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EXTENSIONS WITH ESTIMATES OF COHOMOLOGY CLASSES

VINCENT KOZIARZ

Abstract. We prove an extension theorem of “Ohsawa-Takegoshi type” for Dolbeault q-
classes of cohomology (q ≥ 1) on smooth compact hypersurfaces in a weakly pseudoconvex
Kähler manifold.

1. Introduction

Let Y be a complex submanifold of a Kähler manifold X and let L′ be a Hermitian line
bundle on X. First consider the following

Problem. Let f be a smooth D′′-closed section of Λ0,qT ⋆
X ⊗ L′ over Y satisfying a suitable

L2 condition. Can we find a smooth D′′-closed extension F of f to X together with a good
L2 estimate for F on X?

The first result of this kind was obtained by T. Ohasawa and K. Takegoshi [OT] in the
case when Y is a hyperplane of a bounded pseudoconvex domain X in C

n, L′ is the trivial
bundle and q = 0. It was further generalized by L. Manivel [Ma] (with a simplified proof by
J.-P. Demailly [De3]) in the following setting: X is a weakly pseudoconvex manifold, Y is the
zero set of a holomorphic section of a rank r Hermitian bundle over X, L′ = KX ⊗ L where
L is a Hermitian line bundle whose curvature satisfies appropriate positivity properties, KX

is the canonical bundle of X, and q = 0. When q ≥ 1, the method leads to a new technical
difficulty occurring in the regularity argument for (0, q) forms. In [De3], Demailly suggests
an approach to overcome this difficulty but, to our knowledge, the complete arguments did
not appear anywhere. In this paper, we rather consider the

Modified problem. Let q ≥ 1 and f be a smooth D′′-closed section of Λ0,qT ⋆
X ⊗ L′ over Y

satisfying a suitable L2 condition. Can we find a smooth D′′-closed extension F of f to X
as a cohomology class (i.e.[F|Y ] = [f ] ∈ Hq(Y,L′)) together with a good L2 estimate for F on
X?

Observe that if Y is a Stein submanifold (this happens e.g. whenX is a Stein manifold), the
modified problem is not relevant when q ≥ 1 since the Dolbeault group Hq(Y,L′) vanishes. In
contrast, we will focus here on the case when Y is a smooth compact hypersurface of a weakly
pseudoconvex Kähler manifold X. This situation naturally happens, for example, when X
is a compact Kähler manifold, or when X is a holomorphic family of projective algebraic
manifolds fibered over the unit disc.

Theorem 1.1. Let (X,ω) be a weakly pseudonconvex n-dimensional Kähler manifold, and
let Y ⊂ X be the zero set of a holomorphic section s ∈ H0(X,E) of a Hermitian line bundle
(E, hE); the subvariety Y is assumed to be compact and nonsingular. Let L be a line bundle
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endowed with a smooth Hermitian metric hL such that
√
−1Θ(L) +

√
−1d′d′′ log |s|2 ≥ 0,(1.1) √

−1Θ(L) +
√
−1d′d′′ log |s|2 ≥ α−1

√
−1Θ(E) for some α ≥ 1,(1.2)

|s|2 ≤ e−α(1.3)

on X. Let 0 < κ ≤ 1 and let Ω ⊂ X be a relatively compact open subset containing Y . Then,
for any q ≥ 0 and every smooth D′′-closed (0, q)-form f with values in KX ⊗L over Y , there
exists a smooth extension F of f to Ω as a cohomology class (i.e. [F|Y ] = [f ] ∈ Hq(Y,KX⊗L))
such that ∫

Ω

|F |2
|s|2(1−κ)

dVω ≤ C

κ

∫

Y

|f |2
|ds|2 dVY,ω

where C is a numerical constant depending only on Ω, E, L and q.

The norm of the forms with values in bundles will always be computed with respect to the
one induced by ω, hE and hL. Also, Θ(E) (resp. Θ(L)) will always denote the curvature of
the Hermitian line bundle (E, hE) (resp. (L, hL)). When the metrics will be twisted by some
positive functions, the weights will appear explicitely in the formulae.

Our proof follows many of the ideas outlined in [De3]. First, using the weight bumping
technique (and the adapted Bochner-Kodaira-Nakano inequality) initiated by Ohsawa and
Takegoshi, for all ε > 0, we build extensions of f of class C1 whose L2 norm is controlled, and
which are “approximately” D′′-closed (in the sense that the L2 norm of their D′′-derivative
is bounded by a constant times ε). Philosophically, passing to the limit as ε → 0 should
provide the desired extension but the limiting elliptic differential system is singular along
Y and this forbids the direct use of elliptic regularity arguments. Then, at this point, our
strategy differs from Demailly’s. Instead, we construct “approximate” q-cocycles ζε in Čech
cohomology corresponding to the previous extensions via an effective Leray’s isomorphism,
in a similar fashion as Y.-T. Siu in [Si]. During the process, we solve local D′′-equations
by standard techniques of L. Hrmander. Then, we can take the limit as ε → 0 and use the
ellipticity of the Laplacian in bidigree (0, 0) to ensure the smoothness of the extending cocycle
ζ. Finally, reversing the process, we get a smooth extension F of f as a cohomology class.
Notice that the constant C in Theorem 1.1 is mainly related to a finite covering of Ω ⊃ Y
by Stein open subsets (which is used to apply Leray’s isomorphism) and the norm of the
derivatives of a partition of unity subordinate to this finite covering. This explains in part
why we need Y to be compact.

A consequence of Theorem 1.1 is a qualitative surjectivity theorem for restriction mor-
phisms in Dolbeault cohomology:

Corollary 1.2. Let X, Y , E and L be as in Theorem 1.1 i.e. satisfying (1.1), (1.2) and
(1.3). Then the restriction morphism

Hq(X,KX ⊗ L) −→ Hq(Y, (KX ⊗ L)|Y )

is surjective for any q ≥ 0.

Applying Theorem 1.1 to E = C and to any semi-positive line bundle L (for instance
L = C), we also easily get the following corollary which contains a special case of the invariance
of the Hodge numbers for a family of compact Kähler manifolds (a result due to K. Kodaira
and D. Spencer):
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Corollary 1.3. Let π : X → ∆ be a proper holomorphic submersion over the unit disc and L a
semi-positive line bundle on X. Assume that X is a Kähler manifold of dimension n+1. Then,
for any q ≥ 0, hn,q(Xt, L) := dimHn,q(Xt, L) is independent of t ∈ ∆ (where Xt = π−1(t)).

Acknowledgments. I would like to thank Mihai Păun for many valuable discussions. I
would also like to thank Jean-Pierre Demailly for explaining me details on his article [De3],
as well as Benot Claudon and Dror Varolin for useful comments on an earlier version of this
paper.

2. Preliminary material

From now on, we assume that X, Y , L and E satisfy the hypotheses of Theorem 1.1.
Let c ∈ R such that Ω ⊂ Xc := {x ∈ X , ψ(x) < c}, where ψ is the plurisubharmonic

exhaustion of X. Let U = {Uj}j∈J be a finite covering of the closure of Ω by coordinate charts
φj : B −→ Uj where B is the unit ball in C

n, and such that Uj ⊂ Xc for all j. Denoting by ν

the standard Hermitian norm on C
n, we assume that the functions ϕj := ν ◦ φ−1

j satisfy

(2.1)
√
−1Θ(L)− β

√
−1Θ(E) +

√
−1d′d′′ϕj ≥ ω

on Uj for any β ∈ [0, 1] (this is always possible if the Uj’s are chosen small enough). For any

multi-index (j0, . . . , jℓ), we shall denote by ϕj0,...,jℓ the function
∑ℓ

i=0 ϕji which is defined on
the intersection Uj0,...,jℓ := Uj0 ∩ · · · ∩ Ujℓ .

If F is a smooth Hermitian vector bundle over X and U ⊂ X is an open subset then, for all
integer k, we denote by Ek(U,F ) the space of sections of F over U which are of class Ck and
by Ek

c (U,F ) those with compact support. We also denote by W k(U,F ) the Sobolev space of
sections whose derivatives (in the sense of distribution theory) up to order k are in L2.

Let us recall three useful results taken from [De1] (Remark 1.6, Lemma 3.3 and Lemma
6.9):

Proposition 2.1. (a) Xc\Y is complete Kähler.
(b) Let ω and ω′ be two Hermitian forms on TX such that ω ≤ ω′. Let E be a Hermitian

vector bundle on X. Then, for any q ≥ 0 and any u ∈ Λn,qT ⋆
X ⊗E, |u|2ω′ dVω′ ≤ |u|2ω dVω.

(c) Let Ω be an open subset of Cn and Y a complex analytic subset of Ω. Assume that v is
a (p, q− 1)-form with L2

loc coefficients and w a (p, q)-form with L1
loc coefficients such that

d′′v = w on Ω\Y (in the sense of distribution theory). Then d′′v = w on Ω.

The following lemma is a consequence of a classical result (see [De2], Corollary 5.3):

Lemma 2.2. Let m and p be positive integers.

(a) Let v ∈Wm(Uj0,...,jℓ,Λ
n,pT ⋆

X ⊗ L⊗ E−1) such that D′′v = 0 and
∫

Uj0,...,jℓ

|v|2e−ϕj0,...,jℓ dVω < +∞.

Then there exists a (n, p − 1) form u ∈ Wm+1(Uj0,...,jℓ,Λ
n,p−1T ⋆

X ⊗ L ⊗ E−1) such that
D′′u = v and ∫

Uj0,...,jℓ

|u|2e−ϕj0,...,jℓ dVω ≤ 1

p

∫

Uj0,...,jℓ

|v|2e−ϕj0,...,jℓ dVω.

(b) Let 0 < κ ≤ 1 and ε > 0. Let v ∈Wm(Uj0,...,jℓ,Λ
n,pT ⋆

X ⊗ L) such that D′′v = 0 and
∫

Uj0,...,jℓ

|v|2
(|s|2 + ε2)1−κ

e−ϕj0,...,jℓ dVω < +∞.
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Then there exists a (n, p− 1) form u ∈Wm+1(Uj0,...,jℓ,Λ
n,p−1T ⋆

X ⊗L) such that D′′u = v
and

∫

Uj0,...,jℓ

|u|2
(|s|2 + ε2)1−κ

e−ϕj0,...,jℓ dVω ≤ 1

p

∫

Uj0,...,jℓ

|v|2
(|s|2 + ε2)1−κ

e−ϕj0,...,jℓ dVω.

Proof. We only check the hypotheses of Corollary 5.3 in [De2]. The open subset Uj0,...,jℓ ⊂ X
is Stein and on Uj0,...,jℓ, the line bundle L ⊗ E−1, resp. L, endowed with its metric twisted

by e−ϕj0,...,jℓ , resp. (|s|2 + ε2)−(1−κ)e−ϕj0,...,jℓ , has curvature

√
−1Θ(L)−

√
−1Θ(E) +

√
−1d′d′′ϕj0,...,jℓ,

resp. √
−1Θ(L) + (1− κ)

√
−1d′d′′ log(|s|2 + ε2) +

√
−1d′d′′ϕj0,...,jℓ,

which, by inequality (3.2) and assumption (2.1), is bounded from below by
√
−1Θ(L)−

√
−1Θ(E) +

√
−1d′d′′ϕj0 ≥ ω,

resp.
√
−1Θ(L)− (1− κ)

〈
√
−1Θ(E)s, s〉
|s|2 + ε2

+
√
−1d′d′′ϕj0 ≥ ω.

The fact that u can be chosen in the Sobolev space Wm+1 comes from the ellipticity of the
Laplacian. Let us explain why in the case (a), the case (b) being completely similar. In
fact, the D′′-equation is solved using complete metrics ωε on Uj0,...,jℓ , such that ωε ≥ ω and
ωε → ω as ε → 0. For any ε > 0, the corresponding minimal solution uε (i.e. the one
satisfying D′′uε = v and uε ∈ (KerD′′)⊥ωε ) is such that
∫

Uj0,...,jℓ

|uε|2ωε
e−ϕj0,...,jℓ dVωε ≤

1

p

∫

Uj0,...,jℓ

|v|2ωε
e−ϕj0,...,jℓ dVωε ≤

1

p

∫

Uj0,...,jℓ

|v|2e−ϕj0,...,jℓ dVω

where the latter inequality comes from Proposition 2.1 (b). Then, there exists a sequence (εµ)
converging to 0 such that uεµ converges weakly to some u in L2

loc as µ → +∞: u satisfies
D′′u = v, ∫

Uj0,...,jℓ

|u|2e−ϕj0,...,jℓ dVω ≤ 1

p

∫

Uj0,...,jℓ

|v|2e−ϕj0,...,jℓ dVω

but also u ∈ (KerD′′)⊥ω = Im(D′′)⋆ω (and therefore (D′′)⋆ωu = 0). Indeed, L2(ω) ⊂ L2(ωε)
because | . |2ωε

dVωε ≤ | . |2 dVω and since ωε → ω, we get u ∈ (KerD′′)⊥ω by the dominated
convergence theorem. Finally, u satisfies D′′u = v and (D′′)⋆u = 0 which is an elliptic
differential system and standard arguments give u ∈Wm+1 if v ∈Wm.

Notice that we can skip the extraction of a weak limit if we only need a solution with the
same estimate on a slightly smaller relatively compact open subset of Uj0,...,jℓ: all we have to
do is take a complete metric on Uj0,...,jℓ which coincides with ω on the smaller subset.

�

Finally, we also select a smooth partition of unity {σj}j∈J subordinate to U (i.e. for each
j, σj ∈ E∞

c (Uj , [0, 1]) and
∑

j∈J σj(x) = 1 for any x ∈ Ω).

3. Proof of the theorem

Recall that, by assumption, Y ⊂ X is a smooth hypersurface so that E ≃ OX(Y ).
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3.1. Construction of smooth extensions. In this section, we prove the following

Lemma 3.1. For any k ≥ 0, there exists a smooth section

f̃∞ ∈ E∞(X,Λn,qT ⋆
X ⊗ L)

such that

(a) f̃∞ coincides with f in restriction to Y ,

(b) |f̃∞| = |f | at every point of Y ,

(c) D′′f̃∞ = 0 at every point of Y ,

(d) s−1D′′f̃∞ ∈ Ek(X,Λn,q+1T ⋆
X ⊗ L⊗OX(−Y )).

Proof . Let us cover Y by coordinate patches Wj ⊂ X biholomorphic to polydiscs and with
the following property: if we denote the corresponding coordinates by (zj , wj) ∈ ∆ ×∆n−1,

where wj = (w1
j , . . . , w

n−1
j ), then Wj ∩ Y = {zj = 0}. On each Wj, we fix some holomorphic

σj ∈ Γ(Wj ,KX ⊗ L) which trivializes KX ⊗ L.
As explained in [De3], the restriction map (Λ0,qT ⋆

X)|Y −→ Λ0,qT ⋆
Y can be viewed as an

orthogonal projection onto a C∞ subbundle of (Λ0,qT ⋆
X)|Y . One might extend this subbundle

fromWj ∩Y toWj and then extend f onWj by some smooth form f̂j ∈ E∞(Wj ,Λ
n,qT ⋆

X ⊗L).
Using a smooth partition of unity θj ∈ E∞

c (Wj ,R),
∑

j θj = 1 on a neighbourhood of Y , we

get a global smooth extension f̂ =
∑

j θj f̂j of f which fulfills conditions (a) and (b). Since

(D′′f̂)|Y = (D′′f̂|Y ) = D′′f = 0,

we can write D′′f̂ = dz̄j ∧ gj on Wj ∩ Y for some smooth (0, q)-forms gj which we extend
arbitrarily to Wj . Then

f̃∞ := f̂ −
∑

j

θj z̄jgj

coincides with f̂ on Y and satisfies (c).
We proceed by induction to get (d). Assume that on each Wj ,

D′′f̃∞ = zjfj(zj , wj) + z̄kj

[
dz̄j ∧

∑

|I|=q

aI(wj)σjdw̄
I
j +

∑

|I′|=q+1

bI′(wj)σjdw̄
I′
j

]
+ z̄k+1

j hj(zj , wj)

for some fj, hj ∈ E∞(Wj ,Λ
n,q+1T ⋆

X ⊗ L), aI , bI′ ∈ E∞(∆n−1,C), k ≥ 1, and where the multi-

indices I, I ′ are increasing. We say that f̃∞ enjoys property (Pk). Remark that such an

equality implies that s−1D′′f̃∞ ∈ Ek−2(X,Λn,q+1T ⋆
X ⊗ L⊗OX(−Y )) if k ≥ 2. Moreover, the

extension f̃∞ we just constructed satisfies property (P1) because D
′′f̃∞ = 0 along Y .

Of course, D′′(D′′f̃∞) = 0, but also the direct computation gives

D′′(D′′f̃∞) = zjD
′′fj(zj , wj) + kz̄k−1

j dz̄j ∧
[ ∑

|I′|=q+1

bI′(wj)σjdw̄
I′
j

]
+ z̄kj h

′
j(zj , wj)

for some h′j ∈ E∞(Wj ,Λ
n,q+2T ⋆

X ⊗ L), hence the bI′ ’s must vanish identically. So if we take

f̃ ′∞ = f̃∞ −
∑

j

θj
z̄k+1
j

k + 1

∑

|I|=q

aI(wj)σjdw̄
I
j ,
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we have

D′′f̃ ′∞ = D′′f̃∞ −
∑

j

(
z̄k+1
j

k + 1
d′′θj + θj z̄

k
j dz̄j

)
∧

∑

|I|=q

aI(wj)σjdw̄
I
j

−
∑

j

θj
z̄k+1
j

k + 1
D′′

(∑

|I|=q

aI(wj)σjdw̄
I
j

)

=
∑

j

θj

(
D′′f̃∞ − z̄kj dz̄j ∧

∑

|I|=q

aI(wj)σjdw̄
I
j

)
+

∑

j

z̄k+1
j h′′j (zj , wj)

=
∑

j

zjθjfj(zj , wj) +
∑

j

z̄k+1
j

(
θjhj(zj , wj) + h′′j (zj , wj)

)

for some h′′j ∈ E∞
c (Wj ,Λ

n,q+1T ⋆
X ⊗ L). Then, f̃ ′∞ enjoys property (Pk+1).

�

3.2. Construction of approximate extensions with control. Let θ : R −→ [0, 1] be a
smooth function with support in (−∞, 1), such that θ ≡ 1 on (−∞, 1/2] and |θ′| ≤ 4, and
consider the truncated extension of f

f̃ε := θ(ε−2|s|2)f̃∞
where f̃∞ is the extension provided by Lemma 3.1, such that s−1D′′f̃∞ ∈ Ek(X,Λn,q+1T ⋆

X ⊗
L ⊗ OX(−Y )) for some k ≥ 1 which will be determined later. We wish to solve on X the
equation

D′′uε = D′′f̃ε

with estimate, and the additional constraint that uε vanishes along Y . We also expect some

regularity on uε in order to justify that f̃ε − uε is a (D′′-closed) extension of f . In general,
we are not able to get this by the method we use here, and we can only produce approximate
solutions.

The fundamental tool is the following existence result (see [De3], [Pa]):

Theorem 3.2. Let X be a complete Kähler manifold of dimension n equipped with a (not
necessarily complete) Kähler metric ω, and let L be a line bundle endowed with a smooth
Hermitian metric. Assume that there exist two smooth bounded functions η, λ > 0 on X
satisfying

(3.1) η
√
−1Θ(L)−

√
−1d′d′′η −

√
−1

d′η ∧ d′′η
λ

≥
√
−1τd′µ ∧ d′′µ

for some positive function τ and some function µ. Let us consider the (densely defined)
modified D′′ operators

Tu := D′′(
√
η + λu) and Su :=

√
η(D′′u)

acting on forms with values in L. Let g = d′′µ∧ g0+ g2 be a L2 form of (n, q+1) type (q ≥ 0)
with values in L such that

(a) D′′g = 0,
(b) g0 ∈ L2(X,Λn,qT ⋆

X ⊗ L),
(c) C(g0, τ) :=

∫
X 1/τ |g0|2dVω < +∞,

(d) |g2|2 ≤ γ C(g0, τ) almost everywhere for some positive constant γ.
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Then, for any u ∈ Dom T ⋆ ∩DomS, we have
∣∣∣
∫

X
〈g, u〉dVω

∣∣∣
2
≤ C(g0, τ)

(
‖T ⋆u‖2 + ‖Su‖2 + γ‖u‖2

)
.

In particular, there exist v ∈ L2(X,Λn,qT ⋆
X ⊗ L) and w ∈ L2(X,Λn,q+1T ⋆

X ⊗ L) such that

Tv + γ1/2w = g

together with the estimate
∫

X
|v|2dVω +

∫

X
|w|2dVω ≤ C(g0, τ).

As before, let c ∈ R be such that Ω ⊂ Xc. For simplicity, we will assume in the sequel

that X = Xc. We are going to apply Theorem 3.2 to D′′f̃ε on X\Y . By Proposition 2.1
(a), X\Y can be equipped with a complete Kähler metric. As for the bundle L, we endow it
with its original metric multiplied with the weight |s|−2 in order to force the vanishing of the
approximate solution along Y .

For any ε > 0, we set σε := − log(ε2 + |s|2). Remark that, because of the condition
|s| ≤ e−α, this function is positive for ε small enough. Let χ : R+ −→ R+ be any strictly
concave function whose derivative satisfies 1 ≤ χ′ ≤ 2 and such that χ(− log(ε2+e−2α)) ≥ 2α
for any ε > 0 small enough (in [De3] and [Pa], χ(t) = t+ log(1 + t) but we will choose other
functions picked in [MV]). Let us define the two positive functions (again ε is assumed to be
small enough)

ηε := χ(σε) and λε := −χ
′(σε)

2

χ′′(σε)
.

Although this is done carefully in [De3] and [Pa], we check quickly that ηε and λε fulfill
condition (3.1) in Theorem 3.2. It is easy to see that

(3.2) −
√
−1d′d′′σε ≥

√
−1

ε2

|s|2 d
′σε ∧ d′′σε −

〈
√
−1Θ(E)s, s〉
ε2 + |s|2

and it is straightforward that

d′ηε = χ′(σε)d
′σε , d′′ηε = χ′(σε)d

′′σε , d′d′′ηε = χ′(σε)d
′d′′σε + χ′′(σε)d

′σε ∧ d′′σε.
Thus, since χ′ is positive,

−
√
−1d′d′′ηε ≥

( 1

χ′(σε)

ε2

|s|2 +
1

λε

)√
−1d′ηε ∧ d′′ηε −

χ′(σε)

ε2 + |s|2 〈
√
−1Θ(E)s, s〉.

If ε is small enough, then for any x ∈ X, ηε(x) ≥ χ(− log(ε2 + e−2α)) ≥ 2α. Taking into
account the curvature assumptions (1.1) and (1.2) in Theorem 1.1 as well as the fact that
χ′ ≤ 2, we obtain

ηε(
√
−1Θ(L) +

√
−1d′d′′ log |s|2) ≥ ηε

α

√
−1Θ(E) ≥ χ′(σε)

ε2 + |s|2 〈
√
−1Θ(E)s, s〉.

Finally, summing up the two latter inequalities, we get

ηε(
√
−1Θ(L)+

√
−1d′d′′ log |s|2)−

√
−1d′d′′ηε−

√
−1

λε
d′ηε ∧ d′′ηε ≥

1

χ′(σε)

ε2

|s|2
√
−1d′ηε ∧ d′′ηε

which proves that (3.1) is fulfilled with τ =
1

χ′(σε)

ε2

|s|2 and µ = ηε. Now, we can write
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D′′f̃ε = d′′ηε ∧ gε + θ
( |s|2
ε2

)
D′′f̃∞

where

gε :=
(
1 +

|s|2
ε2

)
θ′
( |s|2
ε2

) f̃∞
χ′(σε)

.

A quick computation shows that

(3.3) lim
ε→0

1

ε2

∫

X\Y
θ′
( |s|2
ε2

)2
|f̃∞|2 dVω = c0

∫

Y

|f |2
|ds|2 dVY,ω

for some “universal” constant c0. Therefore, since θ(ε−2|s|2) is supported in {|s| < ε}, and
since D′′f̃∞ = 0 on Y , for any γ > 0,

∣∣∣∣θ
( |s|2
ε2

)
D′′f̃∞

∣∣∣∣ ≤ γ

∫

X\Y

1

τ

|gε|2
|s|2 dVω =

γ

ε2

∫

X\Y

(
1 +

|s|2
ε2

)2
θ′
( |s|2
ε2

)2
|f̃∞|2 dVω

if ε > 0 is small enough.
Hence, we can apply Theorem 3.2: we find uε,γ =

√
ηε + λεvε,γ and wε,γ which satisfy the

equation

D′′uε,γ + γ1/2wε,γ = D′′f̃ε

on X\Y and such that

∫

X\Y

|uε,γ |2
|s|2(ηε + λε)

dVω +

∫

X\Y

|wε,γ |2
|s|2 dVω ≤ 1

ε2

∫

X\Y

(
1 +

|s|2
ε2

)2
θ′
( |s|2
ε2

)2 |f̃∞|2
χ′(σε)

dVω

≤ 4

ε2

∫

X\Y
θ′
( |s|2
ε2

)2
|f̃∞|2 dVω.(3.4)

3.3. Regularization of the approximate solution. Recall that Y is a divisor such that
E ≃ OX(Y ). Here we use a trick of Demailly: we consider s−1uε,γ (resp. s−1wε,γ) as a L2

(0, q)-form (resp. (0, q + 1)-form) with values in the twisted line bundle KX ⊗ L⊗OX(−Y )
equipped with a smooth Hermitian metric. By Proposition 2.1 (c), we can write

D′′(s−1uε,γ) + γ1/2s−1wε,γ = s−1D′′f̃ε

not only on X\Y but also on X because s−1uε,γ is locally L2, s−1wε,γ is L2 hence locally L1,

and s−1D′′f̃ε is of class C
k hence locally L1 (recall that f̃∞, as chosen in Lemma 3.1, is such

that s−1D′′f̃∞ is of class Ck, k ≥ 1). However, we do not know much about the regularity of
uε,γ and wε,γ .

But E∞
c (X,Λn,qT ⋆

X ⊗ L ⊗ OX(−Y )) is dense in DomD′′ for the graph norm, where we
consider D′′ as an operator acting on (n, q) forms on X with values in L ⊗ OX(−Y ). More
precisely, the density holds when X is endowed with a complete metric. If X = Xc as we
assumed above, we can work instead on Xc′ for some c′ > c, and there exists on Xc′ some
complete Kähler metric which coincides with ω on Xc.

Then, we can find some tε,γ ∈ E∞(X,Λn,qT ⋆
X ⊗ L⊗OX(−Y )), which is L2, such that

(3.5)

∣∣∣∣
∫

X

|tε,γ|2
ηε + λε

dVω −
∫

X

|s−1uε,γ|2
ηε + λε

dVω

∣∣∣∣ ≤ ε
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(recall that ηε is bounded by 2α from below), and D′′(tε,γ − s−1uε,γ) has L
2 norm bounded

by γ1/2 from above. As a consequence,

D′′tε,γ = s−1D′′f̃ε + rε,γ

on X, with rε,γ ∈ Ek(X,Λn,q+1T ⋆
X ⊗ L ⊗ E−1) since D′′tε,γ and s−1D′′f̃ε are of class Ck.

Moreover, rε,γ satisfies

(3.6)

∫

X
|rε,γ |2 ≤ C2

1γ

for some positive constant C1 depending on f , but not on ε and γ (see (3.4) and (3.3)).

Finally, s−1D′′f̃ε is D′′-closed on X\Y , hence on X by Proposition 2.1 (c), and therefore
D′′rε,γ = 0.

3.4. The choice of ηε and λε. Let us come now to the choice of ηε and λε (see [MV] for
more details). For any 0 < κ ≤ 1, we define for t ≥ 0 the functions

gκ(t) = κ−1eκt , hκ(t) =

∫ t

0

1

2eκy − 1
dy and χκ(t) = 1 + t+ hκ(t).

One checks immediatly that 1 ≤ χ′
κ ≤ 2 and χ′′

κ < 0. Moreover,

χκ(− log(ε2 + e−2α)) ≥ 1− log(ε2 + e−2α) ≥ 1 + 2α− log(1 + ε2e2α) ≥ 2α

when ε is small enough. Clearly, χκ(t) ≤ 1 + 2t and it follows that

χκ(t)

gκ(t)
≤ κ(1 + 2t)

eκt
≤ 2

as is seen from a simple computation. Moreover,

−χ
′
κ(t)

2

χ′′
κ(t)

≤ 2gκ(t).

As a consequence, if we fix κ ≤ 1 and take χ = χκ, we have

(3.7) ηε + λε ≤
4

κ(|s|2 + ε2)κ
.

3.5. Construction of q-cochains via Leray’s isomorphism. Recall that we have fixed a
finite open covering U = {Uj}j∈J of Ω. We endow the group Cℓ

2(U , E1(Λn,pT ⋆
X ⊗L⊗E−1)) of

(alternate) ℓ-cochains with values in E1(Λn,pT ⋆
X ⊗ L⊗ E−1) which are L2 with the norm

‖ςℓ‖2 = max
j0<···<jℓ

∫

Uj0,...,jℓ

|ςℓj0,...,jℓ |
2e−ϕj0,...,jℓ dVω

and for all 0 < κ ≤ 1 and ε > 0, we endow Cℓ
2(U , E1(Λn,pT ⋆

X ⊗ L)) with the norm

‖ςℓ‖2κ,ε = max
j0<···<jℓ

∫

Uj0,...,jℓ

|ςℓj0,...,jℓ|
2

(|s|2 + ε2)1−κ
e−ϕj0,...,jℓ dVω.

Remark that in the case when ς0 is the 0-cocycle associated to a section ς of E1(Λn,pT ⋆
X ⊗L⊗

E−1)) (resp. E1(Λn,pT ⋆
X ⊗ L))),

‖ς0‖2 ≤
∫

X
|ς|2dVω

(
resp. ‖ς0‖2κ,ε ≤

∫

X

|ς|2
(|s|2 + ε2)1−κ

dVω

)

since the ϕj ’s are nonnegative.
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Now, we construct a (q + 1)-cocycle in Zq+1(U ,O(KX ⊗ L ⊗ E−1)) corresponding to rε,γ
via Leray’s isomorphism between the Dolbeault and the Čech cohomology groups. In fact, we
are mostly interested in the intermediate cochains which appear during the process and the

control we have on their norm. The extension f̃∞ of f is supposed to be sufficiently regular
(i.e. k is large enough in Proposition 3.1) in order that rε,γ , and every cochain obtained by
solving local D′′-equations below, is at least of class C1 (see section 3.3, Lemma 2.2 and use
Sobolev lemma: Wm(U) ⊂ E1(U) for any open subset U ⊂ X if m > 1 + n

2 ).

For notational simplicity, we denote rℓε,γ,(j0,...,jℓ) ∈ Γ(Uj0,...,jℓ, E1(Λn,q−ℓT ⋆
X ⊗ L⊗ E−1)) by

rℓj0,...,jℓ.

First, we solve the equation D′′r0j = rε,γ on the Uj’s, then we solve the equations

D′′rℓ+1
j0,...,jℓ+1

= (δrℓ)j0,...,jℓ+1
on Uj0 ∩ · · · ∩ Ujℓ+1

(0 ≤ ℓ ≤ q − 1)

using each time Lemma 2.2 (a). Finally, δrqε,γ ∈ Zq+1(U ,O(KX⊗L⊗E−1)) is a representative
in Čech cohomology of [rε,γ ] ∈ Hq+1(X,KX ⊗ L⊗ E−1).

Lemma 3.3. For any ℓ, we have

‖rℓε,γ‖2 ≤
(ℓ+ 1) . . . 2.1

(q + 1).q . . . (q − ℓ+ 1)
‖rε,γ‖2 ≤

(ℓ+ 1) . . . 2.1

(q + 1).q . . . (q − ℓ+ 1)

∫

X
|rε,γ |2dVω.

Proof. For any ℓ ≥ 1,

‖rℓε,γ‖2 ≤ 1

q − ℓ+ 1
‖δrℓ−1

ε,γ ‖2

≤ ℓ+ 1

q − ℓ+ 1
‖rℓ−1

ε,γ ‖2

and

‖r0ε,γ‖2 ≤
1

q + 1
‖rε,γ‖2 ≤ 1

q + 1

∫

X
|rε,γ |2dVω

by the estimate in Lemma 2.2 (a).
�

In a similar manner, we produce a q-cochain ζε,γ ∈ Cq(U ,O(KX ⊗L)) corresponding to the

“approximately” D′′-closed extension f̃ε − stε,γ ∈ Γ(X, E1(Λn,qT ⋆
X ⊗L)) of f . More precisely,

on the Uj ’s, we solve the equation D′′h0j = f̃ε − stε,γ + sr0ε,γ,j, then we solve

D′′hℓ+1
j0,...,jℓ+1

= (δhℓ)j0,...,jℓ+1
+ (−1)ℓ+1srℓ+1

j0,...,jℓ+1
on Uj0 ∩ · · · ∩ Ujℓ+1 (0 ≤ ℓ ≤ q − 2)

using Lemma 2.2 (b). This is indeed possible since the right-hand side is D′′-closed: if

D′′hℓj0,...,jℓ = (δhℓ−1)j0,...,jℓ + (−1)ℓsrℓj0,...,jℓ

then

D′′(δhℓ)j0,...,jℓ+1
= (δ(D′′hℓ))j0,...,jℓ+1

= (δ2hℓ−1)j0,...,jℓ+1
+ (−1)ℓs(δrℓ)j0,...,jℓ+1

= 0 + (−1)ℓsD′′rℓ+1
j0,...,jℓ+1

.

Finally, let ζε,γ := δhq−1
ε,γ + (−1)qsrqε,γ ∈ Cq(U ,O(KX ⊗L)) (in particular D′′ζε,γ = 0 and ζε,γ

is actually smooth by ellipticity of D′′ in bidegree (0, 0)).

In the next proposition, we denote by V the finite Stein covering {Vj}j∈J = {Uj ∩ Y }j∈J
of Y .

Proposition 3.4. Let 0 < κ ≤ 1. The cochain ζε,γ enjoys the following properties:
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(a)

‖ζε,γ‖2κ,ε ≤
16(q + 1)c0

κ

∫

Y

|f |2
|ds|2dVY,ω + β(ε, γ)

where β is a positive function such that β(ε, γ) → 0 as ε, γ → 0 (recall that for any γ > 0,
ζε,γ only exists if ε > 0 is small enough).

(b) For any ε, γ, ζε,γ |Y ∈ Zq(V,O((KX ⊗ L)|Y )) is a representative in Čech cohomology of

the cohomology class [f ] ∈ Hq(Y, (KX ⊗ L)|Y ).

Proof. Let χ = χκ be as in section 3.4. We use the corresponding ηε and λε.

(a) We have

‖ζε,γ‖κ,ε ≤ ‖δhq−1
ε,γ ‖κ,ε + ‖srqε,γ‖κ,ε

≤
√
q + 1‖hq−1

ε,γ ‖κ,ε + e−
ακ
2 ‖rε,γ‖

by Lemma 3.3, since |s|2(|s|2+ ε2)−(1−κ) ≤ |s|κ ≤ e−
ακ
2 according to assumption (1.3). In

the same way, for any ℓ ≥ 1,

‖hℓε,γ‖κ,ε ≤ 1√
q − ℓ

(‖δhℓ−1
ε,γ ‖κ,ε + ‖srℓε,γ‖κ,ε)

≤
√
ℓ+ 1√
q − ℓ

‖hℓ−1
ε,γ ‖κ,ε +

√
(ℓ+ 1) . . . 2.1√

(q + 1).q . . . (q − ℓ)
e−

ακ
2 ‖rε,γ‖

where we also used the estimate in Lemma 2.2 (b). Finally,

‖h0ε,γ‖κ,ε ≤ 1√
q
(‖f̃ε − stε,γ‖κ,ε + ‖sr0ε,γ‖κ,ε)

≤ 1√
q
‖f̃ε − stε,γ‖κ,ε +

1√
(q + 1).q

e−
ακ
2 ‖rε,γ‖.

Collecting all these inequalities, we get

‖ζε,γ‖κ,ε ≤
√
q + 1‖f̃ε − stε,γ‖κ,ε + qe−

ακ
2 ‖rε,γ‖ ≤

√
q + 1‖f̃ε − stε,γ‖κ,ε + q C1γ

1/2.

Now, it is easy to see that

∫

X

|f̃ε − stε,γ|2
(|s|2 + ε2)1−κ

dVω ≤
∫

X

|stε,γ |2
(|s|2 + ε2)1−κ

dVω + C2 ε
2κ

for some constant C2, as f̃ε is uniformly bounded with support in {|s| < ε}. Finally, by
(3.7),

∫

X

|stε,γ |2
(|s|2 + ε2)1−κ

dVω ≤
∫

X
(|s|2 + ε2)κ|tε,γ |2 dVω ≤ 4

κ

∫

X

|tε,γ|2
ηε + λε

dVω

and the desired inequality follows from (3.4), (3.5) and (3.3).
(b) It is clear since on Uj0,...,jℓ+1 ∩ Y , the restriction of (δhℓ)j0,...,jℓ is always D

′′-closed, hence
we construct an “exact” representative in restriction to Y .

�
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3.6. Passing to the limit and reversing the process to get the extension. Now, we
just have to make γ and ε go to zero and extract a weak limit of ζε,γ. This weak limit ζ
is an element of Zq(U ,O(KX ⊗ L)) since D′′ζε,γ = 0 for any ε, γ, and δζε,γ = (−1)qδ(srqε,γ)

which, by (3.6) and Proposition 3.3, has L2 norm bounded by some constant times γ1/2, thus
δζ = 0. Moreover, ζ|Y ∈ Zq(V,O((KX ⊗L)|Y )) is a representative in Čech cohomology of the
cohomology class [f ] ∈ Hq(Y, (KX⊗L)|Y ) since this is the case of any ζε,γ |Y by Proposition 3.4

(b). For all j0, . . . , jq, as the ϕj ’s are bounded from above by 1, we obtain
∫

Uj0,...,jq

|ζ|2
|s|2(1−κ)

dVω ≤ 16eq+1(q + 1)c0
κ

∫

Y

|f |2
|ds|2 dVY,ω

if we take the limit in the inequality of Proposition 3.4 (a).
Finally, we construct the desired extension F in the following way. For 0 ≤ ℓ ≤ q − 1, we

produce ξℓ ∈ Cℓ(U , E∞(Λn,q−ℓ−1T ⋆
X ⊗ L)) such that

(i) (δξq−1)j0,...,jq = ζj0,...,jq on Uj0 ∩ · · · ∩ Ujq ,

(ii) (δξℓ)j0,...,jℓ+1
= D′′ξℓ+1

j0,...,jℓ+1
on Uj0 ∩ · · · ∩ Ujℓ+1

(0 ≤ ℓ ≤ q − 2).

These δ-equations are solved by using the partition of unity {σj}j∈J subordinate to U in the
following way:

ξq−1
j0,...,jq−1

=
∑

i σi ζi,j0,...,jq−1
,

ξℓj0,...,jℓ =
∑

i σiD
′′ξℓ+1

i,j0,...,jℓ
(0 ≤ ℓ ≤ q − 2).

Finally, we set

F = D′′ξ0j = q!
∑

j1<···<jq
ji 6=j

ζjq,...,j1,j d
′′σj1 ∧ · · · ∧ d′′σjq

on Uj. Then, F defines a D′′-closed section in Γ(Ω, E∞(Λ0,qT ⋆
X ⊗KX ⊗L)) such that [F|Y ] =

[f ] ∈ Hq(Y, (KX ⊗ L)|Y ) and the estimate
∫

Ω

|F |2
|s|2(1−κ)

dVω ≤ 16eq+1(q + 1)c0Cσ|J |!
κ(|J | − q − 1)!

∫

Y

|f |2
|ds|2 dVY,ω

holds for some constant Cσ depending only on the partition of unity {σj}j∈J and q (one can
take Cσ = maxj∈J |d′′σj |2q).
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