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An Extension of the Canonical Correlation Analysis to the Cae of
Multiple Observations of Two Groups of Variables

Ronald Phlypo and Marco Congedo

Abstract— In this contribution we present a method that two groups of variableX; € R™*7 and X, € R™2*7T is
extends the Canonical Correlation Analysis for two groups given as
variables to the case of multiple conditions. Contrary to the
extensions in literature based on augmenting the number of maxtlTPlTPgtg , (1)
variable groups, the addition of conditions allows for a moe t1,b2
robust estimate of the canonical correlation structure interently ) ) ) ]
present in the data. Algorithms to solve the estimation prolem ~ WhereP; is an orthogonal, unif.;-norm basis foiX;, which
are based on joint approximate diagonalization algorithmsfor ~ can be obtained aP; = WiTXZ- through, e.g., a singular
matrix sets. Simulations show the performance of the propasd  yalue decomposition dK;. In other words, the CCA model

method under two different scenarios: the calculation of adtent o405 t6 find those weighting vectots that maximise the
canonical structure and the estimation of a bilinear mixture

model. correlation(P1t1, Pats).
From the seminal work of Hotelling on, many efforts
. INTRODUCTION have been conducted to generalize modg!l (1) to multiple

) _ Oobservation sets. Horst [4] maximized the average coroglat
In this work we present a method to extend the classic@hefficient between linear combinations. i.e.

Canonical Correlation Analysis (CCA) of Hotelling for a

single condition on two groups of variables [5] to the case (TPTP.t. >

of multiple conditions for two groups of variables. While I?tai(zl:; eIy @
a lot of work has focused on the extension of Hotelling’s !

original proposal to multiple groups of variables, onlfléit g in the works of Carroll [2] we find an explicit maxi-
work has been carried out with respect to the multiplicatiopyjzation of the correlation betwedR;t; and the auxiliary

of the conditions. However, many applications in engime®ri yariablez by maximizing the function
behave under this model, such as simultaneous recordings in

two heterogeneous measurement spaces. Examples may be 27 (3, XT(X,XT)'X,) 2
the simultaneous recordings of extracranial and intraatan f(z) = — -
electroencephalographic or electrocardiographic datven

the simultaneous recording of electroencephalograptii dapverz. In fact, the maximizer of the above is the eigenvector
and the GAZE direction. In this contribution we aim atof Y, X7 (X,;X7)~'X; associated with its largest eigen-
sketching the major contributions to CCA during the lastalue. An effort to regroup the above and similar algorithms
decades and we propose a variant as to include the multipleing a limited number of representative functions and a
conditions. Simulation studies will show the performante osingle algorithmic solution can be found in [3]. But all ofth

zTz

the proposed algorithm under varying conditions. above methods deal with the presence of multiple groups of
data and only little attention has been given to the obsiervat
II. METHODS of two groups of variables under several conditions.
A. Canonical Correlation Analysis In addition, all of the previously introduced algorithmsus

) _ ] _ a summing over the different correlation matrices. Unfortu
Canonical Correlation Analysis (CCA) is one of the moshately, by summing over the different correlation struesyr

useful methods for describing linear relationships betwegnformation may go lost. Recent advances in (multi-)linear
(the scores of) two groups of variables. Originally prop:i)sea|gebra and signal processing have shown that the joint
in Hotelling’s papers [5], it has ever since received muclyjagonalization of the matrix set containing all corredati
attention in psychometrics, chemometrics and other stient sryctures offers a more stable solution. This can be seen
domains related to the search for explanatory, latentbi@sa from the fact that the joint diagonalization of the matrix se
underlying multiple observations. The basic CCA model fofs |ess biased than the diagonalization of the sum, since a

. « has b 4 throuah GAZEJEEG of thional perfect diagonalization of the sulR also diagonalizes the
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Research Agency (ANR), France |mperfectlons dqe to the integrated noise. A simple example
R. Phlypo and M. Congedo are with the Vision and Brain Signaimnay illustrate this phenomenon:

processing (ViBs) research group, GIPSA Lab, INPG/UMR 5ZI4RS, Example 1 (Matrix sum diagonalization): Take two
BP 46, 961, Rue de la Houille Blanche, 38402 Saint Martin edé$;

France. ronal d. phl ypo@ji psa- | ab. grenobl e-inp. fr, (Semi-positive definite) random symmetric matrices
mar co. congedo@nmai | . com A, B € R?*? and calculate a diagonalization of their sum.
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Now, by simple calculations we see that Unfortunately, the inverse does not in general hold true.
wlAw, = 0 Although we have no proof, we conjecture th&tL R, W,

1 - . K .

wiBwy = 0 _ wl(A+B)ws = 0 at Iealsttazprqg(r:mately thkes the for]r\r; of a permutaﬂojr:[ matri
wliAw, = 0 wl(A+B)jw, = 0 ° completed with zero columns\{ < N) or rows (/ > N).

In other words, each row and each columnWi. R, W,
has maximally one element that is approximatelyn ab-
where w; is the i-th column of W. But the inverse does solute value, with all other values in that row (respectivel
not generally hold true! ACtually, the conditions on the SUn’t0|umn) approximate|y zero. In the appendix’ we give the
are necessary but not sufficient for the conditions on thgutline of a possible proof.

individual terms to hold. The joint approximate diagonalization may now alter-

The diagonalization of a single matriR has another natingly be carried out on the two se{ﬁﬁc"Q,R@} and
important drawback, namely, the rotational ambiguity.dhc {f{(k)

k
be easily proved that iV diagonalizeR asA = W7 RW »v. Ry} To that purpose one can choose one of the

X i available joint approximate diagonalization algorithread-
then so do alll' = WQ, whereQ is an arbitrary orthogonal i, ayajlable in the literature such as [1], [8], [6]. We prse

mgtrlx. For .the above examF_"e’ th|§ means that there dofbsalternatingly run one step of the chosen algorithm on each
exist a matrixT' = WQ that diagonalizes the SU\ + B) ¢ the sets to avoid getting stuck in local minima.
and A and by consequence al#. However, this does not

extend to the case of more than two matrices, since it cannot Weighted Multiple Condition Canonical Correlation
be guaranteed that the eigenvalues remain real. This is OfRalysis
of the reasons why joint approximate diagonalization of a

matrix set has received that much attention in the signal A7ctufally, th(; a:)ove tr'clkb'ls Lemlnlscent to th? kaL utsed
processing literature over the last decades. In what f(SUOW!n [7] for spatio- emporal blind source separation. -€t us,
n analogy to [7], introduce the weighting value which

we will show how the joint approximate diagonalization ca | betw ind dent ioint imate di

also be employed for canonical correlation analysis whe azalnc?s € eenhanflnthepen ent jon ?pproxmaedl?rg]]-

multiple observations are available of the same two group? alization In each of Ihe measurement spaces an €
lagonalization of the cross-covariance matrices. In rothe

of variables under various conditions. ; . .
words, the sets of diagonalization matrices take the form

B. Multiple Condition Canonical Correlation Analysis {oRYE), (1 - o)RE} and {oRY), (1 — o)RE)}. Remark

Remark that maximizing the correlation of the observethat the above paragraph considered the farm 0.5.
sets with an auxiliary variable does no longer make sense
when we consider multiple conditions. Indeed, the respon& A V\elcome Byproduct
of a variable may change from condition to condition and itis Suppose we consider the measurement spaces as the
no longer of primordial interest to maximize this corredati two dimensions in which we recorded e.g. an event-related
Denote byRﬁfQ and R§,’§,) the covariance matrices underpotential (ERP). The different conditions then simply reglu
condition k& of the variable groupx € RM andy € R”, to the different trials under which we have recorded the ERP.
respectively and denote ua;’;? their cross-covariances. Our signals may be represented X8 = Ry, wherex

The joint approximate diagonalization of a matrix set camccounts for the observations along the spatial dimensidn a
now directly (and independently) be carried out ®}Y) y for the observations along the dimension of relative time
and R\?) by requiring that the set§WZR{:)W,}, and after stimulation onset. The matricBs.. andRy, can then
{WIR) W, }, are approximately diagonal. However, thisSImply be obtained by marginalisation over the temporal,
does not guarantee the approximate joint diagonality of trigspectively the spatial dimension Bsx = E{XX"} and
set{W,R{)W, },. As a consequence, we must impose th&yy = E{X”X}. The joint diagonalization oRyy, R

WQTBwl = 0

following (Vk): and Ry is then closely related to an approximate singular
value decomposition of the matrix sdtX(®)}, possibly
WERQ;)WX ~ Ai’;) with non-orthogonal changes of bases (if we choose a non-
WgREyky;Wy ~ A%:y; , orthogonal joint diagonalization algorithm, e.g. [8], 6]
TR ~
WiRy Wy ~ Asy Ill. SIMULATIONS

with A% ALY and AL) the appropriate diagonal matri-  sSince we would like to display a wide variety of possible
ces. In what follows, we will drop the superscrigt) to  applications, we have chosen two scenarios as the bases for
facilitate reading. All expressions should be understdbd our simulations. All simulation supposk/ = 3,N = 5
Defining and K = 25. For each observatio: we have a pop-
R W,WIRL, = R ulation_of 103_ §amples. We u_sed a n.on—orthog.onal fa§t
T T 5 approximate joint diagonalization algorithm of Tichaysk
R ,WxW, R,y = Ry, . . 4
Y and Yeredor [8] alternating the iterations between the two
it follows from the above that itW] R, Wy is approxi- sets{(1 — &)Rxx,aRxx} and {(1 — @)Ryy,aRyy} and
mately diagonal, then so aW 1 R, W andeRyyWy. repeated the experiment over 100 Monte Carlo realisations.
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In both the scenarios we investigate the diagona —30
ity (up to permutation and scale) of the final matri-
cesWI R, Wy, WIR,, Wy andW]R,, W, using the
Moreau-Amari performance index for a mati@& ¢ RP*P =~ _35.
defined as Eg

Z 11935 — max;(|gi;) x
PI(G) = Z = B
2D( ( Z’L 1|gZJ| né:_40,
gij| — max;(|gi; &
+Z ] 1| J J(l J| ) - 3) %%
ZJ 11951 =
& -45; —a=0

For the rectangular matricé®Z R, W, we calculate only

the term corresponding to its smallest dimension, i.e., fc -=-=a=05
M<N a=1
D D o (o, ‘ ‘ ‘ ‘ |
PIG) = —— > Zim |g”|D maslgil) ) % 02 04 06 08 1
D(D-1) =1 ijl |9i5] noise level 3
A. Scenario 1 -14
The first scenario is the case where the observed variabl
behave just as in the model, i.e., variable (groupgndy -15}
are created such th& . andR,, are the identity matrices. —
The variables are then observed by the user through a line <5
mixture up to some additive noise ag®) = AU,x + /2_16
(1- ﬂ)n,(f), whereny is a vector of the dimension ot
containing unit variance Gaussian noise dig ¢ RM*M 2 -17
is a non- degenerate mixing matrix. The observatipid = < .
BUyy+(1— ﬂ)ny *) are created analogously and we calculat B ~18! .
for eachk the corresponding covariance and cross-covarian E :..'
matrices. The results are given in Figdte 1. G —a=0
It is clear from the measur®I(WLR,,W,) that the -19¢ i -—-q=05
influence of o cannot be neglected. Indeed, when = e _1
0 — i.e. neglecting the cross-covariance structure —, tr _5q =% ‘ ‘ ‘ a=
diagonalization oW IR, W, in the noiseless case is only 0 0.2 0.4 0.6 0.8 1
approximate, whereas far > 0 it is quasi-exact. noise level §
B. Scenario 2 Fig. 1. The diagonalization criteri{|(3) for the first scénaGray lines
In this scenario we consider the observatidﬁ&? _ 2\r/eerfct>rzethr(z;|ri1g;\ggﬁgl Monte Carlo realisations, black inare the means

X® = (1 - B U AWUT + an®™ and calculate the
marginalized covariances as described in paradraph IIF@. T
matricesUx and Uy, are also called the mixing matrices and IV. CONCLUSIONS

its entries are drawn according to the normal distribution
with zero mean and unit variance. The matex®) is a The extension of the canonical correlation analysis to

diagonal matrix with entries drawn from the same normanultiple observations of two groups of variables seems a
distribution. Next to the Moreau-Amari performance indexpromising approach for signal processing applicationselivh
on the resulting approximately diagonalized matrices e al estimating the latent canonical structure in the data, ipielt
calculate the index for the matricé2 U, and W U,, Observations may lower the impact of noise on the estimates.
which describes how well we can estimation our model Théhe proposed method allows for the estimation of the non-
results are given in Figurg 2 orthogonal matrices exposing the inherent correlatiomcstr

It is particularly interesting that in scenario 2, except foture without a required pre-whitening of the observations.
low noise, it seems that the influence of parameters In addition, by introducing a weighting parameter, one may
inverted with respect to scenario 1. For higher noise lgvelbalance between the covariance and the cross-covariance
it seems that the exclusion dRx, — both in terms of diagonalization. At last, when the diagonalization of an
diagonalization as in terms of model estimation — slightlypbserved matrix structure and its marginalized covariance
augments the performance. This is contradictory to what is envisaged, the method is reminiscent to an approximately
generally accepted, in that the singular value decompmsiti joint singular value decomposition.
of the signal is judged more stable than the left or right Future works should focus on the application of the
eigenvalue decompositions of the covariance matrices. algorithm to joint recordings of GAZE and EEG signals,
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where we should principally investigate whether the linear
dependence is sufficient to explore their relationships.

-10
APPENDIX
_1ol | A. Outline of a proving strategy
) Assume, without loss of generality, thaf > N and that
= Rxx and Ry, are the identity matrices. Renamiigy =
§—14 Gt T Dttt SRR WszyWy, we have
m?ﬁ RTR=A
4 A 0 r
Bx_1p" RR7T = NxM~-N
= 16 ( Op-NxN OmM—NxM-N
X from which we have
-18 —a=0 f{
---a=05 R = < >
““““ _1 VN
-20 : : ‘ with R € R¥*N an orthogonal matrix. The entrig;; con-

0 0.2 0.4 0.6 0.8

noise level 3 tain the valuesZ{z;y, } and sincelE{z;z;} = 0, E{y;y;} =

0Vi # 5. We have that each row and each columrRotan

4 contain at maximum one entiyR;;| > cos(r/4) = 1/v/2.
Suppose now thaBjy : [E{zmy;}| ~ [E{zmy;} ~

1/4/2, then all other entriesZ{x;y;,} ~ 0,Yi # m,m’.

Taking RR” = A, we see that\,,,,, > 1/2 and A,y >

1/2. Analogous reasoning brings us 39, : |E{x;,yn}| =~

|E{zi,yn' }| = 1/V/2 = E{x;,y;} = 0,¥j # n,n’.Thus, A

is not diagonal under the above assumptions and at least one

of the assumed entries must be much smaller thay2.
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