
HAL Id: hal-00495212
https://hal.science/hal-00495212

Submitted on 25 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ParFlow++: a C++ Parallel Application for Wave
Propagation Simulation

Frédéric Guidec, Pierre Kuonen, Patrice Calégari

To cite this version:
Frédéric Guidec, Pierre Kuonen, Patrice Calégari. ParFlow++: a C++ Parallel Application for Wave
Propagation Simulation. 20th SPEEDUP Meeting, Dec 1996, Lausanne, Switzerland. pp.68-73. �hal-
00495212�

https://hal.science/hal-00495212
https://hal.archives-ouvertes.fr

1/11

ParFlow++: a C++ Parallel Application
for Wave Propagation Simulation

Frédéric Guidec, Pierre Kuonen, Patrice Calégari
Department of Computer Science

Swiss Federal Institute of Technology
Email: {guidec,kuonen,calegari}@di.epfl.ch

Abstract

The ParFlow method permits to simulate outdoor wave propagation in urban en-
vironment. It compares with the so-called Lattice Boltzman Model (LBM), which
describes a physical system in terms of the motion of fictitious microscopic particles
over a lattice. One of the objectives of the European project STORMS1 (Software
Tools for the Optimization of Resources in Mobile Systems) is to develop a software
tool to be used for design and planning of the UMTS network2. This paper gives an
overview of the ParFlow method, and reports the design and the implementation
of ParFlow++, a parallel object-oriented software for outdoor wave propagation
prediction in urban environment. ParFlow++ is being developed in C++, and the re-
sulting code is primarily targeted at MIMD-DM platforms. Although the develop-
ment of ParFlow++ is still in progress in the STORMS project, a prototype version
is available, that compiles and runs on a network of Unix workstations, as well as
on the Cray T3D. Experiments achieved with this prototype software lead to prom-
ising results, which are discussed in this paper.

Keywords

Wave propagation, simulation, mobile telecommunication, cellular network,
Transmission Line Matrix, Lattice Boltzman Model, ParFlow, parallel program-
ming, object-oriented programming.

1. Introduction

Outdoor wave propagation prediction is of great interest to telecommunication
operators. Due two the fast growth of radio networks, it becomes important to
achieve computer-based simulations of wave propagation. This is particularly true
in the context of mobile phone networks, also called “cellular networks”, for it per-
mits to predict the shapes of the cells of any future network. One of the objectives
of the European project STORMS (Software Tools for the Optimization of Resourc-

1.STORMS is a European project founded by the European Community and by the Swiss
government (OFES).
2.UMTS: Universal Mobile Telecommunication System.

Paper submitted for the 20th SPEEDUP meeting, to be
held in Geneva (CERN) on September 20th, 1996.

2/11

es in Mobile Systems) is to produce pieces of software for wave propagation simu-
lation, in both urban and rural environments. It is planned to use parallel
computing to speed up the execution of these pieces of software.

In 1995, a new approach to modelling wave propagation in urban environments
based on a Transmission Line Matrix (TLM) was designed by Chopard, Luthi and
Wagen [Lut95]. The ParFlow method compares with the so-called Lattice Boltz-
man Model (LBM), that describes a physical system in terms of the motion of ficti-
tious microscopic particles over a lattice. It permits a bidimensional wave
propagation simulation, using a digital city map, and assuming infinite building
height. The method can be “naturally” extended to tridimensional wave propaga-
tion simulation.

2. The ParFlow method

According to the Huygens principle, a wave
front consists of a number of spherical wave-
lets emitted by secondary radiators. The Par-
Flow method is based on a discrete formulation
of this principle. Space can be represented in
terms of finite elementary units on a grid. Be-
cause Lattice Boltzman models are character-
ized by a simultaneous independent dynamics
and by a very simple numerical scheme, the
ParFlow algorithm uses a cellular automaton
approach. At each step of the computation, eve-
ry grid point is updated based on the values of
its four neighbours. The computation proceeds
until a stable state is reached, or until a prede-
fined number of iteration steps has been run
through.

Figure 1 shows the state of the propagation after four iteration steps. The black
square marked by a “S” is the location of the radiating source (the emitter). Grey
levels indicate at which iteration step a certain grid point was reached by the wave.
The darker the square, the earlier the corresponding grid point was reached. One
can distinguish between three types of grid points in Figure 1: those that have not
been reached by the wave yet, those that have just been reached by the wave (dur-
ing the current iteration step), and those that were reached during former iteration
steps. In any case, points that have been reached by the wave are referred to as ac-
tive points in the remaining of this document, whereas points that have not been
reached yet are said to be inactive.

Figure 1: Wave propagation simu-
lation using the ParFlow method

S

3/11

Obstacles (mainly buildings) are modelled by
two kinds of grid points: wall points, and in-
door points (see Figure 2). As, in the current
ParFlow model, we assume that waves do not
penetrate buildings, indoor grid points are not
involved in the computation. As for wall
points, they are considered as partially ab-
sorbent and partially reflecting.

The ParFlow method uses flows instead of
fields. Flow values are defined on the edges
connecting neighbouring grid points. The
flows entering one grid point at time t are scat-
tered at time t+∆t among the four neighbour-

ing points, according to the following TLM expression:

Due to the discretization of time, it is convenient to distinguish between the
flows coming in a grid point, and those going out of this point. For each point, there
are thus four incoming flows, and four outgoing flows, as shown in Figure 3.

The general structure of the algorithm is shown in pseudo-code in Figure 4. For
each grid point, incoming and outgoing flows obey the following rules:

• outgoing flows at time t are a linear combination of incoming flows at that
time;

• an incoming flow at time t corresponds to the outgoing flow calculated on a
neighbouring grid point at time t-∆t;

Figure 2: Modelling of obstacles

f 1 x r∆+ y t t∆+, ,()

f 2 x r∆– y t t∆+, ,()

f 3 x y r∆– t t∆+, ,()

f 4 x y r∆+ t t∆+, ,()

1
2

1 1– 1 1

1– 1 1 1

1 1 1 1–

1 1 1– 1

f 1 x y t, ,()

f 2 x y t, ,()

f 3 x y t, ,()

f 4 x y t, ,()

⋅=

Figure 3: Flows entering and leaving a grid point

 fin

 fin

 fin

 fin

 fout

 fout

 fout

 fout

4/11

������� field value at time t is the sum of the four incoming flows at that time.

These rules apply for all outdoor grid points but the source, which does not prop-
agate incoming flows in the current version of the ParFlow method. By changing
the excitation function of the source point, one can simulate different kinds of input
signals, such as a sinusoidal signal, a triangular pulse, an impulse, etc. As for wall
points, the reflection coefficient and the matrix elements can be modified depend-
ing on the kind of wall considered [Lut95].

The ParFlow method must simulate the (theoretically) infinite propagation of a
wave on a finite grid. In order to prevent any kind of perturbation along the borders
of the grid, one uses one or several layers of special points, whose role is to emulate
the attenuation of the wave in open-air. These points are quite similar to tradition-
al outdoor points, except that their reflection coefficient is smaller.

3. Design and implementation of ParFlow++

3.1. Motivations

The grid structure on which the ParFlow algorithm operates, and the way each
point of the grid is updated iteratively based on its four neighbours, suggest a very
regular implementation. A language primarily targeted at array-based computa-
tion, such as Fortran, is perfectly suited for this kind of implementation.

Another advantage of the ParFlow method is that, although the calculations
made during each iteration step are theoretically synchronous, updates of points
require independent computation. The ParFlow algorithm is therefore a good can-
didate for parallel implementation.

The first parallel version of the ParFlow algorithm was implemented on a
CM2 (Connection Machine) supercomputer, whose SIMD architecture (Single In-
struction Multiple Data) provides thousands of synchronous processors [Lut95].
The ParFlow algorithm can be readily and efficiently implemented on SIMD plat-
forms, because it takes advantage of the regular grid data structure and of the syn-
chronous progress of the computation. However, the main disadvantage of such an
implementation is its lack of scalability. Since each point of the grid must be allo-
cated to one processing element, the size of the grid is constrained by the size of the
parallel machine. Moreover, since the grid structure of the ParFlow algorithm is
directly mapped on the topology of the CM2, many processing units model points
located inside buildings. These processing units remain idle throughout the entire
computation.

Since the current version of ParFlow method does not simulate wave propaga-

foreach iteration stepdo
foreach point in the griddo

compute outgoing flows based on incoming flows;
update incoming flows based on neighbours’ outgoing flows;

endfor
endfor

Figure 4: the ParFlow algorithm (in pseudo-code)

5/11

tion through buildings, it can be interesting not to model indoor points. Indeed, ex-
perience shows that when modelling an urban area, buildings can represent up to
30 % of the surface considered. Not modelling these points permits to avoid a waste
of memory space and, as a consequence, of computational power. Such an approach
unfortunately leads to an irregular data structure, that makes the implementation
much more complicated. In that case, the implementation can take advantage of a
programming model that provides powerful features to manipulate irregular data
structures. Object-oriented languages are good candidates for this kind of develop-
ment.

The use of object-oriented programming is not very common in supercomputing.
Implementing the ParFlow algorithm using object-oriented techniques thus ap-
pears to us as an appealing challenge.

3.2. Parallel, object-oriented implementation of the ParFlow method

ParFlow++ denotes a C++based parallel implementation of the ParFlow algo-
rithm, targeted at MIMD-DM platforms3. The ParFlow++ software is intended to
be used in the STORMS project to compute cells covered by Base Transceiver Sta-
tions (BTSs) in an urban environment.

The platforms primarily targeted in the STORMS project are the Cray T3D su-
percomputer, and networks of Unix workstations. However, the code of the Par-
Flow++ software is being developed so as to be easily portable on any other MIMD-
DM platform. The object-oriented approach brings several advantages with this re-
spect. The communication facilities required for the parallel implementation of
ParFlow++ were encapsulated in one class, whose interface was determined once
and for all based on the needs of the application itself. This class may have different
implementations depending on any new target platform considered (Cray T3E, In-
tel Paragon, IBM SP2, etc.), but its interface will remain unaltered whatever this
platform.

Due to the amount of outdoor points that must be considered in a simulation
(typically, several thousands of points for a single city district), an appropriate pol-
icy must be chosen to allocate each point to a processing element of the target plat-
form. In order to obtain good load balancing, ParFlow++ relies on a static data
distribution, based on a partitioning of the grid in thin bands. Each band is allocat-
ed to a given processor. This kind of partitioning has several advantages:

� The width of each band, and the number of them assigned to each processor,
can be adjusted so as to allow a fair distribution of the workload among the
processors.

� Allocating thin bands near the source ensures that all processors get their
share of work early after the wave started propagating.

� As adjacent bands can be allocated to adjacent processors, communications are
only required between neighbouring processors. This characteristic is almost
useless when running on a network of workstations interconnected through a
traditional Ethernet trunk. On the other hand, on a platform such as the
Cray T3D, it permits to prevent, or at least reduce, the well-known contention
phenomenon.

3.MIMD-DM: Multiple Instructions, Multiple Dataflow, Distributed Memory.

6/11

3.3. Software engineering

ParFlow++ is being developed in an object-oriented way, and according to the
fundamental principles of software engineering. The preliminary analysis and de-
sign of the software were achieved using the Fusion method [Col95]. The main
classes and relationships that were identified during the analysis phase constitute
an object model, that is reproduced in Figure 5.

The area on which a wave propagation simulation must be achieved is modelled
as a simulation zone (instance of the class SimulationZone shown in Figure 5), that
is split into partitions4 (instances of class Partition). Each partition is to be allocat-
ed to a given processor. It consists of a collection of instances of the class Point. A

4.Not splitting the simulation zone comes down to running ParFlow++ with a single partition. ParFlow++
then behaves almost like a purely sequential application (the overhead due to the “parallel” code is neg-
ligible).

SimulationZone

Partition

neighbour

N, S

Point

OutdoorPoint

OldActive

WallPointSourcePoint

OuterBorderInnerBorder MiddleBorder

neighbour

N, S, W, E

Point+

+

Frontier

Point+

belongsto

belongs

to

NewActive

Point+

to

ComBox

uses

Figure 5: Fusion object model of the ParFlow++ software

isActive: boolean

2

7/11

point is the smallest entity that is modelled with ParFlow++. It corresponds to an
elementary unit of the grid discussed in Section 2. Since several kinds of points
must be considered in this grid (source points, open-air points, wall points, border
points, etc.), the object model reproduced in Figure 5 shows that the class Point has
several descendants (the black triangle is a symbol for inheritance in the Fusion
diagrammatic syntax). These descendant classes all share the same interface, but
their implementation may differ slightly. For example, instances of OutdoorPoint,
of SourcePoint, and of WallPoint, do not have the same propagation characteris-
tics. Likewise, ParFlow++ implements three layers of border points, that differ
mainly in their reflection coefficient.

As explained in Section 2, a point is either active or inactive, depending on
whether it has already been reached by the wave whose propagation is being sim-
ulated, or not. During each step of the simulation, field values need only be calcu-
lated for active points, and the propagation of outgoing flows is only required from
active points to their neighbours. Based on these observations, a partition manages
several structures internally, in order to reduce the amount of computation per-
formed during one simulation step. Every newly activated point is inserted in a list
newActive. This list permits to propagate efficiently the activity status after each
computation step: the only points that are in a position to be activated are those
that are neighbours to members of the newActive list, and that are still inactive.
Iterating through members of the newActive list thus facilitates the identification
of new active points. Once a member of newActive has activated its neighbours, it
is transferred in the list oldActive. Hence, it will never be considered again when
looking for new active points, although it will still participate in the computation
and in the propagation of field values. The parallel version of the ParFlow algo-
rithm is reproduced in pseudo-code in Figure 6.

Besides the two lists that permit to distinguish between “new” and “old” active
points, a Partition also manages up to two instances of class Frontier (see
Figure 5). A Frontier maintains references to those points that are either on the
northern edge, or on the southern edge, of a partition. These points differ slightly
from other points of the local partition, for they must interact with neighbouring
points that are managed by remote processors. The class Frontier thus ensures the
propagation of flows between a partition and one of its neighbours. It also ensures
the propagation of the activity status, since a newly active point on an edge of a
partition may activate a point in the neighbouring partition. To achieve these
goals, the implementation of Frontier relies on the communication facilities offered
by the class ComBox.

C++ provides no support for parallel computation. The class ComBox (Commu-
nication Toolbox) was developed in order to fill this gap, and bring communication
facilities in the object-oriented world of the ParFlow++ software. The interface of
this class provides the basic mechanisms needed for sending and receiving messag-
es, for synchronizing several tasks in a SPMD5 application, etc. The current imple-
mentation of ComBox is based on the basic communication services offered by the
PVM library [Gei94]. Yet, alternative implementations may be considered in the
future. We may, for example, implement the class ComBox using the MPI library,
or the POM library. On the Cray T3D, we may use the fast communication func-

5.SPMD: Single Program, Multiple Dataflow.

8/11

tions shmem_get() and shmem_put(). In any case, since the implementation of the
ComBox class can be modified without any alteration of its interface, we ensure
that the ParFlow++ software is as independent as possible from any kind of target
platform.

4. State of the art and preliminary results

A sequential version of the ParFlow++ software was delivered to the STORMS
project leaders in August 1996. Although the implementation of the parallel ver-
sion of the software is still in progress, a first prototype version is now available.
This version compiles and runs on a network of Unix workstations, and on the
Cray T3D.

The prototype version of ParFlow++ was tested on the Cray T3D. Figure 7 shows
the propagation we observed when running a 800 steps simulation on a 500x500
points simulation zone corresponding to a district of the city of Geneva.

For each machine size (number of processors), we tested different partitioning
policies (the number of partitions was always a multiple of the number of process-
ing elements). Figure 8 shows, for each machine size, the best speedup we observed
against the number of processors implied in the computation. When calculating the
speedup values shown in this figure, we used as reference times the execution

newActive = {source point};
oldActive =∅ ;
foreach iteration stepdo

foreach local partitiondo
foreach point∈ oldActivedo

compute outgoing flows based on incoming flows;
update incoming flows based on neighbours’ outgoing flows;

endfor

oldActive = oldActive∪ newActive;
tmpActive = newActive;
newActive =∅ ;
foreach point∈ tmpActivedo

compute outgoing flows based on incoming flows;
update incoming flows based on neighbours’ outgoing flows;
activate not-yet-activated neighbours;
newActive = newActive∪ {newly activated neighbours};

endfor

send northern and southern frontiers to neighbouring partitions;
receive northern and southern frontiers from neighbouring partitions;
newActive = newActive∪ {new active points found in one of the frontiers};

endfor
endfor

Figure 6: the ParFlow++ parallel algorithm (in pseudo-code)

9/11

times observed on one processor, with a single partition. Experience shows that, in
such conditions, the overhead due to the “parallel” code remains negligible.

In Figure 8, speedups increase almost steadily with the number of processors,
up to 28 processors. The curve then falls down in an unexpected and, to date, still
unexplained way. However, considering that ParFlow++ is still in a prototype
stage, we think that these results are quite promising, and we feel confident that
future releases of ParFlow++ shall exhibit better speedups for many processors. To
achieve this goal, thorough profiling and fine tuning of the code are required. Com-
munications can also be improved in many ways (transmission of smaller messag-
es, non-deterministic receives, use of the fast shmem_get() and shmem_put()

Figure 7: Wave propagation simulation in a
district of the city of Geneva

Figure 8: Speedups observed on the Cray T3D
#Processors

3228242016128400

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

S
p
e
e
d
u
p

10/11

primitives on the Cray T3D, etc.).

Figure 9 shows the efficiency observed against the number of partitions, when
running the same simulation as that described earlier on 4 processors of the
Cray T3D.

Figure 9 shows that the best efficiency is obtained when splitting the simulation
zone in 20 partitions, which are then fairly distributed over the 4 processors avail-
able. These results confirm that the number of partitions (and, as a consequence,
their size) strongly influences the behaviour of ParFlow++. Further experiments
should permit to understand better how performances depend on the number, on
the dimensions, and on the distribution of partitions over the available processors.
ParFlow++ currently implements a homogeneous partitioning policy (all partitions
have the same size). A heterogeneous partitioning policy, permitting to allocate
thinner bands near the source point, should allow a better load balancing of the
parallel application.

5. Future work

The performances of the prototype version of the ParFlow++ software are most
promising. Yet, ParFlow++ can still be improved in may ways.

During a ParFlow++ simulation, just like during the execution of any other ob-
ject-oriented program, many objects are created and deleted at runtime. Dynamic
memory management is thus a critical issue (especially since no automatic garbage
collector is available in a C++ runtime). A thorough profiling of the source code
should permit to improve the performances of ParFlow++ significantly.

The communication load can also be reduced, as discussed in Section 4, notably
by using faster communication primitives on the Cray T3D, and by exchanging
smaller messages. Finally, the analysis of executions using a visualization tool
such as Paragraph [Hea91] should help achieve a fine tuning of the ParFlow++ ap-
plication. It may for example help choose an appropriate partitioning policy, what-

Figure 9: Efficiency observed on the Cray T3D

605652484440363228242016128400

0.52

0.56

0.60

0.64

0.68

0.72

0.76

0.80

0.84

0.88

0.92

0.96

1.00

#Partitions

E
ff
ic
ie
n
c
y

11/11

ever the target MIMD-DM platform.

References

[Col95] D. Coleman & al. Object-Oriented Development - The Fusion Method.
Prentice Hall Object-Oriented Series, Englewood Cliffs, NJ, 1995.
ISBN 0-13-338823-9.

[Lut95] P.O. Luthi, B. Chopard and J.-F. Wagen, Wave Propagation in Urban
Micro-cells: a Massively Parallel Approach using the TLM Method, In
Proceeding of PARA'95, Workshop on Applied Parallel Scientific
Computing, Copenhagen, August 1995. Also in COST 231 TD(95) 33.

[Gei94] A. Geist et al., PVM: Parallel Virtual Machine. A User's Guide and
Tutorial for Networked Parallel Computing, The MIT Press, 1994.

[Hea91] M. Heath and J. Etheridge, Visualizing the Performances of Parallel
Programs, IEEE Software, Vol. 8, No. 5, Sept. 1991, pp. 29-39.

[Sni96] M. Snir and al., MPI: The Complete Reference, Scientific and
Engineering Computation Series, The MIT Press, ISBN 0-262-69184-1,
1996.

[Gui96] F. Guidec and Y. Mahéo, POM: a Parallel Observable Machine,” in
“Parallel Computing: State of the Art and Perspectives, Advances in
Parallel Computing, Vol. 11, Elsevier, North-Holland publisher,
ISBN 0-444-82490-1, 1996.

