosystem properties. Science 277, 1296-1299.
6	
7	Wardle D.A., Zackrisson O., Nilsson, M.C., 1998. The charcoal effect in boreal forests,
8	mechanisms and ecological consequences. Oecologia 115, 419-426.
9	
10	Wolters, V., Silver, W.L., Bignell, D.E., Coleman, D.C., Lavelle, P., Van der Putten, W.H.,
11	Ruiter, P.C. de, Rusek, J., Wall, D.H., Wardle, D.A., Brussaard, L., Dangerfield, J.M.,
12	Brown, V.K., Giller, K.E., Hooper, D.U., Sala, O., Tiedje, J.M., Van Veen, J.A., 2000.
13	Effects of global changes on above and belowground biodiversity in terrestrial
14	ecosystems, Implications for ecosystem functioning. BioScience 50, 1089-1098.
15	
16	Zackrisson O., Nilsson M.C., Wardle, D.A., 1996. Key ecological function of charcoal from
17	wildfire in the Boreal forest. Oikos 77, 10-19.
18	

Table 1. Mean volume ($\% \pm SE$) of the gross categories of humus components at the three stages Clusia, Clusia-Myrcia and micro-chablis(three replicates each) at two different 4 depth levels. Significant differences between pairs of sites according to Mann-Whitney tests areindicated by different letters and in bold type

Gross category	Code	Clusia	Clusia-Myrcia	Micro-chablis	Clusia	Clusia-Myrcia	Micro-chablis
Depth (cm)			0-4 cm			4-10 cm	
Leaf material	LM	51.93±17.27a	40.66±15.54a	7.26±2.9b	2.54±1.5	1.31±0.82	0.28±0.28
Root material	RM	29.9±12.59	30.03±9.91	37.17±16.11	61.44±7.91	44.97±5.58	53.7±16.74
Miscellaneous plant material	MPM	0.98±0.46b	1.9±0.35ab	4±1.07a	1.21±0.14	0.67±0.37	3±1.23
Decayed plant material	DPM	3.85±1.09	8.07±2.33	2.79±1.18	1.69±0.78	2.89±2.4	1.43±1.43
Cyanobacteria	С	0±0	0±0	0.69±0.5	0±0	0±0	0.07±0.07
Fungal material	FM	0±0	0±0	0.39±0.21	0±0	0±0	1.16±0.76
Humified organic matter	HOM	4.38±3.49	9.45±5.44	22.42±10.4	10.48±5.38	35.11±8.52	34.88±19.54
Holorganic faeces	HF	8.13±3.19	9.14±2.87	16.14±7.09	17.65±2.68a	13.82±5.92ab	3.28±2.34b
Organo-mineral faeces	OMF	0.08±0.08	0.04±0.04	0.43±0.27	2.18±1.77a	0±0b	0±0b
Mineral particles	MP	0.3±0.3	0.3±0.3	2.28±1.48	2.35±1.23	0.4±0.18	1.75±1.63
Charred material	СМ	0±0b	0±0b	5.87±2.56a	0±0	0±0	0.46±0.46
Soil fauna	SF	0.43±0.09	0.4±0.19	0.56±0.52	0.45±0.29	0.83±0.7	0±0

1 Figure legends

3	Figure 1. Diagrammatic representation of the distribution according to depth of twelve gross
4	categories (leaf material, root material, miscellaneous plant material, decayed plant
5	material, cyanobacteria, fungal material, humified organic matter, holorganic faeces,
6	organo-mineral faeces, mineral particles, charred material and soil fauna) in the nine
7	studied humus prfiles (Zd = zones of destruction; Clu = <i>Clusia</i> ; Clu-Myr = <i>Clusia</i> -
8	Myrcia).
9	
10	Figure 2. Correspondence analysis of 62 humus layers. Projection of passive variables (gross
11	categories, horizon names, depth indicators and vegetation types) in the plane of the
12	first two axes. Codes of gross categories as in Table 1
13	

4 Fig. 1

2 Fig. 2