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Abstract: In this paper we present the general
architecture of a radio network optimization software
we developed. This application greatly uses the
concept of multilevel parallelism in order to optimize
the use of available parallel computing resources.
Details of the implementation of each level are
presented as well as the performances achieved on
several hardware platforms.

1 INTRODUCTION

Today’s parallel programs are typically large, non-
interactive, stand-alone pieces of software solving very
specific problems. On the contrary, in order to satisfy
the commercial market, today's software products
need to be adaptable and interactive. Therefore, in
order to make modern software products benefit from
the performance achieved with parallel programming,
one has to make parallel applications more versatile
and interactive.

One way to achieve this goal is to use ‘multilevel
parallelism’. In this article we describe the architecture
of the parallel application we are developing for helping
engineers deploy mobile  telecommunication
networks. In order to achieve sufficient performance,
and to optimize the use of the available computing
resources, this application greatly uses the concept of
multilevel parallelism.

2 PARALLELISM IN THE STORMS PROJECT
2.1 Objective

The objective of the European project STORMS! is
to produce a set of flexible and partially automated
tools to aid in the design and the optimization of
UMTS? networks. One major problem

1 STORMS (Software Tools for the Optimization of Resources
in Mobile Systems) is a European ACTS project, funded by
the European Community and by the Swiss government
(OFES grant).

2 UMTS: Universal Mobile Telecommunication System.

telecommunication companies must face when
deploying a UMTS is the optimization of the radio
network. The problem comes down to finding out the
best possible sites for Base Transceiver Stations
(BTSs), while guaranteeing that all —or at least a given
percentage of the surface of— the area is covered,
and that the global cost of the resulting radio network is
kept at a minimum. Assuming that a set of potential
sites is available, our goal is to select the best subset of
sites capable of satisfying the coverage requirements.

2.2 Radio wave propagation simulation

The first operation achieved by the radio network
optimization software is the computation of the area
that each BTS can cover. A geographical location is
said to be covered when it can receive the signal
broadcast by a BTS with a given quality of service.
Considering that a single radio network may consist of
hundreds of BTSs, and because the STORMS
software tool is planned to be used mostly
interactively, radio wave propagation simulations must
be as fast as possible. In the STORMS project the radio
wave propagation simulation for urban environment is
achieved by a software module called ParFlow++
(Guidec, Calégari and Kuonen. 1997). ParFlow++
models the physical system in terms of the motion of
fictitious microscopic particles over a lattice. The logical
underlying data structure of ParFlow++ is a grid and its
computational model is that of a cellular automaton.
Therefore, by distributing the data structure among
several processors, data-parallelism can be exploited
to speed up the computation. A parallel version of
ParFlow++ targeted at MIMD-DM?® platforms was
implemented and tested on a cluster of Unix
workstations and on a Cray T3D. Details of this
implementation are given in Section 4.1.

2.3 Computation of the coverage cells

Once a propagation simulation is complete for a
given BTS, the geographical area in which the
coverage is acceptable for mobile communication must
be delimited. The set of geographical locations
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covered by a BTS is called the coverage cell of the
BTS. A threshold value is determined based on
different radio quality criteria (predicted traffic demand,
etc.). Each grid point where the power of the received
signal is bigger than the threshold value belongs to the
coverage cell.

Radio wave propagation simulation and coverage
cell computation must be achieved for all potential
BTSs. Since these operations only depend on the
BTS considered, the calculations required for distinct
BTSs are independent operations that can be done
concurrently. In order to exploit this source of
parallelism we implemented parallel versions of the
software modules that achieve radio wave propagation
simulations and coverage cells computation. These
pieces of parallel code are based on the master-slaves
model. They are detailed in Section 4.2.

2.4 Creation of an coverage graph

When coverage cells have been computed the
next objective of the radio network optimization
software is the selection of the best subset of BTSs
sites. This problem can be modeled using graph
theory (Kuonen, Ubéda and Zerovnik. 1996). The
relationship between each pixelized covered location
and BTSs is naturally modeled as a bipartite graph
whose nodes represent either BTSs or geographical
locations (pixels). When many geographic locations
must be allowed for, such a graph tends to be huge. A
smart way to reduce its size without losing any useful
information is to build a bipartite graph whose nodes
represent either BTSs or intercells. An intercell is
defined as a set of geographical locations that are
covered by exactly the same potential BTSs (see
Figure 1). For each intercell node one only needs to
encode the number of geographical locations it
contains. The weighted bipartite graph hence
obtained is called the intercell graph. It can be smaller
than the former one by at least one order of
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Figure 1: The intercell graph

The drawback of this approach is the computing
time required by the algorithm that creates the intercell
graph. In order to reduce this time we developed a

parallel version of this algorithm. The resulting parallel
algorithm is presented in Section 4.3.

2.5 Selection of the best BTS sites

With the graph-based modeling presented in the
former section, the problem of finding the best
selection of BTSs sites compares to finding a set cover
of minimum size. Unfortunately, finding a set cover of
minimum size is an NP-complete problem. Hence,
unless P=NP, if we want a polynomial time algorithm,
we must use an approximation algorithm and look for
possibly sub-optimal —yet satisfactory— solutions. To
achieve this goal we investigate approaches, which are
said to be ‘bio-inspired’ because they use heuristics
that have some analogies with natural or social
systems. ParaGene (Calégari et al.1998) is a parallel
implementation of a genetic algorithm for the selection
of the best BTS sites. It uses an island-based approach
and runs on a network of workstations. It is presented
in Section 4.4,

2.6 Computation chain overview

The sequence of computation phases in the radio
network optimization software can be summarized as
follows:

1. Radio wave propagation simulation for each
potential BTS.

2. Computation of the coverage cell for each
potential BTS.

3. Creation of the coverage graph.
4. Selection of the best BTS sites.

These phases can of course be executed
sequentially. However it can be noticed that one does
not need to wait until all the radio wave propagation
simulations have been completed for starting the
computation of coverage cells. Actually, as soon as the
radio wave propagation simulation of one BTS has
been completed one can start the computation of the
associated coverage cell, while the radio wave
propagation simulation is still in progress for the
remaining BTSs. In other words these two operations
can be pipelined. Likewise, since the module that
builds the coverage graph reads coverage cells
iteratively, the computation of coverage cells can also
be pipelined with the creation of the coverage graph.
In addition, as the STORMS tool is planned to be used
mostly interactively, images to be displayed on a
Graphical User Interface (GUI) are produced so as to
show the result of each computation phase. The
modules that compute such images were inserted in
the pipelined computation chain. Section 4.5 presents
how the whole pipeline was implemented in a UNIX
environment.



2.7 Graphical user interface

Finally, in order to have a confortable access to the
STORMS application, a Java based GUI allowing
remote launch of complex computations was
developed. As the STORMS application implies
several complex and partially independent
computations, we are investigating the possibility of
using the Java applet-servlet approach for distributing
the main computing modules of STORMS on a wide
area network of computers.

3 LEVELS OF PARALLELISM IN THE RADIO
NETWORK OPTIMIZATION SOFTWARE

At least four levels of parallelism have been
identified in the radio network optimization software.
Each of them implies different software tools, different
algorithms and requires  different  hardware
characteristics.

1. Fine grain to coarse grain parallelism using parallel
supercomputers or clusters of workstations
(COW). This level applies to radio wave
propagation simulation for one BTS and to the
creation of the coverage graph.

2. Coarse grain parallelism using tightly coupled
networks of workstations (NOW). This level applies
to the master-slaves approach for distributing the
radio wave propagation simulation and the
computation of coverage cells for the BTSs.

3. Coarse grain to large grain parallelism using local
area networks of computers. This level applies to
the pipelining of the computation chain.

4. Large grain parallelism using loosely coupled wide
area networks of computers. This level applies to
the distribution of the main components of the
application over a wide area network.

Figure 2 illustrates how these four levels of
parallelism are exploited in our radio network
optimization software.
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Figure 2: General architecture of the radio network
optimization software

4 IMPLEMENTATION DETAILS
4.1 Data-parallel ParFlow++

In our data-parallel implementation of the
ParFlow++ software, the 2D grid modeling the
geographical area over which the radio wave
propagation simulation must be achieved is split in
stripes. These stripes are allocated to available
processing elements (PEs) based on a round-robin
policy. Each PE is thus in charge of part of the
simulation. Since the execution model of the ParFlow
method is that of a cellular automaton, the simulation is
an iterative process. In the data-parallel version of
ParFlow++ neighboring stripes must thus exchange
information after each iteration step. This makes the
parallel software highly communicative. In order to give
good performances, an efficient communication library
is required, and ParFlow++ must be run on a MIMD
supercomputer or a tightly coupled Cluster of
Workstations (COW).

Our data-parallel version of ParFlow++ was
implemented using the PVM library (Geist et al. 1994).
It was experimented on the Cray T3D and SGI Origin
2000 MIMD supercomputers, as well as on a cluster of
bi-processor UltraSPARC workstations interconnected
through a combination of Fast-Ethernet and FDDI links.
On the Cray T3D we could observe an efficiency of
about 80% when running ParFlow++ on 256 PEs of
the T3D, for real-size problem cases (that is, parallel
executions with this configuration were about 200
times shorter than sequential ones). On the SGI Origin
2000 we could only use up to 32 PEs. Yet we
observed an equivalent efficiency of parallel
executions in that case (performances were less
stable, though, because the Origin 2000 we used is a
multi-tasking, multi-user platform).

On the cluster of workstations, parallel executions
of ParFlow++ showed an efficiency of about 62% on
32 PEs. It is interesting to note that these good
performances could not be observed on a more
‘standard' network of SPARCstations, because the
Ethernet trunk could not support the high bandwidth
required by ParFlow++. This observation confirms that
our data-parallel ParFlow++ requires an efficient, tightly
coupled parallel platform in order to give good
performances.

4.2 Master-slaves modules

A major characteristic of the master-slaves modules
considered in the radio network optimization software
is that all significant pieces of data are systematically
archived in a file system. A consequence of this
characteristic is that all tasks must be able to access the
same file system. This is readily offered when all PEs
can share files through a Network File System (NFS).



Moreover, contention due to multiple simultaneous
accesses can be reduced if the network is fast
enough, and if files are stored on parallel Redundant
Array of Independent Disks (RAID) systems.

Another consequence of the aforementioned
characteristic is that little information needs to be
exchanged between a master task and the associated
slave tasks. Since all tasks access a common file
system for storing or retrieving significant data (e.qg.,
geographical databases, pathloss maps, coverage
cells), the information transmitted between a master
and its slaves mostly consists of control data (e.g., jobs
requests and assignments). Such a model only
requires alow bandwidth, but if slave tasks are to be
kept busy low latency is required as well.

We implemented the master-slaves modules of the
radio network optimization software using the PVM
library. Any master and its slaves are thus PVM tasks. A
master is simply in charge of feeding its slaves with new
jobs as and when they request it. A job assignment
simply consists in the identity of a BTS for which some
calculation must be done (either a radio wave
propagation simulation, or the computation of the
resulting coverage cells). Each slave task can retrieve
from the file system the data it needs to perform its job,
and it can likewise store the results of this job to the file
system. As soon as a slave task has run its job to
completion, it requests another assignment from the
master task.

Our master-slaves modules were recently
implemented and tested on a cluster of tightly-coupled
UltraSPARC workstations sharing a pool of 6 RAID
systems (with 5 or 6 disks per system). Although these
modules have not been fully tested yet, preliminary
experiments confirm that a master can control up to 30
slaves without any perceptible contention on the file
system.

In any case, the number of slaves is bounded by
the number of BTSs in the radio network considered
(typically, a few hundreds of BTSSs), for the creation of a
slave task can be justified only if it assigned at least one
job during its lifetime.

Although our master-slaves modules have only
been tested with mono-processor slaves so far, we
plan to experiment with multi-processor slaves in the
near future. A slave task will thus be a parallel task
running on several PEs. Such a configuration does not
really make sense when slaves must compute
coverage cells, as this process is sequential in
essence. On the other hand, when slaves must
achieve radio wave propagation simulations, each
simulation can imply the cooperation of several PEs, as
has been shown in Section 4.1.

4.3 Coverage graph computation

We developed a data-parallel version of the
coverage graph computation module. In this version
the geographical area considered for the target radio
network is partitioned in sub-areas. The computation of
the graph can thus be perceived as a two-phase
process.

In the first phase the sub-areas are allocated to
distinct PEs. Each PE is in charge of computing a
partial coverage graph for the sub-area it has been
assigned. This phase of the process is inherently
parallel. Moreover it does not imply any
communication, for all partial graphs can be computed
concurrently and independently.

The second phase of the process consists in a
reduction of the distribution information resulting from
the first phase. All partial graphs must be merged into a
single graph that models the coverage obtained with
the radio network considered. This is performed
concurrently following a binary tree pattern. Such an
implementation requires a tightly-coupled parallel
platform (e.g., COW or MIMD supercomputer), for the
cost of communications is not neglectable (the data to
be exchanged consist of partial graphs).

In any case the amount of potential parallelism in
this coverage graph computation is high: the
geographical area considered in the radio network may
be partitioned in hundreds of sub-areas. As a
consequence the computation may be achieved
concurrently on as many PEs.

To date the development of the data-parallel
coverage graph computation module is still in
progress, using the PVM communication library. In the
near future it should be ported and tested on clusters
of UltraSPARC workstations, as well as on the
SGI Origin 2000 supercomputer.

4.4 Radio network optimization

In ParaGene the population of individuals modeling
potential radio networks is split in sub-populations
called islands, which are assembled along an oriented
ring. Islands evolve independently during a
generation. Each island transmits a copy of its best
individual to the next island in the ring after the new
generation has been computed.

It has been observed that the island-based model
permits faster convergence of a genetic algorithm
towards good individuals. Another advantage of this
model is that its parallel implementation is
straightforward.

In our data-parallel implementation of ParaGene
several tasks are created at startup. Each task can be in
charge of one or several islands. Tasks exchange



information with their neighbors periodically (i.e., after
each  generation) in a  quasi-synchronous
communication phase.

The number of tasks is limited by the population
size, for each task must be in charge of at least one
island, and an island must consist of at least two
individuals. In any case, the order of magnitude of the
population sizes we consider is usually in the
hundreds for individuals, while for the number of
islands (hence the number of tasks) it is rather in the
tens.

The parallel version of ParaGene was implemented
using the PVM communication library. Experimentation
shows that with this library the cost of communications
is almost neglectable compared to that of
computations. This is because the amount of data
exchanged between tasks is quite low (typically a short
bit string). As a consequence, ParaGene can run
efficiently on any medium to loosely coupled parallel
platform, such as a Network Of Workstations (NOW). Of
course it can run on a COW or a MIMD supercomputer
as well, but this will not necessarily lead to better
performances.

ParaGene was implemented and tested on a
network of 80 UltraSPARC workstations. Experiments
were performed in order to choose the best selection
of BTS sites among a set of 600 potential ones. A very
good efficiency (76%) was observed when using up to
80 PEs.

4.5 Pipelining

In order to handle the distribution and the
synchronization of  the different modules
(components) that constitute our radio network
optimization software, we use a combination of
standard Unix facilities, such as pipe 7' inter-process
channels, and local and remote shell scripts. Pipe inter-
process channels are mostly used as synchronization
channels, as all significant data in the software can
systematically be stored to and retrieved from the file
system (which, thanks to NFS, transparently gives
access to centralized or decentralized storage
devices). A pipe channel between any two modules A
and B thus only carries little amounts of
synchronization information. Generally a piece of
information consists of the identity of the last BTS that
has been treated by A, and that can now be
considered by B.

Hence, as soon as a radio wave propagation
simulation has been performed for a given BTS k, the
availability of the resulting path-loss cell is signaled to
the coverage computation module, which can start the
production of the corresponding coverage map.
Likewise, the availability of a coverage cell for BTS k will

immediately trigger its integration by the graph
computation module.

Besides the synchronization of pure computation
modules, the pipeline also permits to control the
production of images that are built iteratively during
each computation phase, and that are sent to a remote
Java-based GUI as soon as a computation phase is
over. To produce these images, small sequential
programs are inserted in the pipeline. These programs
do not slow down the whole computation process
significantly, as they are executed on one or several
dedicated workstations. They nevertheless contribute
to make the whole process more “interactive', for they
give the user on-the-fly information about the progress
of the computation chain.

Although we have not tried to combine in the same
computation chain fully heterogeneous resources yet
(e.g., workstations and supercomputer), this should be
done in the near future. Experiments achieved on 60
COWs have confirmed that the distribution of
computation modules and their synchronization
through a pipeline lead to a very good (almost optimal)
exploitation of the available resources.

To date, starting a given computation module on
any available PE (e.g., single workstation, cluster of
workstations, MIMD supercomputer) is achieved
through the Unix “rsh' (remote shell) command, and
the distribution of the different modules over the
available PEs is managed in traditional shell-script files.
This rather simplistic implementation makes it possible
to experiment the whole parallel chain at little cost, but
it is not versatile enough. In the future we plan to
develop a more flexible and adaptive control software
for managing the available resources dynamically (e.g.,
adding or deleting a PE), and for mapping computation
sessions on these resources, taking into accounts the
particular needs of each part of the computation chain.
This control software shall also permit that several
users share the radio optimization software
simultaneously.

4.6 Towards meta-computing

Our future developments aim at the distribution of
computation modules over the computational
resources offered on the EPFL site, combining
heterogeneous parallel platforms such as loosely-
coupled pools of workstations, medium to tightly-
coupled clusters of workstations (or PC-stacks), and
tightly-coupled MIMD supercomputers (e.g., Cray T3D
and SGI Origin 2000).

Once on-site distribution has been obtained, the
next step will consist in the distribution of computation
modules over remote sites. This shall require further
developments in order to ensure transparent (and
secure) data and control exchanges between the



selected sites. To achieve this goal we could rely on
standard networking facilities such as remote file copy
(Unix command “rcp'), or automated FTP-based file
transfers.

5 CONCLUSION

In this paper we presented how different types of
parallelism can be exploited in order to optimize the
use of available parallel computing resources. In the
application presented (taken from the
telecommunication field) four levels of parallelism were
exploited, using hardware platforms ranging from
parallel supercomputers to wide area networks. Thanks
to this approach we could realize an adaptable,
interactive parallel software solving a complex multi-
disciplinary problem.

Further studies need to be undertaken, especially
toward parallel ‘meta-computing’ applications. In our
opinion, future commercial software products will
greatly make use of multilevel parallelism in order to
achieve good performances together with a user-
friendly interface.
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