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An Extension of the Canonical Correlation Analysis to the Case of
Multiple Observations of Two Groups of Variables

Ronald Phlypo and Marco Congedo

Abstract— In this contribution we present a method that
extends the Canonical Correlation Analysis for two groups of
variables to the case of multiple conditions. Contrary to the
extensions in literature based on augmenting the number of
variable groups, the addition of conditions allows for a more
robust estimate of the canonical correlation structure inherently
present in the data. Algorithms to solve the estimation problem
are based on joint approximate diagonalization algorithmsfor
matrix sets. Simulations show the performance of the proposed
method under two different scenarios: the calculation of a latent
canonical structure and the estimation of a bilinear mixture
model.

I. INTRODUCTION

In this work we present a method to extend the classical
Canonical Correlation Analysis (CCA) of Hotelling for a
single condition on two groups of variables [5] to the case
of multiple conditions for two groups of variables. While
a lot of work has focused on the extension of Hotelling’s
original proposal to multiple groups of variables, only little
work has been carried out with respect to the multiplication
of the conditions. However, many applications in engineering
behave under this model, such as simultaneous recordings in
two heterogeneous measurement spaces. Examples may be
the simultaneous recordings of extracranial and intracranial
electroencephalographic or electrocardiographic data oreven
the simultaneous recording of electroencephalographic data
and the GAZE direction. In this contribution we aim at
sketching the major contributions to CCA during the last
decades and we propose a variant as to include the multiple
conditions. Simulation studies will show the performance of
the proposed algorithm under varying conditions.

II. METHODS

A. Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is one of the most
useful methods for describing linear relationships between
(the scores of) two groups of variables. Originally proposed
in Hotelling’s papers [5], it has ever since received much
attention in psychometrics, chemometrics and other scientific
domains related to the search for explanatory, latent variables
underlying multiple observations. The basic CCA model for
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two groups of variablesX1 ∈ R
m1×T andX2 ∈ R

m2×T is
given as

max
t1,t2

tT1 P
T
1 P2t2 , (1)

wherePi is an orthogonal, unitL2-norm basis forXi, which
can be obtained asPi = WT

i Xi through, e.g., a singular
value decomposition ofXi. In other words, the CCA model
strives to find those weighting vectorsti that maximise the
correlation〈P1t1,P2t2〉.

From the seminal work of Hotelling on, many efforts
have been conducted to generalize model (1) to multiple
observation sets. Horst [4] maximized the average correlation
coefficient between linear combinations, i.e.,

max
{ti}

∑

i

∑

j 6=i

tTi P
T
i Pjtj (2)

and in the works of Carroll [2] we find an explicit maxi-
mization of the correlation betweenPiti and the auxiliary
variablez by maximizing the function

f(z) =
zT
(
∑

iX
T
i (XiX

T
i )

−1Xi

)

z

zT z

overz. In fact, the maximizer of the above is the eigenvector
of
∑

iX
T
i (XiX

T
i )

−1Xi associated with its largest eigen-
value. An effort to regroup the above and similar algorithms
using a limited number of representative functions and a
single algorithmic solution can be found in [3]. But all of the
above methods deal with the presence of multiple groups of
data and only little attention has been given to the observation
of two groups of variables under several conditions.

In addition, all of the previously introduced algorithms use
a summing over the different correlation matrices. Unfortu-
nately, by summing over the different correlation structures,
information may go lost. Recent advances in (multi-)linear
algebra and signal processing have shown that the joint
diagonalization of the matrix set containing all correlation
structures offers a more stable solution. This can be seen
from the fact that the joint diagonalization of the matrix set
is less biased than the diagonalization of the sum, since a
perfect diagonalization of the sumR also diagonalizes the
imperfections due to the integrated noise. A simple example
may illustrate this phenomenon:

Example 1 (Matrix sum diagonalization): Take two
(semi-positive definite) random symmetric matrices
A,B ∈ R

2×2 and calculate a diagonalization of their sum.
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Now, by simple calculations we see that














wT
1 Aw2 = 0

wT
1 Bw2 = 0

wT
2 Aw1 = 0

wT
2 Bw1 = 0

⇒
{

wT
1 (A+B)w2 = 0

wT
2 (A+B)w1 = 0

,

wherewi is the i-th column ofW. But the inverse does
not generally hold true! Actually, the conditions on the sum
are necessary but not sufficient for the conditions on the
individual terms to hold.

The diagonalization of a single matrixR has another
important drawback, namely, the rotational ambiguity. It can
be easily proved that ifW diagonalizesR asΛ = WTRW,
then so do allT = WQ, whereQ is an arbitrary orthogonal
matrix. For the above example, this means that there does
exist a matrixT = WQ that diagonalizes the sum(A+B)
andA and by consequence alsoB. However, this does not
extend to the case of more than two matrices, since it cannot
be guaranteed that the eigenvalues remain real. This is one
of the reasons why joint approximate diagonalization of a
matrix set has received that much attention in the signal
processing literature over the last decades. In what follows,
we will show how the joint approximate diagonalization can
also be employed for canonical correlation analysis when
multiple observations are available of the same two groups
of variables under various conditions.

B. Multiple Condition Canonical Correlation Analysis

Remark that maximizing the correlation of the observed
sets with an auxiliary variablez does no longer make sense
when we consider multiple conditions. Indeed, the response
of a variable may change from condition to condition and it is
no longer of primordial interest to maximize this correlation.
Denote byR(k)

xx and R
(k)
yy the covariance matrices under

condition k of the variable groupx ∈ R
M and y ∈ R

N ,
respectively and denote byR(k)

xy their cross-covariances.
The joint approximate diagonalization of a matrix set can

now directly (and independently) be carried out onR(k)
xx

and R
(k)
yy by requiring that the sets{WT

xR
(k)
xxWx}k and

{WT
yR

(k)
yyWy}k are approximately diagonal. However, this

does not guarantee the approximate joint diagonality of the
set{WxR

(k)
xyWy}k. As a consequence, we must impose the

following (∀k):










WT
xR

(k)
xxWx ≈ Λ(k)

xx

WT
yR

(k)
yyWy ≈ Λ(k)

yy

WT
xR

(k)
xyWy ≈ Λ(k)

xy

,

with Λ(k)
xx ,Λ

(k)
yy andΛ(k)

xy the appropriate diagonal matri-
ces. In what follows, we will drop the superscript·(k) to
facilitate reading. All expressions should be understood∀k.

Defining

RxyWyW
T
yR

T
xy = R̃xx

RT
xyWxW

T
xRxy = R̃yy

it follows from the above that ifWT
xRxyWy is approxi-

mately diagonal, then so areWT
x R̃xxWx andWT

y R̃yyWy.

Unfortunately, the inverse does not in general hold true.
Although we have no proof, we conjecture thatWT

xRxyWy

at least approximately takes the form of a permutation matrix
completed with zero columns (M < N ) or rows (M > N ).
In other words, each row and each column ofWT

xRxyWy

has maximally one element that is approximately1 in ab-
solute value, with all other values in that row (respectively
column) approximately zero. In the appendix, we give the
outline of a possible proof.

The joint approximate diagonalization may now alter-
natingly be carried out on the two sets{R̃(k)

xx ,R
(k)
xx } and

{R̃(k)
yy ,R

(k)
yy}. To that purpose one can choose one of the

available joint approximate diagonalization algorithms read-
ily available in the literature such as [1], [8], [6]. We propose
to alternatingly run one step of the chosen algorithm on each
of the sets to avoid getting stuck in local minima.

C. Weighted Multiple Condition Canonical Correlation
Analysis

Actually, the above trick is reminiscent to the trick used
in [7] for spatio-temporal blind source separation. Let us,
in analogy to [7], introduce the weighting valueα, which
balances between an independent joint approximate diag-
onalization in each of the measurement spaces and the
diagonalization of the cross-covariance matrices. In other
words, the sets of diagonalization matrices take the form
{αR̃(k)

xx , (1 − α)R
(k)
xx } and {αR̃(k)

yy , (1 − α)R
(k)
yy }. Remark

that the above paragraph considered the formα = 0.5.

D. A Welcome Byproduct

Suppose we consider the measurement spaces as the
two dimensions in which we recorded e.g. an event-related
potential (ERP). The different conditions then simply reduce
to the different trials under which we have recorded the ERP.
Our signals may be represented asX(k) = Rxy, wherex
accounts for the observations along the spatial dimension and
y for the observations along the dimension of relative time
after stimulation onset. The matricesRxx andRyy can then
simply be obtained by marginalisation over the temporal,
respectively the spatial dimension asRxx = E{XXT } and
Ryy = E{XTX}. The joint diagonalization ofRyy, Rxx

andRxy is then closely related to an approximate singular
value decomposition of the matrix set{X(k)}, possibly
with non-orthogonal changes of bases (if we choose a non-
orthogonal joint diagonalization algorithm, e.g. [8], [6]).

III. SIMULATIONS

Since we would like to display a wide variety of possible
applications, we have chosen two scenarios as the bases for
our simulations. All simulation supposeM = 3, N = 5
and K = 25. For each observationk we have a pop-
ulation of 103 samples. We used a non-orthogonal fast
approximate joint diagonalization algorithm of Tichavsk´y
and Yeredor [8] alternating the iterations between the two
sets{(1 − α)Rxx, αR̃xx} and {(1 − α)Ryy, αR̃yy} and
repeated the experiment over 100 Monte Carlo realisations.
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In both the scenarios we investigate the diagonal-
ity (up to permutation and scale) of the final matri-
cesWT

xRxxWx,W
T
yRyyWy andWT

xRxyWy using the
Moreau-Amari performance index for a matrixG ∈ R

D×D

defined as

PI(G) =
1

2D(D − 1)

(

D
∑

j=1

∑D

i=1 |gij | −maxi(|gij |)
∑D

i=1 |gij |
. . .

+
D
∑

i=1

∑D

j=1 |gij | −maxj(|gij |)
∑D

j=1 |gij |

)

. (3)

For the rectangular matricesWT
xRxyWy we calculate only

the term corresponding to its smallest dimension, i.e., for
M < N

PI(G) =
1

D(D − 1)

(

D
∑

i=1

∑D

j=1 |gij | −maxj(|gij |)
∑D

j=1 |gij |

)

.

A. Scenario 1

The first scenario is the case where the observed variables
behave just as in the model, i.e., variable (groups)x andy
are created such thatRxx andRyy are the identity matrices.
The variables are then observed by the user through a linear
mixture up to some additive noise asx(k) = βUxx +

(1 − β)n
(k)
x , wherenx is a vector of the dimension ofx

containing unit variance Gaussian noise andUx ∈ R
M×M

is a non-degenerate mixing matrix. The observationsy(k) =

βUyy+(1−β)n
(k)
y are created analogously and we calculate

for eachk the corresponding covariance and cross-covariance
matrices. The results are given in Figure 1.

It is clear from the measurePI(WT
xRxyWy) that the

influence of α cannot be neglected. Indeed, whenα =
0 – i.e. neglecting the cross-covariance structure –, the
diagonalization ofWT

xRxyWy in the noiseless case is only
approximate, whereas forα > 0 it is quasi-exact.

B. Scenario 2

In this scenario we consider the observationsR
(k)
xy =

X(k) = (1 − β)Ux∆
(k)UT

y + βn(k) and calculate the
marginalized covariances as described in paragraph II-D. The
matricesUx andUy are also called the mixing matrices and
its entries are drawn according to the normal distribution
with zero mean and unit variance. The matrix∆(k) is a
diagonal matrix with entries drawn from the same normal
distribution. Next to the Moreau-Amari performance index
on the resulting approximately diagonalized matrices we also
calculate the index for the matricesWT

xUx and WT
yUy,

which describes how well we can estimation our model. The
results are given in Figure 2.

It is particularly interesting that in scenario 2, except for
low noise, it seems that the influence of parameterα is
inverted with respect to scenario 1. For higher noise levels,
it seems that the exclusion ofRxy – both in terms of
diagonalization as in terms of model estimation – slightly
augments the performance. This is contradictory to what is
generally accepted, in that the singular value decomposition
of the signal is judged more stable than the left or right
eigenvalue decompositions of the covariance matrices.
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Fig. 1. The diagonalization criteria (3) for the first scenario. Gray lines
are for the individual Monte Carlo realisations, black lines are the means
over the realisations

IV. CONCLUSIONS

The extension of the canonical correlation analysis to
multiple observations of two groups of variables seems a
promising approach for signal processing applications. When
estimating the latent canonical structure in the data, multiple
observations may lower the impact of noise on the estimates.
The proposed method allows for the estimation of the non-
orthogonal matrices exposing the inherent correlation struc-
ture without a required pre-whitening of the observations.
In addition, by introducing a weighting parameter, one may
balance between the covariance and the cross-covariance
diagonalization. At last, when the diagonalization of an
observed matrix structure and its marginalized covariances
is envisaged, the method is reminiscent to an approximately
joint singular value decomposition.

Future works should focus on the application of the
algorithm to joint recordings of GAZE and EEG signals,
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Fig. 2. The diagonalization and model estimation criteria (3) for the second
scenario. Gray lines are for the individual Monte Carlo realisations, black
lines are the means over the realisations

where we should principally investigate whether the linear
dependence is sufficient to explore their relationships.

APPENDIX

A. Outline of a proving strategy

Assume, without loss of generality, thatM ≥ N and that
Rxx and Ryy are the identity matrices. RenamingR =
WT

xRxyWy, we have

RTR = Λ

RRT =

(

Λ 0N×M−N

0M−N×N 0M−N×M−N

)

from which we have

R =

(

R̃

0M−N×N

)

with R̃ ∈ R
N×N an orthogonal matrix. The entries̃Rij con-

tain the valuesE{xiyj} and sinceE{xixj} = 0, E{yiyj} =
0∀i 6= j. We have that each row and each column ofR̃ can
contain at maximum one entry|R̃ij | > cos(π/4) = 1/

√
2.

Suppose now that∃j1 : |E{xmyj1}| ≈ |E{xm′yj1}| ≈
1/

√
2, then all other entriesE{xiyj1} ≈ 0, ∀i 6= m,m′.

Taking R̃R̃T = Λ, we see thatΛmm > 1/2 andΛmm′ >
1/2. Analogous reasoning brings us to∃i1 : |E{xi1yn}| ≈
|E{xi1yn′}| ≈ 1/

√
2 ⇒ E{xi1yj} ≈ 0, ∀j 6= n, n′.Thus,Λ

is not diagonal under the above assumptions and at least one
of the assumed entries must be much smaller than1/

√
2.
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