Small, $n m$-stable compact G-groups

Krzysztof Krupinski, Frank Olaf Wagner

To cite this version:

Krzysztof Krupinski, Frank Olaf Wagner. Small, nm-stable compact G-groups. 2010. hal00495141v2

HAL Id: hal-00495141
 https://hal.science/hal-00495141v2

Preprint submitted on 25 Jun 2010 (v2), last revised 3 Oct 2011 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Small, $n m$-stable compact G-groups

Krzysztof Krupiński* and Frank Wagner

Abstract

We prove that if (H, G) is a small, $n m$-stable compact G-group, then H is nilpotent-by-finite, and if additionally $\mathcal{N M}(H) \leq \omega$, then H is abelian-byfinite. Both results are significant steps towards the proof of the conjecture that each small, $n m$-stable compact G-group is abelian-by-finite.

We give examples of small, $n m$-stable compact G-groups of infinite ordinal $\mathcal{N M}$-rank, providing counter-examples to the $\mathcal{N M}$-gap conjecture.

0 Introduction

In [5], the notion of a Polish structure and a ternary relation of independence (called $n m$-independence) were introduced in order to apply model-theoretic ideas to purely topological and descriptive set theoretic objects, such as Polish G-spaces. Although we shall review the basic definitions and results, a certain familiarity with [5] will be helpful.

Definition 0.1 A Polish structure is a pair (X, G), where G is a Polish group acting faithfully on a set X so that the stabilizers of all singletons are closed subgroups of G. We say that (X, G) is small if for every $n \in \omega$, there are only countably many orbits on X^{n} under the action of G.

The class of Polish structures is much wider than the class of profinite structures introduced by Newelski [6, 7] and contains many natural examples [进, []. Typical examples are of the form $(X, \operatorname{Homeo}(X))$, where X is a compact metric space and $\operatorname{Homeo}(X)$ is its group of homeomorphisms equipped with the compact-open topology, e.g. $\left(S^{1}, \operatorname{Homeo}\left(S^{1}\right)\right)$ or ($\left.I^{\omega}, \operatorname{Homeo}\left(I^{\omega}\right)\right)$.

For a Polish structure $(X, G), A \subseteq X$ and $a \in X^{n}, G_{A}$ denotes the pointwise stabilizer of A in G and $o(a / A):=\left\{g a: g \in G_{A}\right\}$ is the orbit of a over A.

[^0]Definition 0.2 Let (X, G) be a Polish structure, a be a finite tuple and A, B finite subsets of X. Let $\pi_{A}: G_{A} \rightarrow o(a / A)$ be defined by $\pi_{A}(g)=g a$. We say that a is nm-independent from B over A (written $a \downarrow_{A}^{n n} B$) if $\pi_{A}^{-1}[o(a / A B)]$ is non-meager in $\pi_{A}^{-1}[o(a / A)]$. Otherwise, we say that a is nm-dependent on B over A (written $\left.a \mathbb{X}_{A}^{m} B\right)$.

By [5], $\downarrow^{m m}$ shares several nice properties with forking independence in stable theories, e.g. invariance under G, symmetry and transitivity. Assuming smallness, $\downarrow^{n m}$ also satisfies the existence of independent extensions. In a small Polish structure (X, G), this leads to a counterpart of SU-rank, called $\mathcal{N M}$-rank, having all the expected properties, including the Lascar Inequalities.

Definition 0.3 The rank $\mathcal{N} \mathcal{M}$ is the unique function from the collection of orbits over finite sets to the ordinals together with ∞, satisfying

$$
\begin{aligned}
\mathcal{N M}(a / A) \geq \alpha+1 \quad \text { iff } & \text { there is a finite set } B \supseteq A \text { such that } \\
& a \mathbb{X}_{A}^{m} B \text { and } \mathcal{N M}(a / B) \geq \alpha .
\end{aligned}
$$

The $\mathcal{N M}$-rank of X is defined as the supremum of $\mathcal{N M}(x), x \in X$.
This, in turn, leads to a counterpart of superstability, called nm-stability. A small Polish structure (X, G) is said to be $n m$-stable if $\mathcal{N} \mathcal{M}(X)<\infty$.

In this paper, we are going to study the structure of compact groups in the context of small, $n m$-stable Polish structures. Let us recall the relevant definitions.

Definition 0.4 A compact G-group is a Polish structure (H, G), where G acts continuously and by automorphisms on a compact group H.

Definition 0.5 A profinite group regarded as profinite structure is a pair (H, G) such that H and G are profinite groups and G acts continuously on H as a group of automorphisms.

In the paper, compact spaces and topological groups are Hausdorff by definition, and 'profinite' means the inverse limit of a countable inverse system. When the context is clear, we skip the phrase 'regarded as profinite structure'.

It was noticed in [5], that if (H, G) is a small compact G-group, then H is locally finite and hence profinite. However, G is only Polish (not necessarily compact), which makes the class of small compact G-groups much wider than the class of small profinite groups.

Recall that originally profinite groups regarded as profinite structures were defined as pairs (H, G), where H is a profinite group and G is a closed subgroup of the group of all automorphisms of H preserving a distinguished inverse system defining H. In particular, there is basis of open neighborhoods of e in H consisting of clopen, normal, invariant subgroups (which is not the case for small compact G-groups).
[4. Theorem 1.9] says that each abelian profinite group of finite exponent considered together with the group of all automorphisms respecting a distinguished inverse system indexed by ω is small. On the other hand, the main conjecture on small profinite groups [6] is the following.

Conjecture 0.6 Each small profinite group is abelian-by-finite.
In [8], the conjecture was proved assuming additionally $n m$-stability. We also have the following three intermediate conjectures, which are wide open.

Conjecture 0.7 Let (H, G) be a small profinite group. Then:
(A) H is solvable-by-finite,
(B) if H is solvable-by-finite, it is nilpotent-by-finite,
(C) if H is nilpotent-by-finite, it is abelian-by-finite.

In this paper, we will consider generalizations of these conjectures to the wider class of small compact G-groups. It turns out that without any extra assumptions, these generalizations are false [5]. So, the question is whether they are true under the additional assumption of $n m$-stability. We will denote the conjectures obtained in this way by $\left(A^{\prime}\right),\left(B^{\prime}\right)$ and $\left(C^{\prime}\right)$.
[5. Theorem 5.19] says that $\left(A^{\prime}\right)$ is true, and [0, Theorem 5.24] that $\left(B^{\prime}\right)$ is true assuming additionally that $\mathcal{N M}(H)<\omega$.

In this paper, we will prove $\left(B^{\prime}\right)$ in its full generality and $\left(C^{\prime}\right)$ assuming additionally that $\mathcal{N} \mathcal{M}(H) \leq \omega$. This will almost show [5, Conjecture 5.31] saying that each small, $n m$-stable compact G-group is abelian-by-finite. The only remaining step will be to prove Conjecture $\left(C^{\prime}\right)$ for infinite ordinal $\mathcal{N} \mathcal{M}$-ranks.

This is related to another issue. In [5, Conjecture 6.3], the first author proposed the $\mathcal{N M}$-gap conjecture (formulated earlier by Newelski in the context of small profinite structures under the name of \mathcal{M}-gap conjecture [7, Conjecture 2.2]) which says that in a small Polish structure, the \mathcal{N} M-rank of every orbit is either a finite ordinal or ∞. In [8], this conjecture was proved for small, $n m$-stable profinite groups, i.e. each small, $n m$-stable profinite group is of finite $\mathcal{N} \mathcal{M}$-rank. If this was true for small, $n m$-stable compact G-groups, then [5, Conjecture 5.31] would be proved by the last paragraph. However, in Section 3, we give a counter-example to the $\mathcal{N M}$-gap conjecture for small, $n m$-stable compact G-groups, i.e. an example of a small, $n m$-stable compact G-group of infinite ordinal $\mathcal{N M}$-rank.

1 Definitions and facts

In the whole paper, the abbreviations $c, m, n m$ and $n w d$ come from the topological terms 'closed', 'meager', 'non-meager' and 'nowhere dense', respectively.

We recall various definitions and facts from [5]. Assume that (X, G) is a Polish structure. For $Y \subseteq X^{n}$, we define $\operatorname{Stab}(Y):=\{g \in G: g[Y]=Y\}$. We say that Y is invariant [over a finite set A] if $\operatorname{Stab}(Y)=G\left[\operatorname{Stab}(Y) \supseteq G_{A}\right.$, respectively].

The imaginary extension, denoted by $X^{e q}$, is the union of all sets of the form X^{n} / E with E ranging over all invariant equivalence relations such that for all $a \in X^{n}$, $\operatorname{Stab}\left([a]_{E}\right) \leq_{c} G$. The sets X^{n} / E are called the sorts of $X^{e q}$.

A subset D of X (or, more generally, of any sort of $X^{e q}$) is said to be definable over a finite subset A of $X^{e q}$ if D is invariant over A and $\operatorname{Stab}(D) \leq_{c} G$. We say that D is definable if it is definable over some A. We say that $d \in X^{e q}$ is a name for D if for every $f \in G$, we have $f[D]=D \Longleftrightarrow f(d)=d$.

It turns out that each set definable in (X, G) [or in $\left.X^{e q}\right]$ has a name in $X^{e q}$. Moreover, working in $X^{e q}$, $ป^{n m}$ has all the properties of an independence relation: G-invariance, symmetry, transitivity, and assuming smallness, the existence of independent extensions. We should mention here one more useful property of $\downarrow^{L^{m} .}$. For a finite $A \subseteq X^{e q}$, we define $\operatorname{Acl}(A)\left[\operatorname{Acl}^{e q}(A)\right.$, respectively] as the collection of all elements of $X\left[X^{e q}\right.$, respectively $]$ with countable orbits over A. Then, $a \in \operatorname{Acl}^{e q}(A)$ iff $a \perp_{A}^{r m} B$ for every finite $B \subseteq X^{e q}$. In particular, $\mathcal{N M}(a / A)=0$ iff $a \in A c l^{e q}(A)$. We also define $d c l(A)$ as the set of elements of $X^{e q}$ which are fixed by G_{A}.

A compact G-space is a Polish structure (X, G), where G acts continuously on a compact space X. If (X, G) is a compact G-space, we say that $D \subseteq X^{n}$ is A-closed for a finite $A \subseteq X^{e q}$ if it is closed and invariant over A. We say that it is $*$-closed, if it is A-closed for some A. We define $X^{t e q}$ (topological imaginary extension) as the disjoint union of the spaces X^{n} / E with E ranging over all \emptyset-closed equivalence relations on X^{n}. The spaces X^{n} / E are called topological sorts of $X^{t e q}$. Then, each topological sort X / E together with the group $G / G_{X / E}$ is a compact G-space. If E is A-closed for some finite set A, then replacing G by $G_{A}, X / E$ can also be treated as a topological sort.

Now, we recall some facts about groups. We restrict ourselves to the situation interesting for this paper, i.e. to small compact G-groups.

Let (X, G) be a small compact G-space. We say that a group H is a $*$-closed in $X^{t e q}$ if both H and the group operation on H are $*$-closed in $X^{t e q}$.

Assume H is $*$-closed in $X^{\text {teq }}$; for simplicity, \emptyset-closed (then $\left(H, G / G_{H}\right)$ is a small compact G / G_{H}-group). Let $a \in H$ and $A \subseteq X$ be finite. We say that the orbit $o(a / A)$ is $n m$-generic (or that a is $n m$-generic over A) if for all $b \in H$ with $a \mathcal{L}_{A}^{n m} b$, one has that $b \cdot a ป^{n m} A, b$. It turns out that $n m$-generics satisfy all the basic properties that generics satisfy in simple groups, including existence. More precisely, [5, Proposition 5.5] tells us that $o(a / A)$ is $n m$-generic iff $o(a / A) \subseteq_{n m} H$, and by smallness, such an orbit exists. Using this, we get the following Lascar inequalities for groups and corollary (see [5, Corollary 5.6]). Recall that the $\mathcal{N} \mathcal{M}$-rank of an A-closed subset D of $X^{\text {teq }}$ is the supremum of $\mathcal{N M}(d / A), d \in D$.

Fact 1.1 (Lascar inequalities for groups) Let (X, G) be a small compact G-space and $H_{1} \leq H$ groups which are $*$-closed in $X^{\text {teq }}$. Then,

$$
\mathcal{N M}\left(H_{1}\right)+\mathcal{N M}\left(H / H_{1}\right) \leq \mathcal{N M}(H) \leq \mathcal{N} \mathcal{M}\left(H_{1}\right) \oplus \mathcal{N} \mathcal{M}\left(H / H_{1}\right)
$$

Corollary 1.2 Let (X, G) be a small compact G-space and $H_{1} \leq H_{2}$ groups which are *-closed in $X^{\text {teq }}$. Then:
(i) if $H_{1}<_{n w d} H_{2}$ and $\mathcal{N M}\left(H_{2}\right)<\infty$, then $\mathcal{N M}\left(H_{1}\right)<\mathcal{N M}\left(H_{2}\right)$,
(ii) if $H_{1} \leq_{o} H_{2}$, then $\mathcal{N M}\left(H_{1}\right)=\mathcal{N M}\left(H_{2}\right)$.

Typical examples of Polish compact G-spaces are pairs ($X, \operatorname{Homeo}(X)$), where X is a compact metric space and $\operatorname{Homeo}(X)$ is its group of homeomorphisms equipped with the compact-open topology. Analogously, typical examples of compact G-groups are pairs $(H, A u t(H))$, where H is a compact metric group and $\operatorname{Aut}(H)$ is its group of topological automorphisms equipped with the compact-open topology.

Assume (H, G) is a small compact G-group. It was noticed in [5, Proposition 5.7] that then H is locally finite. Recall [5, Proposition 5.12].

Fact 1.3 (i) H is profinite, i.e. the inverse limit of a countable system of finite groups. Thus, it has a countable basis consisting of clopen sets.
(ii) If $G=\operatorname{Aut}(H)$ is the group of all topological automorphisms of H, then the topology on G must coincide with the compact-open topology.
(iii) If G is equipped with the compact-open topology, then G has a countable basis of open neighborhoods of id consisting of open subgroups. Thus, G is isomorphic to a closed subgroup of S_{∞}.

The next fact consists of [0, Remarks 5.10 and 5.11].
Fact 1.4 (i) For every clopen subset U of $H, S t a b(U)$ is a clopen subgroup of G, and so $[G: \operatorname{Stab}(U)] \leq \omega$. In particular, this applies in the case when U is an open subgroup of H.
(ii) If G_{0} is a closed subgroup of G of countable index, then $\left(H, G_{0}\right)$ is small, and $\downarrow^{n m}$ as well as $\mathcal{N} \mathcal{M}$-rank computed in (H, G) are the same as in $\left(H, G_{0}\right)$.

Using exactly the same proofs, we get the following generalization of this fact.
Remark 1.5 (i) Let (X, G) be a small compact G-space. Suppose Y is a \emptyset-closed subset of $X^{\text {teq }}$. Then, for every clopen subset U of $Y, \operatorname{Stab}(U)$ is a clopen subgroup of G, and so $[G: \operatorname{Stab}(U)] \leq \omega$.
(ii) Let (X, G) be a small Polish structure. If G_{0} is a closed subgroup of G of countable index, then $\left(X, G_{0}\right)$ is small, and $\downarrow^{n m}$ as well as $\mathcal{N M}$-rank computed in (X, G) are the same as in $\left(X, G_{0}\right)$.

The following remark follows from [55, Remark 3.10].
Remark 1.6 Let (X, G) be a small compact G-space and D an A-closed subset of $X^{\text {teq }}$. Then $\left(D, G_{A} / G_{A D}\right)$ is a small compact G-space, and for tuples and subsets of D, nm-independence computed in $\left(X, G_{A}\right)$ coincides with nm-independence computed in $\left(D, G_{A} / G_{A D}\right)$.

In the $n m$-stable case, additionally we have [5, Corollary 3.19].
Fact 1.7 Assume a small compact G-space (X, G) is nm-stable. Let D be an A closed subset of $X^{\text {teq }}$, and $a, B \subseteq D$ finite. Then $\mathcal{N M}(a / A B)$ computed in (X, G) is equal to $\mathcal{N M}(a / B)$ computed in $\left(D, G_{A} / D_{A D}\right)$.

For this paper, the following two results, mentioned already in the introduction, are important (see [0, Theorem 5.19] and [5, Theorem 5.24]).

Fact 1.8 If (H, G) is a small, nm-stable, compact G-group, then H is solvable-byfinite.

Fact 1.9 If (H, G) is a small compact G-group of finite $\mathcal{N} \mathcal{M}$-rank, then H is nilpotent-by-finite.

2 Structure of small, $n m$-stable compact G-groups

In the first part of this Section, we prove Conjecture (B^{\prime}). In the second part, we show Conjecture $\left(C^{\prime}\right)$, assuming additionally that $\mathcal{N} \mathcal{M}(H) \leq \omega$, and also some other results.

The proof of [5, Theorem 5.24] (i.e. Fact [1.9) consists of [5, Lemma 5.25], [5, Lemma 5.26] and the final conclusion. The assumption that $\mathcal{N} \mathcal{M}$-rank is finite was necessary in the proof of [迄, Lemma 5.26] and in the final conclusion, because we did not know whether an increasing sequence of A-closed subgroups must stabilize (such a chain condition is present in small profinite groups, and that is why the proof in [6] works for an arbitrary ordinal $\mathcal{N M}$-rank). Theorem 3.4 shows that such a chain condition fails in the class of small, $n m$-stable compact G-groups. Thus, we need another argument to show Conjecture (B^{\prime}) in its full generality.

Below we will prove a strengthening of [5, Lemma 5.25], which will allow us to prove Conjecture (B^{\prime}) without using any chain conditions.

Recall the definition of an iterated centralizer: If a group G acts by automorphisms on a group H, we put $C_{0, H}(G)=\{1\}$, and

$$
C_{n+1, H}(G)=\left\{h \in N_{H}\left(C_{n, H}(G)\right): G h \subseteq h C_{n, H}(G)\right\} .
$$

Then $C_{1, H}(G)=C_{H}(G)$ is the subgroup of points in H fixed by G, and $C_{n+1, H}(G)$ the subgroup of points normalizing $C_{n, H}(G)$, and fixed by G modulo $C_{n, H}(G)$.

Lemma 2.1 Suppose D, H are abelian groups $*$-closed in $X^{\text {teq }}$ for some small compact G-space (X, G), and $\mathcal{N M}(H)<\infty$. Assume that D acts by automorphisms on H, and the action is $*$-closed. Then there exists a clopen subgroup F of D such that $C_{n, H}(F)$ is clopen in H for some $n \in \omega$.

Proof. Wlog everything is invariant over \emptyset. Note that $C_{n, H}(F)$ will be invarinat under D, as D is abelian. First we need two claims.

Claim 1. If there is an $n m$-generic a in H for which $D a$ is finite, then some clopen subgroup D_{0} of D fixes pointwise a clopen subgroup of H.
Proof of Claim 1. By assumption, there is a clopen subgroup D_{0} of D such that $a \in C_{H}\left(D_{0}\right)$. By Remark 1.5, $\operatorname{Stab}_{G}\left(D_{0}\right)$ is a subgroup of countable index in G. Thus, $o(a)=\bigcup_{i \in \omega} g_{i} \operatorname{Stab}_{G}\left(D_{0}\right) a$ for some $g_{i} \in G$. In virtue of the assumption that a
is $n m$-generic and the Baire category theorem, $g_{i} \operatorname{Stab}_{G}\left(D_{0}\right) a \subseteq_{n m} H$ for some $i \in \omega$. Thus,

$$
o_{1}(a):=\operatorname{Stab}_{G}\left(D_{0}\right) a \subseteq_{n m} H
$$

We also have $o_{1}(a) \subseteq C_{H}\left(D_{0}\right) \leq_{c} H$. So, we get that $C_{H}\left(D_{0}\right)$ is a clopen subgroup of H.

The proof of the second claim is a modification of the proof of [5, Lemma 5.25].
Claim 2 Consider any $a \in H$ with $D a$ infinite. Let α be maximal such that $\mathcal{N M}(\overline{\langle D a\rangle}) \geq \omega^{\alpha}$. Let H_{1} be a $*$-closed subgroup of $\overline{\langle D a\rangle}$ invariant under D of minimal $\mathcal{N M}$-rank greater or equal to ω^{α}. Then some open subgroup of D fixes pointwise a clopen subgroup of H_{1}.

Proof of Claim 2. By the choice of H_{1}, for every *-closed subgroup H_{2} of H_{1} invariant under D, either $\left[H_{1}: H_{2}\right]<\omega$ or $\mathcal{N M}\left(H_{2}\right)<\omega^{\alpha}$.

Let R and S be the rings of endomorphisms of H_{1} and $\overline{\langle D a\rangle}$, respectively, generated by D. Then R and S are commutative, and $R \cong S / J$ for some $J \triangleleft S$. As in the proof of [5, Lemma 5.25], S is locally finite, and hence R is locally finite, too.

Consider any $r \in R$. Then $r\left[H_{1}\right]$ and $\operatorname{ker}(r)$ are $*$-closed subgroups of H_{1} invariant under D. Thus, by the choice of H_{1}, either $\left[H_{1}: r\left[H_{1}\right]\right]<\omega$ or $\mathcal{N} \mathcal{M}\left(r\left[H_{1}\right]\right)<\omega^{\alpha}$. The second case implies that $\mathcal{N M}(\operatorname{ker}(r)) \geq \omega^{\alpha}$, so $\left[H_{1}: \operatorname{ker}(r)\right]<\omega$, and hence $r\left[H_{1}\right]$ is finite.

As in the proof of [5, Lemma 5.25], the above dichotomy implies that $I:=\{r \in$ $R: r\left[H_{1}\right]$ is finite $\}$ is a prime ideal of R, and so R / I is a locally finite integral domain. Thus, R / I is countable.

Put $\widetilde{D}:=D / D_{H_{1}} \leq R^{*}$. Then, there are $d_{i} \in \widetilde{D}, i \in \omega$, such that $\widetilde{D} \subseteq \bigcup_{i} d_{i}+I$.
Let $\left\{A_{j}: j \in \omega\right\}$ be a basis of open neighborhoods of e in H_{1} consisting of clopen subgroups. Then, for every $d \in \widetilde{D}$, there is $i \in \omega$ and $j \in \omega$ such that $A_{j} \subseteq \operatorname{ker}\left(d-d_{i}\right)$. Hence,

$$
\widetilde{D}=\bigcup_{i} \bigcup_{j}\left\{d \in \widetilde{D}:\left(d-d_{i}\right) \upharpoonright A_{j}=0\right\} .
$$

By the Baire category theorem, one can find $i, j \in \omega$ such that the set $\{d \in \widetilde{D}$: $\left.\left(d-d_{i}\right) \upharpoonright A_{j}=0\right\}$ is non-meager in \widetilde{D}. But this set is also closed, so it has a nonempty interior U. Then, for every $b \in A_{j}, U b=\left\{d_{i} b\right\}$, which implies $d_{i}^{-1} U \subseteq \widetilde{D}_{b}$. Therefore, $d_{i}^{-1} U \subseteq \widetilde{D}_{A_{j}}$, and so $\widetilde{D}_{A_{j}}$ is clopen in \widetilde{D}. Putting $F:=\pi^{-1}\left[\widetilde{D}_{A_{j}}\right]$, where $\pi: D \rightarrow \widetilde{D}$ is the quotient map, we see that F is a clopen subgroup of D fixing A_{j} pointwise.

Now, using Claims 1 and 2, we will complete the proof of Lemma 2.1. Choose a $n m$-generic in H. Put $L=\overline{\langle D a\rangle}$, an a-closed subgroup of H. If L is finite, we are done by Claim 1 . So, assume that L is infinite.

Using Claim 2, we will construct sequences of closed groups

$$
D=D_{0} \geq D_{1} \geq \ldots
$$

and

$$
\{e\}=L_{0} \leq L_{1} \leq \cdots \leq L
$$

such that all D_{i} are clopen in D, each L_{i} is invariant under D, and
(i) if α_{i} is maximal with $\mathcal{N \mathcal { M } _ { i }}\left(\overline{\left\langle D\left(a+L_{i}\right)\right\rangle}\right) \geq \omega^{\alpha_{i}}$, then $\mathcal{N} \mathcal{M}_{i+1}\left(C_{L / L_{i}}\left(D_{i+1}\right)\right) \geq$ $\omega^{\alpha_{i}}\left(\mathcal{N M}_{i}\right.$-rank is $\mathcal{N} \mathcal{M}$-rank computed in $\left.\left(X, \operatorname{Stab}_{G_{a}}\left(D_{0}\right) \cap \cdots \cap \operatorname{Stab}_{G_{a}}\left(D_{i}\right)\right)\right)$,
(ii) $L_{i+1}=\sigma_{i}^{-1}\left[C_{L / L_{i}}\left(D_{i+1}\right)\right]$, where $\sigma_{i}: L \rightarrow L / L_{i}$ is the quotient map.

Suppose $D=D_{0} \geq D_{1} \geq \cdots \geq D_{i}$ and $\{e\}=L_{0} \leq L_{1} \leq \cdots \leq L_{i}$ have been constructed. If L / L_{i} is finite, we put $D_{i+1}=D_{i}$ and $L_{i+1}=\underline{\sigma_{i}^{-1}\left[C_{L / L_{i}}\left(D_{i+1}\right)\right] \text {. If }}$ L / L_{i} is infinite, then there is a unique maximal α_{i} with $\mathcal{N} \mathcal{M}_{i}\left(\overline{\left\langle D\left(a+L_{i}\right)\right\rangle}\right) \geq \omega^{\alpha_{i}}$. By Claim 2 (applied to H / L_{i} instead of H) and Remark 1.5, there is a clopen subgroup D_{i+1} of D, which can be chosen to be a subgroup of D_{i}, such that we have $\mathcal{N M}_{i+1}\left(C_{L / L_{i}}\left(D_{i+1}\right)\right) \geq \omega^{\alpha_{i}}$. Define $L_{i+1}=\sigma_{i}^{-1}\left[C_{L / L_{i}}\left(D_{i+1}\right)\right]$, and note that by commutativity of D, it is invariant under D. The construction is completed.

Of course, $\overline{\left\langle D\left(a+L_{i}\right)\right\rangle}=L / L_{i}$. By the Lascar inequalities for groups and Remark 1.5, for every i such that L / L_{i} is infinite, $\mathcal{N M}_{i+1}\left(L / L_{i+1}\right)<\mathcal{N M}_{i}\left(L / L_{i}\right)$. So, after finitely many, say n, steps, $\left[L: L_{n}\right]<\omega$. Hence, $D_{n}\left(a+L_{n}\right) \subseteq L / L_{n}$ is finite.

Define recursively a sequence $\{e\}=K_{0} \leq K_{1} \leq \cdots \leq K_{n}$ of closed subgroups of H invariant under D in the following way.

$$
K_{i+1}:=\tau_{i}^{-1}\left[C_{H / K_{i}}\left(D_{i+1}\right)\right] \text {, where } \tau_{i}: H \rightarrow H / K_{i} \text { is the quotient map. }
$$

Then, $L \cap K_{i}=L_{i}$ for every i, and we get that $D_{n}\left(a+K_{n}\right)$ is a finite subset of H / K_{n}.

Let $G^{*}=\operatorname{Stab}_{G}\left(D_{0}\right) \cap \cdots \cap \operatorname{Stab}_{G}\left(D_{n}\right)$. Since a is $n m$-generic in H, the same argument as in the proof of Claim 1 shows that a is $n m$-generic in $\left(H, G^{*} / G_{H}^{*}\right)$. Since K_{n} is invariant under G^{*}, this implies that $a+K_{n}$ is $n m$-generic in $\left(H / K_{n}, G^{*} / G_{H / K_{n}}^{*}\right)$.

Thus, by Claim 1 (applied to H / K_{n} instead of H), there exists a clopen $D_{\omega} \leq D_{n}$ such that $C_{H / K_{n}}\left(D_{\omega}\right)$ is clopen in H / K_{n}. Put $K_{n+1}=\tau_{n}^{-1}\left[C_{H / K_{n}}\left(D_{\omega}\right)\right]$. Then, K_{n+1} is clopen in H.

Define $F=D_{\omega}$. We easily check that $K_{i} \leq C_{i, H}(F)$ for all $i \leq n+1$. Since K_{n+1} is clopen in H, so is $C_{n+1, H}(F)$.

Using Fact 1.8 and Lemma 2.1, we will prove Conjecture $\left(B^{\prime}\right)$. In the proof, we use an easy observation that if K is an A-invariant, solvable subgroup of a compact G-group (H, G), then the group \bar{K} is A-closed and solvable of the same solvability class as K. A similar remark is true for nilpotent subgroups, too.

Theorem 2.2 If (H, G) is a small, nm-stable compact G-group, then H is nilpotent-by-finite.

Proof. In virtue of Fact 1.8, H is solvable-by-finite. So, replacing H by a clopen subgroup and using Fact 1.4 and Remark 1.6, we can assume that H is solvable. We proceed by induction on the solvability class of H.

In the abelian case, we have the desired conclusion. Assume the conclusion holds for groups of solvability class smaller than the solvability class of H. As $\overline{H^{\prime}}$ is \emptyset closed and of smaller solvability class than H, we get that $\overline{H^{\prime}}$ is nilpotent-by-finite. Replacing H by a clopen subgroup and using Fact 1.4 and Remark 1.6, we can assume that $\overline{H^{\prime}}$ is nilpotent. Now, we do the induction on the nilpotency class of $\overline{H^{\prime}}$.

We apply the same argument for the base and for the induction step. Assume the conclusion holds for groups whose commutator group is of smaller nilpotency class than $\overline{H^{\prime}}$. We see that $H / \overline{H^{\prime}}$ acting by conjugation on $Z\left(\overline{H^{\prime}}\right)$ satisfies the assumption of Lemma 2.1. So there exists a clopen subgroup $F / \overline{H^{\prime}}$ of $H / \overline{H^{\prime}}$ for which there is n with $\left[Z\left(\overline{H^{\prime}}\right): C_{n, Z\left(\overline{\left.H^{\prime}\right)}\right.}\left(F / \overline{H^{\prime}}\right)\right]<\omega$. Then $\left[Z\left(\overline{H^{\prime}}\right): Z_{n}(F) \cap Z\left(\overline{H^{\prime}}\right)\right]<\omega$. Thus, replacing H by a clopen subgroup, we get that $\overline{\left(H / Z_{n}(H)\right)^{\prime}}$ is of smaller nilpotency class than $\overline{H^{\prime}}$ (it is trivial in the base induction step, i.e. if $\overline{H^{\prime}}$ was abelian), and so $H / Z_{n}(H)$ is nilpotent-by-finite by the induction hypothesis. Therefore, H is nilpotent-by-finite.

Proposition 2.3 If (H, G) is a small, compact G-group and H is solvable-by-finite, then H has finite exponent. In particular, if (H, G) is a small, nm-stable compact G-group, then H has finite exponent.

Proof. If (H, G) is a small, $n m$-stable compact G-group, then in virtue of Theorem 2.2, H is nilpotent-by-finite. So, it is enough to prove the first statement of the proposition. Since H is solvable-by-finite, it is enough to prove the assertion assuming that H is abelian.

Choose $h \in H n m$-generic. Since H is locally finite, h has finite order n. As $H[n]:=\{a \in H: n a=0\}$ contains $o(h), H[n]$ is a clopen subgroup of H. Thus, H has finite exponent.

Proposition 2.4 Let (H, G) be a small compact G-group. Assume that there is an $n m$-generic h with open centralizer. Then H is abelian-by-finite.

Proof. As in the proof of Claim 1 in Lemma 2.1,

$$
\begin{equation*}
o_{1}(h):=\operatorname{Stab}_{G}(C(h)) h \subseteq_{n m} H . \tag{*}
\end{equation*}
$$

Since $h \in C(h)$, we have $o_{1}(h) \subseteq C(h)$. In fact, as h centralizes $C(h)$, all of $o_{1}(h)$ centralizes $C(h)$. Thus, $o_{1}(h) \subseteq Z(C(h))$. Hence, $Z(C(h))$ is open in H by (*). Of course, it is also abelian.

Our second goal is to prove Conjecture (C^{\prime}) for groups of $\mathcal{N} \mathcal{M}$-rank at most ω. The proof is a modification and simplification of the proof from [8] (a simplification because we omit the application of Schlichting's theorem). We will usually skip the parts of the proofs which are identical to [8].

First, we recall the notion of a minimal group and virtual isogeny. Let (X, G) be a small compact G-space and H a group $*$-closed in $X^{t e q}$.

Definition 2.5 A subgroup A of H is minimal if it is infinite, *-closed, and every *-closed subgroup of infinite index in A is finite.

Definition 2.6 Let A and B be abelian, minimal subgroups of H. A virtual isogeny f between A and B is a *-closed isomorphism $F: D / K \rightarrow I / C$, where D is open in A, I is open in B, and K, C are both finite. Two virtual isogenies f_{1} and f_{2} are equivalent, denoted $f_{1} \sim f_{2}$, if the graphs of f_{1} and f_{2} (treated as subsets of $A \times B$) are commensurable (equivalently, if the derived maps from $D_{1} \cap D_{2}$ to $\left(I_{1}+I_{2}\right) /\left(C_{1}+C_{2}\right)$ agree on an open subgroup of A).

It is standard that in an abelian, minimal subgroup A of H, the family of virtual autogenies (isogenies from A to A), with addition and composition as operations, forms the set of non-zero elements of a division ring R.

The following Lemma is a variant of $[\$$, Lemma 14]. The proofs differ because in our context, the algebraic closure, Acl, of a finite set does not need to be finite. Assume for simplicity that H and A are \emptyset-closed.

Lemma $2.7 R$ is locally finite. Moreover, for every a-closed virtual autogeny f_{a} of A, the equivalence relation $E(x, y)$ on o(a) given by $f_{x} \sim f_{y}$ has finitely many classes.

Proof. In virtue of Proposition 2.3, A has finite exponent. Thus, by minimality of A, there is a prime number p such that $A[p]:=\{c \in A: p c=0\}$ is \emptyset-closed and open in A. Replacing A by $A[p]$, we do not change R. So, we can assume that A is elementary abelian of exponent p.

Let $\left\{f_{1}, \ldots, f_{n}\right\}$ be a finite set of virtual autogenies of A. Let C_{1}, \ldots, C_{n} be the co-kernels of f_{1}, \ldots, f_{n}. Choose a clopen $N \triangleleft A$ with $N \cap C_{i}=\{e\}$ for every i. Put $f_{i}^{\prime}=f_{i} \cap(A \times N)$. Then, each f_{i}^{\prime} is a homomorphism from some clopen $A_{i} \leq A$ to A, and $f_{i}^{\prime} \sim f_{i}$ (notice that since N does not need to be $*$-closed, f_{i}^{\prime} 's are not necessarily virtual autogenies; nevertheless, $f_{i} \sim f_{i}^{\prime}$ has a perfect sense).

Since A is elementary abelian, each A_{i} has a finite complement B_{i} in A. Put $f_{i}^{\prime \prime}=f_{i}^{\prime} \oplus\left(B_{i} \times\{0\}\right)$. Then, each $f_{i}^{\prime \prime}$ is an endomorphism of A with finite kernel, and $f_{i}^{\prime \prime} \sim f_{i}$.

Let \widetilde{R} be the ring of endomorphisms of A, and $\left\langle\overline{f^{\prime \prime}}\right\rangle$ the subring of \widetilde{R} generated by $\overline{f^{\prime \prime}}:=\left(f_{1}^{\prime \prime}, \ldots, f_{n}^{\prime \prime}\right)$. In this paragraph, we work in the small Polish structure $\left(X, \operatorname{Stab}_{G}(N)\right)$. Then all $f_{i}^{\prime \prime}$ are $*$-closed. Let $\overline{a^{\prime \prime}}$ be a finite tuple over which $\overline{f^{\prime \prime}}$ is defined. Choose $h \in A n m$-generic over $\overline{a^{\prime \prime}}$. Then, for any $f, f^{\prime} \in\left\langle\overline{f^{\prime \prime}}\right\rangle$, we have that $f(h)$ and $f^{\prime}(h)$ belong to $\operatorname{dcl}\left(\overline{a^{\prime \prime}}, h\right) \cap A$. Since $\operatorname{dcl}\left(\overline{a^{\prime \prime}}, h\right) \cap A$ is a closed subgroup of A, it must be finite by smallness of $\left(X, \operatorname{Stab}_{G}(N)\right)$. On the other hand, if $f(h)=f^{\prime}(h)$, then $h \in \operatorname{ker}\left(f-f^{\prime}\right)$, so using the fact that $\operatorname{ker}\left(f-f^{\prime}\right)$ is $\overline{a^{\prime \prime}}$-closed and h is $n m$-generic over $\overline{a^{\prime \prime}}$, we get $f \sim f^{\prime}$. We conclude that modulo $\sim,\left\langle\overline{f^{\prime \prime}}\right\rangle$ is finite. Thus, the subring of R generated by $\left\{\left[f_{1}\right]_{\sim}, \ldots,\left[f_{n}\right]_{\sim}\right\}$ is also finite. Hence, R is locally finite, and so it is a locally finite field. Since all conjugates of $\left[f_{a}\right]_{\sim}$ are of the same finite order in this field, E has finitely many classes.

Now, we will prove a variant of $[8$, , Theorem 15], which is strong enough to prove Conjecture (C') for groups of $\mathcal{N M}$-rank at most ω. It has a weaker conclusion than [8, Theorem 15], and this allows us to eliminate the application of Schlichting's theorem from the proof.

Proposition 2.8 Let (X, G) be a small compact G-space and H a group \emptyset-closed in $X^{\text {teq }}$. Assume H is abelian and $\mathcal{N} \mathcal{M}(H)<\omega$. Let H_{1} be an h_{1}-closed subgroup of H. Then there is k with $k \downarrow^{m} h_{1}$ and a k-closed subgroup K of H which is commensurable with H_{1}.

Proof. As in [8], first we prove the statement for minimal groups.
Claim Let A be a minimal, $*$-closed subgroup of H; say it is a-closed (so we will write A_{a}). Then there is $b \in o(a)$ such that $b \downarrow^{p m} a$ and $A_{a} \sim A_{b}$.
Proof of Claim. The first two paragraphs of the proof are the same as in [8], so we only give the conclusion coming from them: there is a finite tuple \bar{a} of parameters, a conjugate A_{i} of A which is \bar{a}-closed, $a^{\prime} \in o(a)$ with $a^{\prime} \mathcal{L}^{n \frac{m}{a}}$, and finitely many $\left\{\bar{a}, a^{\prime}\right\}-$ closed virtual autogenies $f_{a^{\prime}, j}, j=1, \ldots, n$, of A_{i} such that for any $x, y \in X:=$ $o\left(a^{\prime} / \bar{a}\right)$, if $f_{x, j} \sim f_{y, j}$ for all j, then $A_{x} \sim A_{y}$.

For any $x \in X$, choose $g_{x} \in G$ such that $g_{x}(a)=x$. Let $\left(x_{i}\right)_{i \in \omega}$ be a sequence of elements of X such that $x_{i} \perp_{\bar{a}}^{m m} x_{<i}$.

Let $F_{j}(x, y)$ be the equivalence relation on X given by $f_{x, j} \sim f_{y, j}$. By Lemma 2.7, each F_{j} has finitely many classes. So, there exist $i_{1}<i_{2}$ such that $A_{x_{i_{1}}} \sim A_{x_{i_{2}}}$. Put $b=g_{x_{i_{1}}}^{-1}\left(x_{i_{2}}\right)$. Then, we have: $b \in o(a), b \downarrow^{m n} a$ and $A_{a} \sim A_{b}$.

Now, we will prove the proposition by induction on $\mathcal{N M}\left(H_{1}\right)$. If H_{1} is minimal, we are done by the Claim. For the induction step, choose $A \leq H_{1}$ which is minimal; say a-closed with a containing h_{1}. Using the Claim, we can find $b \downarrow^{p m} a$ such that $A_{b} \sim A_{a}$. Put $H_{1}^{*}=H_{1} A_{b} / A_{b} \cong H_{1} /\left(H_{1} \cap A_{b}\right)$. We see that H_{1}^{*} is $\left\{h_{1}, b\right\}$-closed and of smaller $\mathcal{N M}$-rank than H_{1}. So, by the induction hypothesis, there is k with $k \downarrow_{b}^{m n} h_{1}$ and a k-closed group K_{1} such that $K_{1} \sim H_{1}^{*}$. Let $\pi: H \rightarrow H / A_{b}$ be the quotient map, and $K:=\pi^{-1}\left[K_{1}\right]$. Then, K is $\{k, b\}$-closed and $K \sim H_{1}$. Since $b \mathcal{L}^{m} h_{1}$ and $k{\underset{L}{b}}_{b}^{m} h_{1}$, we also see that $k, b \mathcal{L}^{m} h_{1}$.

Theorem 2.9 If (H, G) is a small, compact G-group, and either $\mathcal{N M}(H)<\omega$ or $\mathcal{N M}(H)=\omega^{\alpha}$ for some ordinal α, then H is abelian-by-finite.

Proof. By Theorem 2.2, H is nilpotent-by-finite. So, using Fact 1.4, Remark 1.6 and Fact 1.7, we can assume that H is nilpotent. Next, by induction on the nilpotency class of H, one can easily reduce the situation to the case when H is meta-abelian (i.e. of nilpotency class 2).

First, we prove the theorem in the case when $\mathcal{N} \mathcal{M}(H)<\omega$. As in [$\|$, for $g \in H$, put $H_{g}:=\{(h Z(H),[h, g]): h \in H\}$, a g-closed subgroup of the abelian group $H / Z(H) \times Z(H)$. Choose $n m$-generic $g \in H$. Then $H_{g} \sim K_{k}$ by Proposition 2.8
for some k-closed subgroup K_{k} with $k \cup^{m m} g$. Choose $g^{\prime} \in o(g / k)$ with $g^{\prime} \cup_{k}^{m m} g$. Then, $H_{g^{\prime}} \sim K_{k} \sim H_{g}$, so

$$
\begin{equation*}
H_{g^{\prime}} \sim H_{g} . \tag{*}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
g^{\prime} \Psi^{n m} g \tag{**}
\end{equation*}
$$

Let $H_{1}=\pi^{-1}\left[\pi_{1}\left[H_{g^{\prime}} \cap H_{g}\right]\right.$, where $\pi: H \rightarrow H / Z(H)$ is the quotient map and $\pi_{1}: H / Z(H) \times Z(H) \rightarrow H / Z(H)$ is the projection on the first coordinate. For $h \in H_{1},[h, g]=\left[h, g^{\prime}\right]$, whence $\left[h, g^{\prime} g^{-1}\right]=e$, which means that $h \in C\left(g^{\prime} g^{-1}\right)$. Thus, $H_{1} \leq C\left(g^{\prime} g^{-1}\right)$. On the other hand, $\left[H: H_{1}\right]<\omega$ and $g^{\prime} g^{-1}$ is $n m$-generic by ($*$) and $(* *)$, respectively. Using these three observations together with Proposition 2.4, we get that H is abelian-by-finite.

Now, consider the case $\mathcal{N \mathcal { M }}(H)=\omega^{\alpha}$. If $\mathcal{N \mathcal { M }}(Z(H))=\omega^{\alpha}$, we are done. Otherwise, for any $g \in H$, define a homomorphism $f_{g}: H \rightarrow Z(H)$ by $f_{g}(h)=[h, g]$. Then, $\mathcal{N M}\left(\operatorname{Im}\left(f_{g}\right)\right) \leq \mathcal{N M}(Z(H))<\omega^{\alpha}$, so $\mathcal{N} \mathcal{M}\left(\operatorname{ker}\left(f_{g}\right)\right)=\omega^{\alpha}$. Thus, $\operatorname{ker}\left(f_{g}\right)$ has finite index in H, which implies that $[H: C(g)]<\omega$. Since this holds for every $g \in H$, we are done by Proposition 2.4.

Although the main goals of Section 2 have already been achieved, something interesting about small compact G-groups can still be said.

Proposition 2.8 has a weaker conclusion than [8, Theorem 15], but strong enough to prove Theorem 2.9. Nevertheless, [8, Theorem 15] is interesting in its own right, and it would be nice to know whether it holds for small compact G-groups. Below we prove a variant of it. However, in the proof we will need Schlichting's theorem, which we recall now.

Fact 2.10 Let G be any group, and \mathfrak{h} a family of uniformly commensurable subgroups. Then there is a subgroup N of G, a finite extension of a finite intesection of groups in \mathfrak{h} (and hence commensurable with them), such that N is invariant under all automorphisms of G fixing \mathfrak{h} setwise.

Theorem 2.11 Let (X, G) be a small compact G-space. Assume additionally that G is equipped with the compact-open topology (or any topology having a basis at id consisting of open subgroups). Let H be a group \emptyset-closed in $X^{\text {teq }}$, and suppose that H is abelian and $\mathcal{N} \mathcal{M}(H)<\omega$. Then, for every $*$-closed $H_{1} \leq H$, there is an Acl ${ }^{e q}(\emptyset)$-closed subgroup K of H commensurable with H_{1}.

In particular, the theorem applies in the situation when $G=\operatorname{Homeo}(X)$, or $G=\operatorname{Aut}(X)$ where X is a compact metric group.

Proof. By the inductive argument (on $\mathcal{N} \mathcal{M}\left(H_{1}\right)$) in the last paragraph of the proof of [8, Theorem 15], we see that it is enough to show the assertion for H_{1} minimal. To have the same notation as in [8], put $A=A_{a}:=H_{1}$.

The Claim in the proof of Proposition 2.8 yields $a^{\prime} \in o(a)$ such that $a^{\prime} \Psi^{m m} a$ and $A_{a} \sim A_{a^{\prime}}$.

In order to finish the proof, we need an extra topological argument as we do not have a generalization of [8, lemma 11].

We define:

$$
\begin{aligned}
& C=\left\{b \in o(a): A_{b} \sim A\right\}, \\
& C_{n}^{-}=\left\{b \in o(a):\left[A: A \cap A_{b}\right] \leq n\right\} \\
& C_{n}^{+}=\left\{b \in o(a):\left[A_{b}: A \cap A_{b}\right] \leq n\right\}, \\
& C_{n}=C_{n}^{-} \cap C_{n}^{+} .
\end{aligned}
$$

Then $C=\bigcup_{n} C_{n}$.
Claim $P_{n}:=\left\{g \in G: g a \in C_{n}\right\}$ is closed.
Proof of Claim. We have $P_{n}=P_{n}^{-} \cap P_{n}^{+}$, where $P_{n}^{-}=\left\{g \in G: g a \in C_{n}^{-}\right\}$and $P_{n}^{+}=\left\{g \in G: g a \in C_{n}^{+}\right\}$. Moreover, $P_{n}^{+}=\left(P_{n}^{-}\right)^{-1}$. Thus, it is enough to show that P_{n}^{-}is closed.

Suppose for a contradiction that P_{n}^{-}is not closed, i.e. there are $g_{k} \in P_{n}^{-}$such that $g_{k} \longrightarrow g$, but $g \notin P_{n}^{-}$. Then, $g a \notin C_{n}^{-}$, which means that $[A: A \cap g[A]]>n$. Choose $D \subseteq A$ dense and countable. Then, there are $d_{0}, \ldots, d_{n} \in D$ such that $d_{i} d_{j}^{-1} \notin g[A]$ for all $i \neq j$. Take an open neighborhood U of $g[A]$ disjoint from $\left\{d_{i} d_{j}^{-1}: i, j=0, \ldots, n\right.$ and $\left.i \neq j\right\}$. Then, $V:=\{h \in G: h[A] \subseteq U\}$ is an open neighborhood of g. Thus, there is k_{0} such that for all $k \geq k_{0}, g_{k} \in V$. Consider any $k \geq k_{0}$. Then, $g_{k}[A] \subseteq U$. But $g_{k}[A]=A_{g_{k} a}$. Whence, $d_{j} d_{j}^{-1} \notin A_{g_{k} a}$ for all $i, j=0, \ldots, n$ such that $i \neq j$. This implies that $\left[A: A \cap A_{g_{k} a}\right]>n$, a contradiction with the choice of g_{k}.

Since $A_{a} \sim A_{a^{\prime}}$, we see that $\left\{g \in G: g a \in o\left(a / a^{\prime}\right)\right\} \subseteq P_{n}$ for some n. As $a \mathcal{L}^{n m} a^{\prime}$, directly from the definition of $\downarrow^{n m}$, we get that $\left\{g \in G: g a \in o\left(a / a^{\prime}\right)\right\}$ is non-meager. Thus, P_{n} is non-meager. So, by the Claim, $\operatorname{int}\left(P_{n}\right) \neq \emptyset$. Since G has a basis of open neighborhoods of $i d$ consisting of open subgroups (this is the only place where this extra assumption is used), there is a clopen subgroup G_{0} of G and $g \in G$ with $g G_{0} \subseteq P_{n}$. This means that $g G_{0} a \subseteq C_{n}$, and so we can apply Fact 2.10 to the uniformly commensurable family $\left\{A_{x}: x \in g G_{0} a\right\}$ of subgroups of H. As a result, we obtain a $*$-closed subgroup K of H which is commensurable with A and invariant under $\operatorname{Stab}_{G}\left(g G_{0} a\right)$. But $g G_{0} a$ has countably many different conjugates by the elements of G, i.e. $\left[G: \operatorname{Stab}_{G}\left(g G_{0} a\right)\right] \leq \omega$. Thus, K is $\operatorname{Acl}^{e q}(\emptyset)$-closed.

It is worth mentioning that [8, Theorem 15] was used to prove the $\mathcal{N} \mathcal{M}$-gap conjecture for small, $n m$-stable profinite groups. In our more general context of small, $n m$-stable compact G-groups, this is impossible because the conjecture is false as we will see in Section 3.

At the end of this section, we discuss one more issue. In the context of ω categorical, supersimple groups, the strongest statement says that they are finite-by-abelian-by-finite [2]. In the context of small profinite groups, or even small comapct G-groups, being finite-by-abelian-by-finite immediately gives us abelian-by-finite by taking a clopen subgroup. However, one can ask what happens if we know that the group is countable-by-abelian-by-countable.

Remark 2.12 Let (H, G) be a small compact G-group. If H is countable-by-abelian-by-countable, then H is abelian-by-finite.

Proof. By assumption, there are $H_{1} \leq H$ and $H_{2} \triangleleft H_{1}$ such that [$H: H_{1}$] $\leq \omega$, $\left|H_{2}\right| \leq \omega$ and H_{1} / H_{2} is abelian. By the Baire category theorem, we get $H_{1} \subseteq_{n m} H$, whence by smallness, there is $h \in H_{1} n m$-generic in H. Moreover, $H_{1}^{\prime} \leq H_{2}$, so [$\left.H_{1}: H_{1} \cap C(h)\right] \leq \omega$, which implies $[H: C(h)] \leq \omega$. Hence, $C(h)$ is open in H, and we finish using Proposition 2.4.

3 Examples of groups of infinite ordinal $\mathcal{N} \mathcal{M}$-rank

In this section, we give counter-examples to the $\mathcal{N} \mathcal{M}$-gap conjecture, even in the class of small, $n m$-stable compact G-groups. The examples are pretty simple, but the proof that they satisfy the required properties is quite long and technical (as usual, when one needs to describe orbits in a concrete example).

Remark 3.1 If (X, G) is a small Polish structure, then the set of values $\mathcal{N M}(o)$, with o ranging over all orbits over finite sets, is the interval $[0, \alpha)$ (together with the element ∞, if X is not nm-stable) for some countable ordinal α.

Proof. It is easy to see that the $\mathcal{N M}$-rank of an element of $X^{\text {eq }}$ over a finite subset of $X^{e q}$ is bounded by the $\mathcal{N M}$-rank of a finite tuple from X over a finite subset of X. So, it is enough to work with finite tuples and subsets of the home sort.

It is clear that the set of values of $\mathcal{N} \mathcal{M}$-rank is an initial interval, possibly together with ∞. Since $\mathcal{N} \mathcal{M}$-rank is invariant under G, there are only countably many orbits on each X^{n} (and so countably many orbits on the collection of all finite subsets of X), we see that $\mathcal{N} \mathcal{M}$-rank takes countably many values.

The next theorem shows that the $\mathcal{N} \mathcal{M}$-gap conjecture is false for small, $n m$ stable compact G-groups. Moreover, it shows that the ascending chain condition on \emptyset-closed subgroups fails. Recall, once again, that such a condition holds for small profinite groups [6], which is an important tool in proving structural theorems about small profinite groups. The lack of this chain condition in our context is one of the reasons why in this paper and in [5] we have to use different arguments than for small profinite groups (another reasons are for example the facts that invariant subgroups are not necessarily closed and $\operatorname{Acl}(\emptyset)$ is not necessarily finite).

We shall need the description of orbits in products of finite, abelian groups from [3]. Let $X_{i}, i \in \omega$, be a collection of finite abelian groups, and $X=\prod_{i} X_{i}$. Let $J_{0} \subseteq$ $J_{1} \subseteq \cdots \subseteq \omega$ be a sequence of finite sets such that $\bigcup J_{m}=\omega$. Put $X_{J_{m}}=\prod_{i \in J_{m}} X_{i}$. Then, X can be treated as the inverse limit of the $X_{J_{m}}$. Let $A u t_{J}^{0}(X)$ be the group of all automorphisms of X respecting this inverse system. By [3, Lemma 4.1], we have the following description of orbits in the profinite group $\left(X, A u t_{J}^{0}(X)\right)$.

Fact 3.2 Let A be a subgroup of X and $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right), \tau=\left(\tau_{1}, \ldots, \tau_{n}\right) \in X^{n}$. Then, $o(\eta / A)=o(\tau / A)$ iff for all $a \in A, k \in \mathbb{Z}, l_{1}, \ldots, l_{n} \in \mathbb{Z}$ and $m \in \omega$, we have

$$
k\left|\left(\sum_{i=1}^{n} l_{i} \eta_{i}+a\right) \upharpoonright J_{m} \Longleftrightarrow k\right|\left(\sum_{i=1}^{n} l_{i} \tau_{i}+a\right) \upharpoonright J_{m} .
$$

Corollary 3.3 Assume $X_{0}=X_{1}=\cdots=\mathbb{Z}_{p}$, where p is a prime number. Let A be a subgroup of X, and $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right), \tau=\left(\tau_{1}, \ldots, \tau_{n}\right) \in X^{n}$. Then, $o(\eta / A)=o(\tau / A)$ iff for all $a \in A, l_{1}, \ldots, l_{n} \in \mathbb{Z}_{p}$ and $m \in \omega$, we have

$$
\left(\sum_{i=1}^{n} l_{i} \eta_{i}+a\right) \upharpoonright J_{m}=0 \Longleftrightarrow\left(\sum_{i=1}^{n} l_{i} \tau_{i}+a\right) \upharpoonright J_{m}=0 .
$$

Theorem 3.4 For every $\alpha<\omega_{1}$, there exists a small, nm-stable compact G-group (H, G) such that $\mathcal{N M}(H)=\alpha$ and H is abelian. Moreover, H has an ascending sequence of \emptyset-closed subgroups $H_{i}, i \leq \alpha$, such that $H_{i}<_{n w d} H_{j}$ whenever $i<j$.

Proof. We can find a descending sequence $\left(I_{i}\right)_{i \leq \alpha}$ of subsets of ω such that

1. $I_{i} \backslash I_{j}$ is infinite for all $i<j \leq \alpha$,
2. $I_{0}=\omega$ and $I_{\alpha}=\emptyset$.

Put

$$
H=\mathbb{Z}_{p}^{\omega},
$$

where p is a prime number. For $i \leq \alpha$, define

$$
H_{i}=\left\{\eta \in \mathbb{Z}_{p}^{\omega}: \eta(j)=0 \text { for } j \in I_{i}\right\}
$$

In particular, $H_{0}=\{0\}$ and $H_{\alpha}=H$. Let

$$
G=\left\{g \in \operatorname{Aut}\left(\mathbb{Z}_{p}^{\omega}\right): g\left[H_{i}\right]=H_{i} \text { for every } i \leq \alpha\right\}
$$

We will show that (H, G) satisfies the conclusion of the theorem. The following is clear from definitions: (H, G) is a compact G-group, H is abelian, all H_{i} 's are \emptyset-closed, and $H_{i}<_{n w d} H_{j}$ whenever $i<j$. So, it remains to show that:
(i) (H, G) is small,
(ii) $\mathcal{N M}(H)=\alpha$.

In order to do that, we need to describe orbits on H over finite subsets. Since $o(a / A)=o(a /\langle A\rangle)$, it is enough to consider orbits over finite subgroups of \mathbb{Z}_{p}^{ω}.
Claim (Description of orbits) Let A be a finite subgroup of \mathbb{Z}_{p}^{ω}, and $\eta, \tau \in \mathbb{Z}_{p}^{\omega}$. Define

$$
n_{\eta}=\min \left\{i \leq \alpha:(\exists a \in A)\left(\eta+a \in H_{i}\right)\right\} .
$$

Then, $o(\eta / A)=o(\tau / A)$ iff $n_{\eta}=n_{\tau}$ and $\eta-\tau \in H_{n_{\eta}}$.

Proof of Claim. (\rightarrow) is clear.
(\leftarrow). The idea of the proof is to present \mathbb{Z}_{p}^{ω} as the inverse limit of an inverse system of finite groups, find a closed subgroup G^{*} of G respecting this inverse system, and to show that η and τ are in one orbit under G_{A}^{*} by application of Corollary 3.3.

Notice that if $n_{\eta}=0$, i.e. $\eta \in A$, then $\tau=\eta$, whence $o(\eta / A)=o(\tau / A)$. So, assume $\eta \notin A$. Then, $\tau \notin A$.

Choose a finite $J_{0} \subseteq \omega$ such that for any $a \in A$, we have

$$
(\eta+a) \upharpoonright\left(J_{0} \cap I_{n_{\eta}-1}\right) \neq 0 \text { and }(\tau+a) \upharpoonright\left(J_{0} \cap I_{n_{\eta}-1}\right) \neq 0 .
$$

Next, choose any finite $J_{1} \subseteq J_{2} \subseteq \cdots \subseteq \omega$ such that $J_{0} \subseteq J_{1}$ and $\bigcup J_{m}=\omega$. We will show that there exists $f \in A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega} / A,\left\{H_{0}\right\},\left\{H_{1}\right\}, \ldots\right)$ (i.e. f is in the pointwise stabilizer of A intersected with setwise stabilizers of H_{0}, H_{1}, \ldots computed in $\left.A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega}\right)\right)$ such that $f(\eta)=\tau$. This is enough because $A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega} / A,\left\{H_{0}\right\},\left\{H_{1}\right\}, \ldots\right) \leq G_{A}$.

By the choice of J_{m} 's, for all $a \in A$ and $m \in \omega$, we have

$$
(\eta+a) \upharpoonright J_{m} \neq 0 \text { and }(\tau+a) \upharpoonright J_{m} \neq 0 .
$$

Thus, by Corollary 3.3, there is $f \in A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega} / A\right)$ such that $f(\eta)=\tau$.
Now, consider any finite $B=\left\{b_{0}, \ldots, b_{l}\right\} \subseteq H$ with $b_{0}=0$. We can permute the elements of B so that $b_{j+1} \in H_{i}$ implies $b_{j} \in H_{i}$ for every i, j. For $b \in H$, put $i(b)=\min \left\{i: b \in H_{i}\right\}$. Then, $0=i\left(b_{0}\right) \leq \cdots \leq i\left(b_{l}\right)$.

By recursion on j, we will construct f_{0}, \ldots, f_{l} such that:

1) $f_{j} \in A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega} / A\right)$,
2) $f_{j}(\eta)=\tau$,
3) $f_{j+1} \upharpoonright\left\{b_{0}, \ldots, b_{j}\right\}=f_{j} \upharpoonright\left\{b_{0}, \ldots, b_{j}\right\}$,
4) $f_{j+1}^{-1} \upharpoonright\left\{b_{0}, \ldots, b_{j}\right\}=f_{j}^{-1} \upharpoonright\left\{b_{0}, \ldots, b_{j}\right\}$,
5) $f_{j}\left(b_{j}\right) \in H_{i\left(b_{j}\right)}$,
6) $f_{j}^{-1}\left(b_{j}\right) \in H_{i\left(b_{j}\right)}$.

Before the construction, let us explain why this will complete our proof. For any finite $B \subseteq H$, let G^{B} be the collection of all $f \in A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega}\right)$ satisfying 1$\left.), 2\right), 5$) and 6) for all elements of B. We see that G^{B} is closed and non-empty. Moreover, for any finite $B_{1}, \ldots, B_{n} \subseteq H, G^{B_{1} \cup \cdots \cup B_{n}}=G^{B_{1}} \cap \cdots \cap G^{B_{n}}$, so $G^{B_{1}} \cap \cdots \cap G^{B_{n}} \neq \emptyset$. By the compactness of $A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega}\right)$, the intersection of all such G_{B} 's is non-empty. We also see that any element of this intersection belongs to $A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega} / A,\left\{H_{0}\right\},\left\{H_{1}\right\}, \ldots\right)$ and maps η to τ.

Now, we describe the construction. For the basis step, put $f_{0}=f$. In order to simplify the induction step (i.e. to eliminate conditions 4) and 6) from considerations), first we have to show that it is enough to prove the following

Subclaim Let $C \subseteq H$ be finite and $d \in H$ be such that $i(c) \leq i(d)$ for any $c \in C$. Assume $g \in A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega}\right)$ is such that
a) $g \in A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega} / A\right)$,
b) $g(\eta)=\tau$,
c) $i(g(c)) \leq i(d)$ for every $c \in C$.

Then, there is $g_{1} \in \operatorname{Aut} t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega}\right)$ satisfying a), b) and
d) $g_{1} \upharpoonright C=g \upharpoonright C$,
e) $g_{1}(d) \in H_{i(d)}$.

Let us show that the Subclaim allows us to do the induction step of our construction. Suppose we have f_{0}, \ldots, f_{j} satisfying 1)-6). First, we apply the Subclaim to $g:=f_{j}, C:=\left\{b_{0}, \ldots, b_{j}, f_{j}^{-1}\left(b_{0}\right), \ldots, f_{j}^{-1}\left(b_{j}\right)\right\}$ and $d:=b_{j+1}$ in order to get $f_{j+1}^{\prime}:=g_{1}$ with $f_{0}, \ldots, f_{j}, f_{j+1}^{\prime}$ satisfying 1)-5). Then, we apply the Subclaim (with the reversed roles of η and τ) to $g:=f_{j+1}^{\prime-1}, d:=b_{j+1}$ and $C:=$ $\left\{b_{0}, \ldots, b_{j}, f_{j+1}^{\prime}\left(b_{0}\right), \ldots, f_{j+1}^{\prime}\left(b_{j+1}\right)\right\}$ in order to get $f_{j+1}^{-1}:=g_{1}$ such that $f_{0}, \ldots, f_{j}, f_{j+1}$ satisfy 1) - 6).

Proof of Subclaim. We can assume $d \neq 0$. There are two cases.
Case $1 i(d)<n_{\eta}$.
Since $d \upharpoonright I_{i(d)}=0$ and for every $c \in C, i(d) \geq i(c)$, we have $c \upharpoonright I_{i(d)}=0$. Then, by the definition of n_{η}, the choice of J_{0}, and the assumption of Case 1 , we see that for every $a \in A, k \in \mathbb{Z}_{p} \backslash\{0\}$ and $c \in\langle C\rangle$, we have

$$
\begin{equation*}
(d+k \eta+a+c) \upharpoonright\left(J_{0} \cap I_{i(d)}\right) \neq 0 \text { and }(d+k \tau+a+c) \upharpoonright\left(J_{0} \cap I_{i(d)}\right) \neq 0 . \tag{*}
\end{equation*}
$$

Consider any r. We have the following three easy observations (as an example, we give the proof of the third one). For any $a \in A$ and $c \in\langle C\rangle$ we have:

$$
\begin{align*}
& \text { if }(d+a+c) \upharpoonright\left(J_{r} \cap I_{i(d)}\right) \neq 0 \text {, then }\left(\forall x \in H_{i(d)}\right)\left((x+a+g(c)) \upharpoonright J_{r} \neq 0\right), \tag{**}\\
& \text { if }(d+a+c) \upharpoonright J_{r} \neq 0 \text {, then }(g(d)+a+g(c)) \upharpoonright J_{r} \neq 0, \\
& \text { if }(d+a+c) \upharpoonright J_{r}=0 \text {, then } g(d) \upharpoonright\left(J_{r} \cap I_{i(d)}\right)=0 . \tag{!}
\end{align*}
$$

Indeed, assume $(d+a+c) \upharpoonright J_{r}=0$. Then $(g(d)+a+g(c)) \upharpoonright J_{r}=0$. Thus, $(g(d)-d+g(c)-c) \upharpoonright J_{r}=0$. But $d \upharpoonright I_{i(d)}=0, c \upharpoonright I_{i(d)}=0$ and $g(c) \upharpoonright I_{i(d)}=0$. Therefore, $g(d) \upharpoonright\left(J_{r} \cap I_{i(d)}\right)=0$.

If for every $r \in \omega$, there is $a \in A$ and $c \in\langle C\rangle$ such that $(d+a+c) \upharpoonright J_{r}=0$, then $g(d) \in H_{i(d)}$ by (!), whence $g_{1}:=g$ works. So, we can assume that there is $r \in \omega$ such that

$$
\begin{equation*}
(\forall a \in A)(\forall c \in\langle C\rangle)\left((d+a+c) \upharpoonright J_{r} \neq 0\right), \tag{!!}
\end{equation*}
$$

and we choose a minimal r with this property.
Put $J_{-1}=\emptyset$. Define $q:=\left|J_{r} \backslash\left(J_{r-1} \cup I_{i(d)}\right)\right| \in \omega$. Using (!!), it is easy to check that ranging over all $a \in A$ and $c \in\langle C\rangle$ such that $(d+a+c) \upharpoonright\left(J_{r} \cap I_{i(d)}\right)=0$ and $(d+a+c) \upharpoonright J_{r-1}=0$, we obtain less than p^{q} values $(a+c) \upharpoonright J_{r}$, and therefore less than p^{q} values $(a+g(c)) \upharpoonright J_{r}$. Hence, by (!) and the choice of r, there exists $d^{\prime} \in H$ such that:

- $d^{\prime} \upharpoonright I_{i(d)}=0$,
- $d^{\prime} \upharpoonright J_{r-1}=g(d) \upharpoonright J_{r-1}$,
- for any $a \in A$ and $c \in\langle C\rangle$ such that $(d+a+c) \upharpoonright\left(J_{r} \cap I_{i(d)}\right)=0$ and $(d+a+c) \upharpoonright J_{r-1}=0$, we have $\left(d^{\prime}+a+g(c)\right) \upharpoonright J_{r} \neq 0$.

Using this together with $(* *)$ and $(* * *)$, we see that for all $s \geq r, a \in A$ and $c \in\langle C\rangle$, one has $\left(d^{\prime}+a+g(c)\right) \upharpoonright J_{s} \neq 0$, and hence, by (!!),

$$
(d+a+c) \upharpoonright J_{s} \neq 0 \text { and }\left(d^{\prime}+a+g(c)\right) \upharpoonright J_{s} \neq 0
$$

For each $s<r, d^{\prime} \upharpoonright J_{s}=g(d) \upharpoonright J_{s}$, so we have

$$
(d+a+c) \upharpoonright J_{s}=0 \Longleftrightarrow\left(d^{\prime}+a+g(c)\right) \upharpoonright J_{s}=0 .
$$

On the other hand, by $(*)$ and the fact that $d^{\prime} \upharpoonright I_{i(d)}=0$, we get that for all $a \in A, k \in \mathbb{Z}_{p} \backslash\{0\}, c \in\langle C\rangle$ and $s \in \omega$, we have

$$
\left(d^{\prime}+k \eta+a+c\right) \upharpoonright J_{s} \neq 0 \text { and }\left(d^{\prime}+k \tau+a+c\right) \upharpoonright J_{s} \neq 0 .
$$

Summarizing, for all $a \in A, c \in\langle C\rangle=\operatorname{Lin}_{\mathbb{Z}_{p}}(C), k \in \mathbb{Z}_{p}$ and $s \in \omega$, we have

$$
(d+k \eta+c+a) \upharpoonright J_{s}=0 \Longleftrightarrow\left(d^{\prime}+k \tau+g(c)+a\right) \upharpoonright J_{s}=0 .
$$

Using this together with the fact that $g \in A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega}\right)$ and $g(\eta)=\tau$, we conclude that for all $a \in A, c \in\langle C\rangle=\operatorname{Lin}_{\mathbb{Z}_{p}}(C), k, l \in \mathbb{Z}_{p}$ and $s \in \omega$, we have

$$
(l d+k \eta+c+a) \upharpoonright J_{s}=0 \Longleftrightarrow\left(l d^{\prime}+k \tau+g(c)+a\right) \upharpoonright J_{s}=0 .
$$

Applying Corollary 3.3, we get the existence of $g_{1} \in A u t_{J}^{0}\left(\mathbb{Z}_{p}^{\omega} / A\right)$ such that: $g_{1}(\eta)=\tau, g_{1} \upharpoonright C=g \upharpoonright C$ and $g_{1}(d)=d^{\prime} \in H_{i(d)}$. This completes the proof in Case 1.
Case $2 i(d) \geq n_{\eta}$.
The proof in this case is similar, so we only give a sketch. We do not have (*), but the following counterparts of $(* *),(* * *)$ and (!) are present (the assumption of Case 2 is used in the proofs of ($* *^{\prime}$) and (!'), which are left to the reader). For any $r \in \omega$, $a \in A, c \in\langle C\rangle$ and $k \in \mathbb{Z}_{p}$, we have:

$$
\begin{aligned}
& \text { if }(d+k \eta+a+c) \upharpoonright\left(J_{r} \cap I_{i(d)}\right) \neq 0 \text {, then }\left(\forall x \in H_{i(d)}\right)\left((x+k \tau+a+g(c)) \upharpoonright J_{r} \neq 0\right), \quad\left(* *^{\prime}\right) \\
& \quad \text { if }(d+k \eta+a+c) \upharpoonright J_{r} \neq 0 \text {, then }(g(d)+k \tau+a+g(c)) \upharpoonright J_{r} \neq 0, \quad\left(* * *^{\prime}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { if }(d+k \eta+a+c) \upharpoonright J_{r}=0 \text {, then } g(d) \upharpoonright\left(J_{r} \cap I_{i(d)}\right)=0 \text {. } \tag{!'}
\end{equation*}
$$

As in Case 1, using (!'), we can assume that there is a minimal r such that

$$
\begin{equation*}
(\forall a \in A)(\forall c \in\langle C\rangle)\left(\forall k \in \mathbb{Z}_{p}\right)\left((d+k \eta+a+c) \upharpoonright J_{r} \neq 0\right) \tag{!!'}
\end{equation*}
$$

Put $J_{-1}=\emptyset$. Define $q:=\left|J_{r} \backslash\left(J_{r-1} \cup I_{i(d)}\right)\right| \in \omega$. By (!!'), ranging over all $a \in A, c \in\langle C\rangle$ and $k \in \mathbb{Z}_{p}$ such that $(d+k \eta+a+c) \upharpoonright\left(J_{r} \cap I_{i(d)}\right)=0$ and $(d+k \eta+a+c) \upharpoonright J_{r-1}=0$, we obtain less than p^{q} values $(k \tau+a+g(c)) \upharpoonright J_{r}$. Hence, by (!') and the choice of r, there exists $d^{\prime} \in H$ such that:

- $d^{\prime} \upharpoonright I_{i(d)}=0$,
- $d^{\prime} \upharpoonright J_{r-1}=g(d) \upharpoonright J_{r-1}$,
- for any $a \in A, c \in\langle C\rangle$ and $k \in \mathbb{Z}_{p}$ such that $(d+k \eta+a+c) \upharpoonright\left(J_{r} \cap I_{i(d)}\right)=0$ and $(d+k \eta+a+c) \upharpoonright J_{r-1}=0$, we have $\left(d^{\prime}+k \tau+a+g(c)\right) \upharpoonright J_{r} \neq 0$.

Using $\left(* *^{\prime}\right),\left(* * *^{\prime}\right),\left(!!!^{\prime}\right)$ and the choice of d^{\prime}, we see that for all $a \in A, c \in\langle C\rangle=$ $\operatorname{Lin}_{\mathbb{Z}_{p}}(C), k \in \mathbb{Z}_{p}$ and $s \in \omega$, we have

$$
(d+k \eta+c+a) \upharpoonright J_{s}=0 \Longleftrightarrow\left(d^{\prime}+k \tau+g(c)+a\right) \upharpoonright J_{s}=0 .
$$

We finish using Corollary 3.3 as in Case 1. The proof of the Subclaim and so of the Claim is now completed.

Now, we will prove (i), i.e. smallness of (H, G). Consider any finite $A \subseteq H$. Since we are going to count orbits over A, we can assume that $A \leq H$. Let $O_{1}(A):=$ $\{o(\eta / A): \eta \in H\}$, and $O_{1}^{i}(A):=\left\{o(\eta / A): \eta \in H, n_{\eta}=i\right\}, i \leq \alpha$. It is enough to show that each $O_{1}^{i}(A)$ is countable.

For $x \in H$ and $i \leq \alpha$, put

$$
S_{x}^{i}=\left\{\eta \in H: \eta \upharpoonright I_{i}=x \upharpoonright I_{i}\right\} .
$$

By the Claim, the orbits from $O_{1}^{i}(A)$ are the sets

$$
S_{a}^{i} \backslash \bigcup_{b \in A} S_{b}^{i-1}, a \in A
$$

where for a limit ordinal $\lambda, S_{b}^{\lambda-1}:=\bigcup_{i<\lambda} S_{b}^{i}$. From this, we see that $O_{1}^{i}(A)$ is finite.
It remains to show (ii), i.e. $\mathcal{N \mathcal { M }}(H)=\alpha$. Since $H_{i}, i \leq \alpha$, are \emptyset-closed and $H_{i}<_{n w d} H_{j}$ whenever $i<j$, we easily get $\mathcal{N} \mathcal{M}(H) \geq \alpha$.

By induction on $i \leq \alpha$, we will show that for any finite $A<H$, each orbit in $O_{1}^{i}(A)$ has $\mathcal{N} \mathcal{M}$-rank $\leq i$. This, of course, implies $\mathcal{N} \mathcal{M}(H) \leq \alpha$, so the proof of the theorem will be completed.

The basis step is clear as $O_{1}^{0}(A)=\{\{a\}: a \in A\}$. Now, assume that for every finite $A<H$ and $i<j$, each orbit in $O_{1}^{i}(A)$ is of $\mathcal{N} \mathcal{M}$-rank $\leq i$. Suppose for a
contradiction that there is $o(\eta / A) \in O_{1}^{j}(A)$ with $\mathcal{N \mathcal { M }}(o)>j$. Then, there is a finite $B>A$ such that $\eta \mathcal{X}_{A}^{m} B$ and $\mathcal{N} \mathcal{M}(\eta / B) \geq j$.

On the other hand, we see that each orbit in $O_{1}^{j}(A)$ is a dense G_{δ} is some S_{a}^{j}. Thus, since S_{a}^{j} 's are closed, all 1-orbits over A are non-meager in their relative topologies. In particular, in virtue of [5, Theorem 2.12], $\eta \mathbb{X}_{A}^{m} B$ means that $o(\eta / B) \subseteq_{m} o(\eta / A)$. Working over B, this implies $i:=n_{\eta}<j$. By induction hypothesis, $\mathcal{N M}(\eta / B) \leq$ $i<j$, a contradiction.

References

[1] R. Camerlo, Dendrites as Polish structures, Proc. Amer. Math. Soc., to appear.
[2] D. Evans, F. O. Wagner, Supersimple ω-categorical groups and theories, J. Symb. Logic 65, 767-776, 2000.
[3] K. Krupiński, Products of finite abelian groups as profinite groups, J. Alg. 288, 556-582, 2005.
[4] K. Krupiński, Abelian profinite groups, Fund. Math. 185, 41-59, 2005.
[5] K. Krupiński, Some model theory of Polish structures, Trans. Amer. Math. Soc. 362, 3499-3533, 2010.
[6] L. Newelski, Small profinite groups, J. Symb. Logic 66, 859-872, 2001.
[7] L. Newelski, Small profinite structures, Trans. Amer. Math. Soc. 354, 925-943, 2002.
[8] F. O. Wagner, Small profinite m-stable groups, Fund. Math. 176, 181-191, 2003.

Krzysztof Krupiński

Instytut Matematyczny, Uniwersytet Wrocławski
pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
e-mail: kkrup@math.uni.wroc.pl
Frank O. Wagner
Université de Lyon; Université Lyon 1; CNRS
Institut Camille Jordan UMR 5208
Bâtiment Jean Braconnier
43 boulevard du 11 novembre 1918, F-69622 Villeurbanne-cedex, France.
e-mail: wagner@math.univ-lyon1.fr

[^0]: *Research supported by the Polish Government grant N N201 545938
 ${ }^{0} 2010$ Mathematics Subject Classification: 03C45, 20E18, 54H11
 ${ }^{0}$ Key words and phrases: Polish structure, profinite group, small compact G-group

