[t-BuC(Ni-Pr)2]2Zn as Starting Reagent for Monoamidinate Zinc Complexes [t-BuC(Ni-Pr)2]ZnX

Sarah Schmidt, Stephan Schulz, Michael Bolte

To cite this version:

Sarah Schmidt, Stephan Schulz, Michael Bolte. [t-BuC(Ni-Pr)2]2Zn as Starting Reagent for Monoamidinate Zinc Complexes [t-BuC(Ni-Pr)2]ZnX. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, 2009, 635 (13-14), pp.2210. 10.1002/zaac. 200900227 . hal-00495063

HAL Id: hal-00495063

https://hal.science/hal-00495063

Submitted on 25 Jun 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Zeitschrift für Anorganische und Allgemeine Chemie

[t-BuC(Ni-Pr)2]2Zn as Starting Reagent for Monoamidinate Zinc Complexes [t-BuC(Ni-Pr)2]ZnX

Journal:	Zeitschrift für Anorganische und Allgemeine Chemie
Manuscript ID:	zaac.200900227.R1
Wiley - Manuscript type:	Article
Date Submitted by the Author:	07-May-2009
Complete List of Authors:	Schmidt, Sarah; Universität Duisburg-Essen, Institut für Anorganische Chemie Schulz, Stephan; Universität Duisburg-Essen, Institut für Anorganische Chemie Bolte, Michael; Universität Frankfurt, Institut für Anorganische Chemie
Keywords:	Zinc, Amidinate, X-Ray Structure
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.	
Scheme 01.cdx Scheme 02.cdx	

$\left[t-\mathrm{BuC}(\mathbf{N} i-\mathrm{Pr})_{2}\right]_{2} \mathrm{Zn}$ as Starting Reagent for Monoamidinate Zinc Complexes $\left[t-\mathrm{BuC}(\mathbf{N i}-\mathrm{Pr})_{2}\right] \mathbf{Z n X}$

Sarah Schmidt, ${ }^{[a]}$ Stephan Schulz ${ }^{[a] *}$ Michael Bolte ${ }^{[b]}$
* Prof. Dr. Stephan Schulz, Fax: (+)201-1833830, E-mail: stephan.schulz@uni-due.de
${ }^{[a]}$ Institut für Anorganische Chemie, Universität Duisburg-Essen, Universitätsstr. 5-7, S07 S03 C30, 45141 Essen, Germany
${ }^{[b]}$ Institut für Anorganische Chemie, J.-W.-Goethe Universität, Max-von-Laue Str. 7, 60438 Frankfurt, Germany

Abstract

Reaction of the bisamidinate zinc complex $\left[t-\mathrm{BuC}(\mathrm{Ni}-\mathrm{Pr})_{2}\right]_{2} \mathrm{Zn} \mathbf{1}$ with ZnMe_{2} yielded the corresponding monoamidinate zinc complex $\left\{\left[t-\mathrm{BuC}(\mathrm{Ni}-\mathrm{Pr})_{2}\right] \mathrm{ZnMe}\right\}_{2} 2.2$ reacts with iodine with formation of $\left.\left\{\left[t-\mathrm{BuC}(\mathrm{Ni}-\mathrm{Pr})_{2}\right] \mathrm{ZnI}\right\}_{2} \mathbf{3}\right) .2$ and $\mathbf{3}$ both adopt dimeric structures in the solid state as was shown by single crystal X-ray analyses. 2 and $\mathbf{3}$ were characterized by elemental analyses, mass and multinuclear (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$) NMR spectroscopy ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$. In addition, X-ray crystal structures of $\mathbf{1 - 3}$ are reported.

Keywords: Zinc; Amidinate; X-Ray Structure

Introduction

$\mathrm{N}, \mathrm{N}^{\prime}$ chelating amidinate-ligands $\left[\mathrm{RC}\left(\mathrm{NR}^{\prime}\right)_{2}\right]$ have a long tradition in s -, p -, d- and fblock metal chemistry.[1] Their steric and electronic properties can easily be modified by variation of the organic substituents R and R^{\prime} and they have been found to coordinate very flexible to the metal center either as monodentate $\left(\eta^{l}\right)$, chelating (η^{2}) or bridging monodentate $\left(\mu-\eta^{l}-\eta^{l}\right)$ four-electron donor.[2] These prominent properties render amidinate substituents very effective for the stabilization of a variety of metal complexes, including unusual low-valent metal complexes.[3] In addition, amidinate metal complexes have found widespread technical applications as tailor-made catalysts for olefin polymerization[4], rac-lactide polymerization[5] and ring opening polymerization reactions (ROP) of ε-caprolactone.[6] Moreover, thin films of metals and metal nitrides were deposited by CVD processes (chemical vapor deposition) in recent years using metal amidinate complexes.[7] Considering these interesting applications, it came as a surprise to us, that only a very few zinc amidinate[8] as well as boramidinate complexes[9] have been reported in the literature prior to our work.

We became only recently interested in zinc amidinate complexes and reported on the reactions of $\mathrm{ZnR}_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$ with iso-propyl carbodiimide $i-\mathrm{PrN}=\mathrm{C}=\mathrm{N} i-\mathrm{Pr}$, which either proceed with formation of the expected amidinate complex $\left[\mathrm{EtC}(\mathrm{Ni}-\mathrm{Pr})_{2} \mathrm{ZnEt}\right]_{2}$ [10] or with formation of novel cluster-type complexes such as $\{\mathrm{C}[\mathrm{C}(\mathrm{N} i-$ $\left.\left.\operatorname{Pr})_{2} \mathrm{ZnMe}\right]\right\}_{4},[11]$ Moreover, mono- and bis-amidinate zinc complexes of the type $[t$ $\left.\mathrm{BuC}(\mathrm{NR})_{2}\right]_{2} \mathrm{Zn}$ and $\left[t-\mathrm{BuC}(\mathrm{NR})_{2}\right] \mathrm{ZnX}(\mathrm{R}=i-\mathrm{Pr}, \mathrm{Cy}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ have been synthesized by salt elimination reactions.[12] In these reactions it became evident, that the synthesis of monoamidinate complexes is often complicated due to the formation of the corresponding bisamidinates. We became therefore interested in a more straightforward route to monoamidinate complexes $\left[\mathrm{RC}\left(\mathrm{NR}^{\prime}\right)\right]_{2} \mathrm{ZnX}(\mathrm{X}=$ halide, alkyl), which are expected to be valuable starting reagents for ligand exchange and reductive coupling reactions as well as halide abstraction reactions.

Herein, we report on the reaction of $\left[t-\mathrm{BuC}(\mathrm{Ni}-\mathrm{Pr})_{2}\right]_{2} \mathrm{Zn} 1$ with ZnMe_{2} and subsequent reaction of as-formed monoamidinate complex $\left\{\left[t-\mathrm{BuC}(\mathrm{Ni}-\mathrm{Pr})_{2}\right] \mathrm{ZnMe}\right\}_{2} \mathbf{2}$ with iodine yielding $\left\{\left[t-\mathrm{BuC}(\mathrm{Ni}-\mathrm{Pr})_{2}\right] \mathrm{ZnI}\right\}_{2} 3$.

Experimental Section

General Procedure

Manipulations were performed in a glovebox under an Ar-atmosphere or with standard Schlenk techniques. Dry solvents were obtained from a solvent purification system (MBraun) and degassed prior to use. $\left[t-\mathrm{BuC}(\mathrm{Ni}-\mathrm{Pr})_{2}\right]_{2} \mathrm{Zn} 1$ was prepared according to literature method,[10] ZnMe_{2} and I_{2} were obtained from Acros and used as received. A Bruker Avance 500 spectrometer was used for NMR spectroscopy. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced to internal $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\left({ }^{1} \mathrm{H}: \delta=7.154 ;{ }^{13} \mathrm{C}: \delta=128.0\right)$. IR spectra were recorded on a Bruker Alpha-T FT-IR spectrometer. Melting points were measured in sealed capillaries and were not corrected. Elemental analyses were performed at the Elementaranalyse Labor of the University of Essen.
$\left\{\left[t-\mathbf{B u C}(\mathbf{N i}-\mathbf{P r})_{2}\right]_{\mathbf{Z n M e}}^{\mathbf{2}} \mathbf{2}^{2} \mathbf{2 :} 0.48 \mathrm{~g}(5 \mathrm{mmol}) \mathrm{ZnMe}_{2}\right.$ was added to a solution of 2.16 g (5 mmol) $\mathbf{1}$ in 20 mL of toluol at ambient temperature and stirred for 3 h . The solution was concentrated in vacuum and stored at $-30^{\circ} \mathrm{C}$. Colorless crystals were isolated by filtration.

Yield $1.2 \mathrm{~g}(91 \%), \mathrm{Mp}:>220{ }^{\circ} \mathrm{C}$. Elemental Analysis $\mathrm{C}_{24} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{Zn}_{2}(527.44 \mathrm{~g} / \mathrm{mol})$: found (calcd): H, 9.72 (9.94); C, 54.17 (54.65); N, 10.48 (10.62) \%.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta-0.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ZnCH} 3), 1.05\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 1.24 (s, $9 \mathrm{H}, t-\mathrm{Bu}), 3.95$ (sep, $2 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} 25{ }^{\circ} \mathrm{C}\right.$): $\delta-$ $10.0\left(\mathrm{ZnCH}_{3}\right), 26.9(\mathrm{CHMe} 2), 30.2\left(\mathrm{CCMe}_{3}\right), 39.8\left(\mathrm{CCMe}_{3}\right), 46.5\left(\mathrm{CHMe}_{2}\right)$. IR (Nujol): $v 2924,2856,1460,1376,1318,1261,1184,1121,1017,819,722,656,446 \mathrm{~cm}^{-1}$.
$\left\{\left[t-\mathbf{B u C}(\mathbf{N i}-\mathbf{P r})_{2}\right] \mathbf{Z n I}\right\}_{2}$ 3: A solution of $1.27 \mathrm{~g}(5 \mathrm{mmol}) \mathrm{I}_{2}$ in 10 mL hexane was added dropwise to $1.32 \mathrm{~g}(5 \mathrm{mmol}) 2$ dissolved in 30 ml hexane at $\quad-30^{\circ} \mathrm{C}$. The resulting mixture was warmed to ambient temperature and stirred for additional 12 h . The solution was concentrated in vacuum and stored at $-30{ }^{\circ} \mathrm{C}$. Colorless crystals were isolated by filtration.
Yield $1.60 \mathrm{~g}(85 \%), \mathrm{Mp}:>220^{\circ} \mathrm{C}$. Elemental Analysis $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{IN}_{2} \mathrm{Zn}(751.18 \mathrm{~g} / \mathrm{mol})$: found (calcd): H, 6.08 (6.17); C, 34.92 (35.18); N, 7.33 (7.46) \%.
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}, 25^{\circ} \mathrm{C}\right): \delta 1.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38(\mathrm{~s}$, $9 \mathrm{H}, t-B u), 4.24\left(\mathrm{~s}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right),{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}\right.$, $\left.25{ }^{\circ} \mathrm{C}\right): \delta 27.8(\mathrm{CHMe} 2), 30.6\left(\mathrm{CCMe}_{3}\right), 40.1\left(\mathrm{CCMe}_{3}\right), 46.8$ (CHMe_{2}). IR (nujol): v 2956, 2958, 2925, 2855, 1555, 1461, 1377, 1261, 1151, 1099, 1018, 801, 722, $468 \mathrm{~cm}^{-1}$.

X-ray Structure Solution and Refinement of 1-3. Crystallographic data of 1-3 are given in Table 2. Figure 1-3 show ORTEP diagrams of the solid state structures of 1-3. Data were collected on a STOE IPDS-II diffractometer. The structures were solved by Direct Methods (SHELXS-97)[13] and refined by full-matrix least-squares on F^{2} (SHELXL-97).[14] All non-hydrogen atoms were refined anisotropically and hydrogen atoms by a riding model. Multi-scan absorption corrections were applied. Crystallographic data of the structures (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-726835 (1), CCDC-726836 (2), and CCDC-726837 (3). Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int.code_(1223)336-033; e-mail for inquiry: fileserv@ccdc.cam.ac.uk; e-mail for deposition: deposit@ccdc.cam.ac.uk).

Results and Discussion

Equimolar amounts of $\left[t-\mathrm{BuC}(\mathrm{Ni}-\mathrm{Pr})_{2}\right]_{2} \mathrm{Zn} 1$ and ZnMe_{2} react at ambient temperature with subsequent formation of $\left\{\left[t-\mathrm{BuC}(\mathrm{N} i-\mathrm{Pr})_{2}\right] \mathrm{ZnMe}\right\}_{2} \mathbf{2}$ in quantitative yield. $\mathbf{2}$ can be easily converted into $\left\{\left[t-\mathrm{BuC}(\mathrm{N} i-\mathrm{Pr})_{2}\right] \mathrm{ZnI}\right\}_{2} \mathbf{3}$ by reaction with an equimolar amount of I_{2}.

((Scheme 1 here))

2 and 3 were obtained as colorless crystalline solids after re-crystallization from solutions in toluene (2) and n-hexane (3), respectively, at $-30{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}$ show the expected resonances due to the amidinate ligand and the Me group in the expected 1:1 intensities, whereas $\mathbf{3}$ only shows the resonances of the amidinate ligand.

Single crystals of $\mathbf{1}$ were obtained by sublimation of freshly prepared $\mathbf{1}$, whereas single crystals of 2 and $\mathbf{3}$ suitable for X-ray structure determinations were obtained from solutions in toluene (2) and n-hexane (3) at $-30^{\circ} \mathrm{C}$.
((Figures 1-3 here))
$\mathbf{1}$ crystallizes in the orthorhombic space group $\mathrm{Pben}, \mathbf{2}$ in the monoclinic space group $P 2_{l} / n$ and $\mathbf{3}$ in the triclinic space group P-1 with two half independent molecules in the asymmetric unit. $\mathbf{2}$ and $\mathbf{3}$ form centrosymmetric dimers in the solid state with bridging N -centers and the center of symmetry in the $\mathrm{Zn}_{2} \mathrm{~N}_{2}$ ring, whereas $\mathbf{1}$ is monomeric in the solid state as was expected. The structures of $\mathbf{1}$ and $\mathbf{3}$ are comparable to those previously observed for monoamidinate zinc halides $\left\{\left[t-\mathrm{BuRC}(\mathrm{N} i-\mathrm{Pr})_{2}\right] \mathrm{ZnX}\right\}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and bisamidinate complexes $\left[t-\mathrm{BuC}(\mathrm{NCy})_{2}\right]_{2} \mathrm{Zn},[12]$ whereas the structure of $[t-\mathrm{BuC}(\mathrm{Ni}$ $\left.\operatorname{Pr})_{2} \mathrm{ZnMe}\right]_{2} \mathbf{2}$ significantly differs from that reported for $\left[\mathrm{EtC}(\mathrm{Ni}-\mathrm{Pr})_{2} \mathrm{ZnEt}\right]_{2} \mathbf{4} \mathbf{4}$ forms an eight-membered $\left[\mathrm{Zn}_{2}(\mu-\mathrm{NCN})_{2}\right]$ heterocycle, which adopts a boat-type conformation and shows short $\mathrm{Zn}-\mathrm{N}$ bonds within the ring (1.991(2) - 2.014(2) \AA) and only weak transannular $\mathrm{Zn}-\mathrm{N}$ bonds (2.669(1), 2.653(1) Å).[10] In contrast, the $\mathrm{Zn}-\mathrm{N}$ bond lengths within the eight-membered ring in 2 are significantly elongated (Zn1-N1 2.0974(11), $\mathrm{Zn} 1-\mathrm{N} 2 \mathrm{a} 2.1184(10) \AA$) compared to $\mathbf{4}$ whereas the transannular distances ($\mathrm{Zn} 1-$ $\mathrm{N} 2 / \mathrm{Zn} 1 \mathrm{a}-\mathrm{N} 2 \mathrm{a} 2.1952(11) \mathrm{A}$) are remarkably shorter. Almost identical bond lengths are observed in 3 (Zn1-N1 2.083(3), Zn1-N2a 2.053(3), Zn1-N2/Zn1a-N2a 2.136(3) A). As a consequence, the amidinate group in $\mathbf{2}$ and $\mathbf{3}$ rather serves as chelating $\left(\eta^{2}\right)$ unit whereas in 4 it serves as bridging monodentate $\left(\mu-\eta^{l}-\eta^{l}\right)$ four-electron donor. Moreover, the Zn atoms in $\mathbf{2}$ adopt distorted tetrahedral coordination spheres whereas in 4 trigonal-planar coordination geometry was observed.

((Table 1 here))

Another structural difference between $\mathbf{1}$ on the one hand and $\mathbf{2}$ and $\mathbf{3}$ on the other hand is reflected by the different coordination modes of the amidinate moiety. The N atoms in the bis-amidinate complex $\mathbf{1}$ are threefold coordinated and the $\mathrm{Zn}-\mathrm{N}$ bond lengths are almost identical. The sum of the bond angles of the central carbon atom $\left(\mathrm{C}_{\text {Amid }}\right)$ and the nitrogen atoms N 1 and N 2 of the planar amidinate ligand are close to 360°, indicating sp^{2}-hybridized C and N atoms. In addition, the almost equal $\mathrm{C}-\mathrm{N}$ bond lengths observed in $1\left(\mathrm{~N} 1-\mathrm{C}_{\text {Amid }} 1.335(2), \mathrm{N} 2-\mathrm{C}_{\text {Amid }} 1.343(2) \mathrm{A}\right)$, which are in between typical values for $\mathrm{C}-\mathrm{N}$ single and $\mathrm{C}=\mathrm{N}$ double bonds, prove an almost perfect delocalization of the π electrons within the CN_{2} backbones of both four-membered rings. In contrast, the N1/2$\mathrm{C}_{\text {Amid }}$ bond lengths in $2(1.3110(16), 1.3929(15) \AA$) and particularly $\mathbf{3}$ (1.298(5),
$1.435(4) \AA$) differ significantly, with the distances of the four-coordinated N atoms being elongated compared to those of the three-coordinated N atoms. Moreover, the three-coordinate carbon and nitrogen atoms in 2 and $\mathbf{3}$ are almost planar whereas significantly smaller sum of bond angles are observed for the four-coordinate nitrogen atoms. These findings clearly demonstrate a rather strong disturbance of the π-electrons. Consequently, the coordination mode of the amidinate ligand in 2 and $\mathbf{3}$ is better described by resonance structure \mathbf{A} whereas resonance structure \mathbf{B} reflects the coordination properties of the amidinate moiety in $\mathbf{1}$.
((Scheme 2 here))
((Table 2 here))

Conclusion. Bisamidinate complexes $\left[\mathrm{RC}\left(\mathrm{NR}^{\prime}\right)_{2}\right]_{2} \mathrm{Zn}$ can be converted into monoamidinate complexes $\left[\mathrm{RC}\left(\mathrm{NR}^{\prime}\right)_{2}\right] \mathrm{ZnX}(\mathrm{X}=\mathrm{Me}, \mathrm{I})$, which are promising starting reagents for further derivatization reactions as well as reductive coupling and halide/methyl abstraction reactions.
Acknowledgements. We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG).

References

[1] a) J. Barker, M. Kilner, Coord. Chem. Rev. 1994, 133, 219-300. b) P. C. Junk, M. L. Cole, J. Chem. Soc., Chem. Commun. 2007, 1579-1590. c) F. Edelmann, Adv. Organomet. Chem. 2008, 57, 183. The coordination chemistry of neutral amidines and guanidines has recently been summarized: M. P. Coles, J. Chem. Soc., Dalton Trans. 2006, 985-1001.
[2] For additional bindings modes see: P. C. Junk, M. L. Cole, J. Chem. Soc., Chem. Commun. 2007, 1579-1590.
[3] a) S. P. Green, C. Jones, P. C. Junk, K.-A. Lippert, A. Stasch, J. Chem. Soc., Chem. Commun. 2006, 3978-3979; b) C. Jones, P. C. Junk, M. Kloth, K. M. Proctor, A. Stasch, Polyhedron 2006, 25, 1592-1600.
[4] a) S. Dagorne, I. A. Guzei, M. P. Coles, R. F. Jordan, J. Am. Chem. Soc. 2000, 122, 274-289; b) L. R. Sita, J. R. Babcock, Organometallics 1998, 17, 5228-5230; c) E. A. C. Brussee, A. Meetsma, B. Hessen, J. H. Teuben, J. Chem. Soc., Chem. Commun. 2000, 497-498.
[5] K. B. Aubrecht, K. Chang, M. A. Hillmyer, W. B. Tolman, J. Poly Sci.: A 2001, 39, 284.
[6] C. Villiers, P. Thuéry, M. Ephritikhine, Eur. J. Inorg. Chem. 2004, 4624-4632.
[7] a) Z. W. Li, S. T. Barry, R. G. Gordon, Inorg. Chem. 2005, 44, 1728-1735; b) H. Li, D. B. Farmer, R. G. Gordon, Y. Lin, J. Vlassak, J. Electrochem. Soc. 2007, 154, D642D647; c) J. P. Coyle, W. H. Monillas, G. P. A. Yap, S. T. Barry, Inorg. Chem. 2008, 47, 683-689; d) B. D. Fahlman, Curr. Org. Chem. 2006, 10, 1021-1033; e) D. Rische, H. Parala, A. Bauermann, T. Thiede, R. A. Fischer, Surf. Coat. Technol. 2007, 201, 91259130.
[8] a) J.-K. Buijink, M. Noltemeyer, F. T. Edelmann, Z. Naturforsch. B 1991, 46, 13281332; b) F. A. Cotton, L. M. Daniels, L. R. Falvello, J. H. Matonic, C. A. Murillo, X. Wang, H. Zhou, Inorg. Chim. Acta 1997, 266, 91-102; c) M. L. Cole, D. J. Evans, P. C. Junk, L. M. Louis, New J. Chem. 2002, 26, 1015-1024.
[9] a) T. Chivers, D. J. Eisler, C. Fedorchuk, G. Schatte, H. M. Tuononen, Inorg. Chem. 2006, 45, 2119-2131; b) C. Fedorchuk, M. Copsey, T. Chivers, Coord. Chem. Rev. 2007, 251, 897-924.
[10] S. Schulz, M. Münch, U. Flörke, Z. Anorg. Allg. Chem. 2008, 634, 2221-2225.
[11] M. Münch, U. Flörke, M. Bolte, S. Schulz, D. Gudat, Angew. Chem. 2008, 120, 1535-1539; Angew. Chem. Int. Ed. 2008, 47, 1512-1516.
[12] T. Eisenmann, J. Khanderi, S. Schulz, U. Flörke, Z. Anorg. Allg. Chem. 2008, 634, 507-513.
[13] G. M. Sheldrick, SHELXS-97, Program for Structure Solution: Acta Crystallogr. Sect. A, 1990, 46, 467.
[14] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Universität Göttingen, 1997.

Figure / Scheme Captions

Figure 1. Molecular structure and atom numbering scheme of 1; displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2. Molecular structure and atom numbering scheme of 2; displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 3. Molecular structure and atom numbering scheme of 3; displacement ellipsoids are drawn at the 50% probability level. H atoms and the second independent molecule have been omitted for clarity.

Scheme 1. Synthesis of 2 and 3.

Scheme 2. Different resonance structures of the amidinate ligand in complexes $\mathbf{1 - 3}$.

Scheme 1

Scheme 2

Table 1. Selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] of $\mathbf{1 - 3}$.

	1	2	$3^{\text {a }}$
Zn1-N1	2.0175(13)	2.0974(11)	2.083(3)
Zn1-N2	$2.0297(14)$	2.1952(11)	2.136(3)
Zn1-N2a	$2.0297(14)$	2.1184(10)	2.053(3)
$\mathrm{Zn1}-\mathrm{C}_{\text {Me }} / \mathrm{IL}$		1.9812(16)	2.5440(4)
N1-C ${ }_{\text {Amid }}$	1.335(2)	1.3110(16)	1.298(5)
N1-C ${ }_{i-P r}$	1.457(2)	$1.4765(16)$	1.488(5)
$\mathrm{N} 2-\mathrm{C}_{\text {Amid }}$	1.343(2)	$1.3929(15)$	1.435(4)
N2-C ${ }_{\text {i-Pr }}$	1.463(2)	$1.4902(16)$	1.512(4)
$\mathrm{C}_{\text {Amid }}$ - $\mathrm{C}_{\text {t-Bu }}$	1.555(2)	$1.5695(18)$	$1.556(5)$
N1-Zn1-N2	65.34(6)	62.87(4)	64.42(11)
N1-Zn1-N1a	134.35(9)		
N1-Zn1-N2a		109.15(4)	117.11(10)
N2-Zn1-N2a	134.90(6)	94.29(4)	91.32(10)
N1-Zn1-C ${ }_{\text {Me }} / \mathrm{IL}$		124.63(7)	112.35(8)
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{C}_{\text {Me }} / \mathrm{IL}$		132.72(7)	131.25(7)
$\mathrm{N} 2 \mathrm{a}-\mathrm{Zn} 1-\mathrm{C}_{\text {Me }} / \mathrm{I} 1$		119.20(6)	125.40(7)
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C}_{\text {Amid }}$	93.07(10)	95.52(8)	95.5(2)
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C}_{i-\mathrm{Pr}}$	135.24(12)	134.62(9)	136.3(2)
$\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{C}_{\text {Amid }}$	92.29(10)	88.94(7)	89.3(2)
$\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{C}_{i-\mathrm{Pr}}$	133.28(12)	123.69(8)	118.6(2)

Table 2. Crystallographic details of $\mathbf{1 - 3}$.

	1	2	3
emp.form.	$\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{Zn}$	$\mathrm{C}_{24} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{Zn}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{Zn}_{2}$
mol. mass	432.00	527.44	751.17
cryst syst.	orthorhombic	monoclinic	triclinic
space group	Pben	P2 ${ }_{1} / \mathrm{n}$	P-1
a [\AA]	16.7038(10)	10.5974(5)	9.9516(8)
b [A]	9.4860(7)	12.9710(7)	10.7946(8)
c [\AA]	16.7124(15)	10.6565(4)	14.6318(12)
$\alpha[\AA]$	90	90	91.415(6)
β [\AA]	90	102.954(3)	107.994(6)
$\gamma[\AA]$	90	90	97.242(6)
$\mathrm{V}\left[\AA^{3}\right]$	2648.1(3)	1427.55(12)	1479.6(2)
Z	4	2	2
T [K]	173(2)	173(2)	173(2)
radiation (λ [A$]$)	$\mathrm{Mo}-\mathrm{K}_{\alpha}(0.71073)$	Mo-K ${ }_{\alpha}(0.71073)$	$\mathrm{Mo}-\mathrm{K}_{\alpha}(0.71073)$
$\mu\left[\mathrm{mm}^{-1}\right]$	0.940	1.696	3.723
$\mathrm{D}_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.084	1.227	1.686
$2 \theta_{\text {max }}\left[{ }^{\circ}\right]$	51.4	59.4	51.2
cryst dim. [mm]	$0.47 \times 0.42 \times 0.39$	$0.41 \times 0.37 \times 0.34$	$0.21 \times 0.17 \times 0.12$
no. reflns	19562	36353	20535
unique	2491	3999	5518
$R_{\text {merg }}$	0.0559	0.0451	0.0650
param./restraints	124 / 0	137 / 0	271 / 0
$R 1^{\text {a }}$	0.0299	0.0257	0.0324
$w R 2{ }^{\text {b }}$	0.0745	0.0666	0.0826
goodness of fit ${ }^{\text {c }}$	1.038	1.040	1.006
$\begin{aligned} & \text { final max } / \min . \Delta \rho, \\ & \mathrm{e} \AA^{-3} \end{aligned}$	0.221/-0.169	0.336 / -0.372	0.975 / -1.286

$53 \times 16 \mathrm{~mm}(600 \times 600$ DPI)

$50 \times 17 \mathrm{~mm}(600 \times 600$ DPI)

$338 \times 270 \mathrm{~mm}(96 \times 96$ DPI)

$338 \times 270 \mathrm{~mm}(96 \times 96$ DPI)

$338 \times 270 \mathrm{~mm}(96 \times 96$ DPI)

