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Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton

superfluid
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We present a theoretical study of the hydrodynamic properties of a quantum gas of exciton-
polaritons in a semiconductor microcavity under a resonant laser excitation. The effect of a spa-
tially extended defect on the superfluid flow is investigated as a function of the flow speed. The
processes that are responsible for the nucleation of vortices and solitons in the wake of the defect
are characterized, as well as the regimes where the superfluid flow remains unperturbed. Specific
features due to the non-equilibrium nature of the polariton fluid are put in evidence.
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In the last decades, degenerate quantum gases and liq-
uids have been a very active field of investigation. This
research originated from the early experimental obser-
vation of superconductivity in metals and superfluidity
of liquid Helium [1] and has experienced a further boost
in the mid-90’s following the experimental advances in
the preparation and manipulation of quantum degener-
ate gases of ultra-cold bosonic and fermionic atoms [2].
In the meanwhile, the long lasting quest for Bose-

Einstein condensation of quasi-particles in solid-state sys-
tems has been finally accomplished with the observation
of condensation in gases of magnons [3, 4], exotic exci-
tons in quantum Hall bilayers [5], and exciton-polaritons
in semiconductor microcavities [6, 7]. Motivated by re-
cent theoretical proposals [8–10], researchers have then
started investigating the peculiar superfluidity proper-
ties of the quantum fluid of polaritons: robust propa-
gation of a coherent polariton bullet hitting structural
defects [11] has been demonstrated, as well as a strongly
enhanced lifetime of supercurrents in a polariton conden-
sate [12]. In the simplest case of a resonantly pumped
polariton gas, the Landau criterion for frictionless flow
in the presence of weak defects has been experimentally
demonstrated in a quantitative way in Ref. [13]. In the
same work, a Cherenkov-like conical wake of phonons was
observed in the density profile when the polariton gas hits
the defect at higher speed. These observations are in full
agreement with the theoretical anticipations of Ref. [10].
While liquid Helium experiments have given solid ev-

idence of a critical speed for frictionless flow, they can
only offer a limited access to the microscopic details of
the friction process and, in particular, of the role played
by vortices. Pioneering theoretical work has in fact an-
ticipated the onset of an additional friction mechanism
involving nucleation of vortex pairs and/or solitons at
the surface of a spatially extended and strong defect even
at speeds below the Landau critical velocity for phonon
emission [14–17].
Experiments with ultra-cold atom hitting the repulsive

optical potential of a blue-detuned laser have provided

clear evidence for a threshold-like behavior of the fric-
tion force with a critical velocity definitely lower than
the one predicted by the Landau criterion [18], and have
observed the phonon wake in a supersonically moving
superfluid [19]. However, no direct evidence of hydro-
dynamic nucleation of vortices by a strong defect has
been reported yet. The reason most probably lies in the
geometry of the systems considered so far – a very elon-
gated condensate in Ref. [18], a radially expanding one
in Ref. [19].
Spontaneous appearance of spatially pinned vortices

in polariton condensates has been recently reported in
Ref. [20] as a result of a complex interplay of disorder,
interactions, pumping and dissipation. Related work
on vortices in polariton condensates has appeared in
Ref. [21, 22]. Theoretical work on the spontaneous ap-
pearance of vortices in polariton condensates was re-
ported in Ref. [23], but the nucleation mechanism did
not involve hydrodynamic instabilities at the surface of
defects.
In the present Letter we present a theoretical investiga-

tion of the behaviour of a polariton superfluid when hit-
ting a spatially extended defect. We specifically address
the quantum hydrodynamic processes that are responsi-
ble for friction: depending on the flow speed, the polari-
ton gas can either flow almost unperturbed around the
defect, show a weak Cherenkov-like modulation pattern
as the weak defect case [10], or experience the nucleation
of vortices and/or solitons at the surface of the defect.
Differently from previous works on Helium and atomic
gases [14–17], our calculations have to fully take into
account the non-equilibrium nature of polariton gases,
i.e. the need of a continuous pumping to compensate
for the unavoidable polariton losses. Our attention will
be specifically focussed on the resonant pump configura-
tion that was adopted in Ref. [13] which offers a superior
quantitative control over the experimental parameters.
The case of incoherently pumped polariton condensates
is presently under investigation in other groups [24].
We describe the dynamics of the coherent, exciton and
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FIG. 1: Panel (a): spatial profile of the pump intensity |Fp(x)|
2; the red dashed circle indicates the position and size of the

defect. Panels (b-f): Normalized real-space photonic density for different values of the pump detuning δp = ~ωp − ~ωLP (kp)
and reservoir pump amplitude Fmax

p that correspond to increasing polariton densities. More specifically: δp = 0.5 meV,
Fmax
p /γC = 5.105 µm−1 (b); δp = 0.5 meV, Fmax

p /γC = 250 µm−1 (c); δp = 0.4 meV, Fmax
p /γC = 250 µm−1 (d); δp = 0.3 meV,

Fmax
p /γC = 250 µm−1 (e); δp = 0.1 meV, Fmax

p /γC = 20 µm−1 (f). The density patterns are stationary in time in all
panels except (c). Numerical simulations were performed on a 256 × 128 grid. The pump wave-vector has a magnitude
kp = 1µm−1 and is directed along the negative y axis. System parameters, ~ωX(k = 0) = 1479 meV, ~ωC(k = 0) = 1483 meV),
~γX,C = 0.02 meV, and ~ΩR = 2.65 meV. Cavity photon mass mC = 40.10−6me. Exciton mass mX is taken as infinite. The
defect potential is a purely photonic one of depth VC = 20 meV. Note that the color scale is slightly saturated.

cavity-photon fields ψX,C(x, t) in the two-dimensional
plane of the microcavity by means of the following mod-
ified Gross-Pitaevskii equations [10, 25]:
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The single-particle evolution in the planar cavity is
summarized by the matrix

h
0 =





ωC(−i∇)− i
γC
2

ΩR

ΩR ωX(−i∇)− i
γX
2
,



 (2)

where ωX(C)(k) is the dispersion of the excitons (cav-
ity photons) as a function of in-plane momentum k and
γX(C) is the decay rate of the excitons (cavity photons),
and ΩR the vacuum Rabi frequency of the photon-exciton
coupling. VC(x) is the photonic potential due to the de-
fects in the sample; no potential is instead assumed to
act on the exciton, VX = 0. The exciton-exciton in-
teractions are described by a local interaction potential
proportional of coupling constant g. Fp(x), ~kp and ~ωp

are the spatially-dependent amplitude, momentum and
energy of the pump field, respectively.
The flow velocity of the polariton fluid is controlled by

the wave vector of the pump according to v = ~kp/mLP ,
mLP being the effective mass of lower-polaritons under
the standard parabolic approximation of the band bot-
tom. For a given microcavity sample and a given pump
wavevector kp, the fluid density can be determined vary-
ing either the pump detuning δp = ~ωp − ~ωLP (kp)

from the polariton branch or the peak pump ampli-
tude Fmax

p [10]. Within a simplest description, a value

cs =
√

~g|ψX |2/mLP of the speed of sound can be asso-
ciated to each value of the exciton density: by tuning the
value of the speed of sound with respect to the flow speed,
a variety of hydrodynamic effects can be observed. The
different panels of Fig.1 correspond to different values of
the detuning δp and of the pump amplitude Fmax

p .

Under a monochromatic and spatially homogenous
plane-wave pump, no vortices can be observed in the po-
lariton fluid, nor solitons. The local phase of the polari-
ton field is in fact fixed by the pump phase, which inhibits
the appearance of spatial structures such as vortices (in
which the phase winds by 2π around the vortex core) or
solitons (where the value of the phase has a finite jump
across the density minimum). In this geometry, the ef-
fect of a large defect reduces to a simple phonon wake as
discussed in Ref. [10, 13].

A possible solution to this issue was proposed in Ref. [9]
by using a time-dependent pump: after the pump is sud-
denly switched off, the polariton population has a char-
acteristic decay time τ ≃ γ−1

C,X (on the order of 30 ps for
the system parameters chosen for the figures). During
this time, the phase of the condensate is free and can
develop non-trivial spatial structures as a result of the
interaction with the defect.

In the present paper we shall investigate an alterna-
tive strategy based on a continuous-wave, monochro-
matic pump at ωp with a non-trivial spatial profile Fp(x).
As most of the interesting dynamics of the condensate
phase is taking place in the spatial region downstream
of the defect, we choose a pump with an intensity pro-
file concentrated in the half-space upstream of the defect
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as shown in Fig 1(a); in this panel, the position of the
defect is marked by the red dashed circle. Polaritons
are continuously injected in the cavity, propagate past
the defect and extend downstream of it for a distance
roughly given by v/γ: in this way, the spatial region
around and past the defect shows a significant conden-
sate density and the condensate phase is left fully free to
evolve. Exception made for the polariton losses, the fluid
dynamics is closely related to the standard one as given
by the Gross-Pitaevskii equation [14–17].

A crucial issue of our proposal is the fine-tuning of the
pump spot position: if the edge of the pumped half-space
lies too far upstream of the defect, the density past the
defect gets too low; if the edge overlaps too much with
the defect, the phase results pinned to the pump laser
one and the interesting vortex and soliton dynamics is
inhibited. The intensity profile across the edge is taken
with a gaussian shape. Different regimes of the polariton
superfluid dynamics are highlighted in Fig. 1(b-e), from
a fully superfluid regime to a Cherenkov one, passing
through complex time-dependent solutions involving the
periodic nucleation of vortex pairs around the equator of
the defect. In the different panels we have plotted the
real-space intracavity photon density profile for a given
value of the pump wavevector but different values of the
pump density. It is important to note that the polari-
ton density on the equator of the defect is generally a
bit lower than its asymptotic value in the pumped region
far upstream: the appearance of solitons and/or vortices
past the defect is determined by the former, while the
appearance of Cherenkov precursors in the upstream re-
gion is determined by the latter. The local sound ve-
locity in the reservoir region upstream of the defect will
be denoted by csR, while the one on the equator will be
denoted csE (note that the difference between this two
local sound velocity is not show in Fig. 1(b-e) due to the
lightly saturated color scale). The defect diameter d is
taken to be well bigger than the healing length ξ, d ≈ 4ξ.

Existing literature on the Gross-Pitaevskii equation for
atomic or Helium superfluids has predicted that a su-
perfluid regime of unperturbed flow can survive up to
v/cs =

√

2/11 ≈ 0.43 [15]. This regime is observed in
the polariton case in Fig.1(b): in this case, both v/csE
and v/csR are much smaller than one and the fluid prop-
agation around the defect shows no trace of turbulence;
the density perturbation remains very much localized in
the vicinity of the defect. In this regime, the behavior of
the fluid in the presence of a large defect is substantially
identical to the one that is observed in the presence of a
weak defect [10, 13].

Fig. 1(c) corresponds to a larger value of v/csE = 0.76.
As this value is larger than the critical value 0.43, we ex-
pect vortex nucleation from the defect surface. While
each pair of vortices is dragged away in the downstream
direction by the flow, new vortex pairs are continuously
nucleated at the defect. In the figure, vortices with posi-

FIG. 2: Panel (a): real-space pump profile; the red dashed
circle indicates the position and size of the defect. The ex-
ternal region is pumped at a value of F out

p within the vortex
nucleation regime of Fig.1(c), v/csR = 0.45 > 0.43. The in-
ner dark area is pumped at a lower intensity F in

p . Panel (b,c):
time average of the normalized photonic density for two val-
ues of the inside pump amplitude F in

p /F out
p = 0.1 (b) and

0.32 (c). Calculations were performed on a 128 × 128 grid.
Same system parameters as in Fig.1.

tive and negative charges are indicated by red stars and
blue circles, respectively. On the other hand, no feature
appears upstream of the defect, as the flow remains in
this region subsonic v/csR = 0.62 < 1. A video of the
vortex nucleation process in this regime is available as
Supplementary Material [27].

For a larger value of v/csE = 1.02 [Fig. 1(e)], vortices
are replaced by a pair of straight dark solitons extend-
ing past the defect at a finite angle to the flow direc-
tion. The appearance of solitons of this kind in the wake
of a large defect was recently anticipated in the context
of atomic condensates in Ref. [17, 26]. In the present
case, the spatial inhomogeneity of the density allows for
the velocity in the upstream region to remain subsonic
v/csR = 0.73, which explains the absence of precursors
upstream of the defect. Fig.1(d) shows a regime where
v/csE = 0.93 (and v/csE = 0.67) and the soliton is on the
edge of getting unstable towards its decay into a train of
vortices. The snaky shape of the soliton is possibly a sig-
nature of a (weak) instability of this kind; analytical work
for the atomic case indeed set the transition point at the
slightly higher value 1 [17]. Increasing further the speed
to a value such that v/csE = 1.72 and v/csR = 1.15,
one observes an oblique soliton past the defect as well as
the usual parabolic precursors propagating upstream of
the defect [Fig.1(f)]. This result is in agreement with the
predictions of [17] for the atomic case.

A major issue that is likely to hamper experimental
observation of the vortex pairs nucleated at the surface
of a large defect is the high speed at which vortices are
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FIG. 3: Plot of the number of stationary vortex-antivortex
pairs as a function of the inside pump amplitude. Same pump
profile and system as in Fig. 2.

dragged away: for typical experimental parameters, this
speed is in fact on the order of 300 m.s−1 and the size
of the vortex core is ξ ≈ 0.75 µm. The time resolution
that is therefore needed to neatly observe a vortex core
is therefore about 10 ps. In the following of the Letter,
we shall discuss how this problem can be overcome by
a careful choice of the pump profile, e.g. the triangular
one shown in Fig.2(a). In the pumped external region,
the phase of the superfluid is pinned to the pump phase.
In the dark inner region, the phase is free to evolve and
to develop vortices in the inner region. The slight jump
in the polariton interaction energy at the frontiers of the
pumped area contributes to the trapping of vortices along
the edge.
This effect is clearly visible in Fig.2(b): vortices ar-

range in a regular array along the edges of the triangle.
This arrangement allows for the polaritons within the tri-
angle (i.e. in a sort of ”shadow” of the defect) to have
a lower flow speed as compared to the ones in the exter-
nal space without breaking the irrotationality constraint
of superfluid flow. Along these lines, it is immediate to
understand why an increase of the fluid velocity leads to
a reduced spacing between vortices. On the other hand,
the total number of vortices can be increased by design-
ing dark regions with a longer extension along the po-
lariton flow direction. In addition to the steady vortices
located along the edges of the triangle, a few vortex-
antivortex pairs are found that wander around within
the triangle and, in the meanwhile, orbit around each
other. Of course, no vortices can be observed in the ex-
ternal pumped region. Note that simulations performed
with smoother edges (on the order of σ = 1 µm) give a
qualitatively identical physics.
As a final point, it is interesting to examine what hap-

pens if the value F in
p of the pump amplitude inside the

triangle is small, but finite. This physics is summarized
in Figs. 2 and 3; in this latter, we plot the number of
observed vortices as a function of F in

p /F out
p where F out

p

is the pump amplitude outside the triangle. The lim-
iting case F in

p /F out
p = 0.1 ≪ 1 is shown in Fig.2(b)

and shows both moving and trapped vortices. Increas-
ing F in

p /F out
p above 0.17, a stabilization of the array

is observed with the complete disappearance of moving
vortices. Increasing further the inside pump amplitude,
also the number of trapped pairs decreases with discrete
jumps. For F in

p /F out
p to 0.32 a single pair of vortices

at the bottom corners of the triangle is found [Fig.2(c)].
For F in

p /F out
p > 0.36, the polariton phase is everywhere

pinned to the incident laser one and no vortex is any
longer nucleated.
In conclusion, we have theoretically investigated vortex

nucleation at the surface of a spatially extended defect
in a flowing polariton superfluid. An experimentally vi-
able protocol has been identified that allows to overcome
the difficulties that stem from the non-equilibrium na-
ture of the polariton fluid. A method to trap vortices
in a regular and stationary array is illustrated. We ex-
pect that experimental studies of the vortex dynamics
in polariton superfluids will shine light on fundamental
aspects of the physics of superfluidity and, on a longer
run, will help identifying new features that follow from
the non-equilibrium nature of the polariton fluid.
We are grateful to A. Amo, A. Bramati and E. Gia-

cobino and M. Wouters for continuous stimulating dis-
cussions.
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