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We study three same spin state fermions of mass M interacting with a distinguishable particle of
mass m in the unitary limit where the interaction has a zero range and an infinite s-wave scattering
length. We predict an interval of mass ratio 13.384 < M/m < 13.607 where there exists a purely four-
body Efimov effect, leading to the occurrence of weakly bound tetramers without Efimov trimers.
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In a system of interacting particles, the unitary limit
corresponds to a zero range s-wave interaction with infi-
nite scattering length [1]. In particular, this excludes any
finite energy two-body bound state. Interestingly, in the
three-body problem, the Efimov effect may take place [2],
leading to the occurrence of an infinite number of three-
body bound states, with an accumulation point in the
spectrum at zero energy. This effect occurs in a variety
of situations, the historical one being the case of three
bosons, as recently studied in a series of remarkable ex-
periments with cold atoms close to a Feshbach resonance
[3]. It can also occur in a system of two same spin state
fermions of mass M and a particle of another species of
massm, in which case the fermions only interact with the
third particle, with an infinite s-wave scattering length:
An infinite number of arbitrarily weakly bound trimers
then appears in this 2 + 1 fermionic problem if the mass
ratio α =M/m is larger than αc(2; 1) ≃ 13.607 [2].
The four-body problem has recently attracted a lot of

interest [4]. The question of the existence of a four-body
Efimov effect is however to our knowledge still open. We
give a positive answer to this question, by investigating
the 3 + 1 fermionic problem in the unitary limit. We
explicitly solve Schrödinger’s equation in the zero range
model [2] and we determine the critical mass ratio to have
a purely four-body Efimov effect in this system, that is
without Efimov trimers.
In the zero-range model, the Hamiltonian reduces to a

non-interacting form, here in free space

H =

4
∑

i=1

− ~
2

2mi
∆ri

, (1)

with m1 = m2 = m3 = M and m4 = m. The interac-
tions are indeed replaced by contact conditions on the
wavefunction, ψ(r1, r2, r3, r4), where ri, i = 1, 2, 3 is the
position of a fermion and r4 is the position of the other
species particle: At the unitary limit, for i = 1, 2, 3, there
exist functions Ai such that

ψ(r1, r2, r3, r4) =
Ai(Ri4; (rk)k 6=i,4)

|ri − r4|
+O(|ri − r4|) (2)

when ri tends to r4 for a fixed value of the i-4 centroid
Ri4 ≡ (Mri+mr4)/(m+M) different from the positions
of the remaining particles rk, k 6= i, 4. The wavefunction
is also subject to the fermionic exchange symmetry with
respect to the first three variables ri, i = 1, 2, 3.
In what follows, we shall assume that there is no

three-body Efimov effect, a condition that is satisfied
by imposing M/m < αc(2; 1) ≃ 13.607. The eigen-
value problem Hψ = Eψ with the contact conditions
in Eq.(2) is then separable in hyperspherical coordi-
nates [5]. After having separated out the center of
mass C of the system, one introduces the hyperradius

R =
[

∑4
i=1mi(ri −C)2/m̄

]1/2

, with m̄ = (3M +m)/4

the average mass, and a set of here 8 hyperangles Ω whose
expression is not required. For a center of mass at rest,
the wavefunction may be taken of the form

ψ(r1, r2, r3, r4) = R−7/2F (R)f(Ω). (3)

f(Ω) is given by the solution of a Laplacian eigenvalue
problem on the unit sphere of dimension 8, which is non
trivial because of the contact conditions. On the con-
trary, the hyperradial part F is not directly affected by
the contact conditions, due in particular to their invari-
ance by the scaling ri → λri [6], and solves the effective
2D Schrödinger equation

EF (R) = − ~
2

2m̄

(

∂2R +
1

R
∂R

)

F (R) +
~
2s2

2m̄R2
F (R). (4)

The quantity s2 is given by the hyperangular eigenvalue
problem. It belongs to a infinite discrete set and is real
since there is no Efimov effect on the unit sphere (R 6= 0),
that is here no three-body Efimov effect.
Mathematically, Eq.(4) admits for all energies E two

linearly independent solutions, respectively behaving as
R±s for R → 0. If s2 > 0, one imposes F (R) ∼ Rs,
with s > 0, which is correct except for accidental, non-
universal four-body resonances (see note [43] in [5]), and
Eq.(4) then does not support any bound state. On the
contrary, if s2 < 0, in which case we set s = iS, S > 0, F
experiences an effective four-body attraction, with a fall



2

to the center leading to a unphysical continuous spectrum
of bound states [7]. To make the model self-adjoint, one
then imposes an extra contact condition [7], as in the
usual three-body Efimov case [8]:

F (R) ∼
R→0

Im

[

(

R

Rf

)iS
]

, (5)

where the four-body parameter Rf depends on the mi-
croscopic details of the true, finite range interaction [9].
With the extra condition Eq.(5) one then obtains from
Eq.(4) an Efimov spectrum of tetramers:

En = − 2~2

m̄R2
f

e
2
S

arg Γ(1+iS)e−2πn/S , ∀n ∈ Z. (6)

The whole issue is thus to determine the values of the
exponents s. In particular, the critical mass ratio αc(3; 1)
corresponds to one of the exponents being equal to zero,
the other ones remaining positive. To this end, we cal-
culate the zero energy four-body wavefunction with no
specific boundary condition on F (R). Then, from Eq.(4)
with E = 0, it appears that F (R) ∝ R±s. The calcula-
tion is done in momentum space, with the ansatz for the
Fourier transform of the four-body wavefunction:

ψ̃(k1,k2,k3,k4) =
δ(
∑4

i=1 ki)
∑4

i=1
~2k2

i

2mi

× [D(k2,k3) +D(k3,k1) +D(k1,k2)] , (7)

where the fermionic symmetry imposes D(k2,k1) =
−D(k1,k2), and the denominator originates from the ac-
tion ofH in Eq.(1) written in momentum space. WhenH
acts on one of the three 1/|r4−ri| singularities in Eq.(2),
this produces in the right hand side of Schrödinger’s
equation a Dirac distribution δ(r4 − ri) multiplied by a
translationally invariant function of the three fermionic
positions, which after Fourier transform gives each of the
D[(kj)j 6=i,4] terms in Eq.(7). Taking the Fourier trans-
form of Eq.(3) with F (R) ∝ R±s, and using a power-
counting argument, one finds the scaling law

D(λk1, λk2) = λ−(±s+7/2)D(k1,k2). (8)

Implementing in momentum space the contact condi-
tions, that is the fact that O(|ri−r4|) vanishes for ri = r4

in Eq.(2), gives rise to an integral equation:

0 =

[

1 + 2α

(1 + α)2
(k21 + k22) +

2α

(1 + α)2
k1 · k2

]1/2

D(k1,k2)

+

∫

d3k3
2π2

D(k1,k3) +D(k3,k2)

k21 + k22 + k23 +
2α
1+α (k1 · k2 + k1 · k3 + k2 · k3)

,

(9)

where we recall that α = M/m. Eq.(9) can also be ob-
tained as the zero range limit of finite range models [11].

We now use rotational invariance to impose the value
l ∈ N of the total angular momentum of the four-body
state and to restrict to a zero angular momentum along
the quantization axis z. Then, according to Eq.(7), the
effective two-body function D(k1,k2) has the same an-
gular momentum l. This allows to express D in terms

of 2l + 1 unknown functions f
(l)
ml of three real variables

only, the moduli k1 and k2 and the angle θ ∈ [0, π] be-
tween k1 and k2, with the fermionic symmetry imposing

f
(l)
ml(k2, k1, θ) = (−1)l+1f

(l)
−ml

(k1, k2, θ) [11]:

D(k1,k2) =

l
∑

ml=−l

[Y ml

l (γ, δ)]
∗
eimlθ/2f (l)

ml
(k1, k2, θ).

(10)
Here Y ml

l (γ, δ) are the usual spherical harmonics, γ and
δ are the polar and azimuthal angles of the unit vec-
tor vector ez along z in the direct orthonormal basis
(e1, e2⊥, e12), with e1 = k1/k1, e2 = k2/k2, e2⊥ =
(e2 − e1 cos θ)/ sin θ and e12 = e1 ∧ e2/ sin θ [12]. The
action of parity ki → −ki on this general ansatz is to
multiply each term of index ml in Eq.(10) by a factor
(−1)ml , which allows to decouple the evenml terms (even
parity) from the odd ml terms (odd parity). A relevant
example, as we shall see, is the even parity channel with
l = 1, where the ansatz reduces to a single term, which
is obviously the component along z of a vectorial spinor:

D(k1,k2) ∝ ez ·
k1 ∧ k2

||k1 ∧ k2||
f
(1)
0 (k1, k2, θ). (11)

The last step is to use the scaling invariance of D, see
Eq.(8), setting

f (l)
ml

(k1, k2, θ) = (k21 + k22)
−(s+7/2)/2(coshx)3/2Φ(l)

ml
(x, u)
(12)

where u = cos θ. The introduction of the logarithmic
change of variable x = ln(k2/k1) is motivated by Efimov
physics, and the factor involving the hyperbolic cosine
ensures that the final integral equation involves a Hermi-
tian operator. The fermionic symmetry imposes

Φ(l)
ml

(−x, u) = (−1)l+1Φ
(l)
−ml

(x, u) (13)

which allows to restrict the unknown functions Φ
(l)
ml

to
x ≥ 0. Restricting to s = iS, S ≥ 0, we finally obtain

0 =

[

1 + 2α

(1 + α)2
+

αu

(1 + α)2 coshx

]1/2

Φ(l)
ml

(x, u)

+

∫

R+

dx′
∫ 1

−1

du′
l

∑

m′

l
=−l

K(l)
ml,m′

l

(x, u;x′, u′)Φ
(l)
m′

l

(x′, u′).

(14)

The symmetrized kernel K(l)
ml,m′

l

(x, u;x′, u′) =
∑

ǫ,ǫ′=±1(ǫǫ
′)l+1K

(l)
ǫml,ǫ′m′

l

(ǫx, u; ǫ′x′, u′) is expressed
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FIG. 1: Minimal eigenvalues of the Hermitian operator Ms=0

in each sector of fixed parity and angular momentum l, 0 ≤
l ≤ 6, as functions of the mass ratio α = M/m. Only the
curve for the even sector of l = 1 crosses zero for α < 13.607,
corresponding to the occurrence of a four-body Efimov effect
in that sector. The other curves all remain above zero. They
strongly overlap and are barely distinguishable at the scale of
the figure. The dotted line is the analytical prediction Λ(k =
0, α) for the lower border of the continuum in the spectrum
of Ms=0. The inset is a magnification. In the numerics, x and
u were discretized with a step dx = du = 1/10, and x was
truncated to xmax = 20.

in terms of the non-symmetrized one given by:

K
(l)
ml,m′

l

(x, u;x′, u′) =

[

(1 + λ2)/(1 + λ′2)
]iS/2

(λλ′)3/2

[(1 + λ2)(1 + λ′2)]1/4

×
∫ 2π

0

dφ

2π2

e−imlθ/2 〈l,ml|eiφLx/~|l,m′
l〉 eim

′

lθ
′/2

1 + λ2 + λ′2 + 2α
1+α [λu + λ′u′ + λλ′D]

.

(15)

Here the notation D in the denominator stands for D =
uu′ + cosφ

√
1− u2

√
1− u′2, λ = ex, λ′ = ex

′

, Lx is the
angular momentum operator along x, |l,ml〉 is of spin l
and angular momentumml~ along z, and φ stands for the
azimuthal angle of the vector k3 of Eq.(9) in the spherical
coordinates related to the basis (e2⊥, e12, e1) [13].
We first look for the critical mass ratio for the 3+1

fermionic problem αc(3; 1), which is the minimal value
of α such that the integral equation Eq.(14) is satisfied
for S = 0. Rewriting Eq.(14) as 0 = Ms[Φ], where Ms

is a Hermitian operator, we calculated numerically the
minimal eigenvalues ofMs=0 as functions of the mass ra-
tio α, within each subspace of fixed parity and angular
momentum l, 0 ≤ l ≤ 6. As shown in Fig.1, such a mini-
mal eigenvalue vanishes for α < 13.607 only in the even
sector of angular momentum l = 1. We also unfruitfully
explored l = 7, 8, 9, 10. We thus find that the four-body
Efimov effect takes place only in the even sector of l = 1,
and sets in above a critical mass ratio [14]

αc(3; 1) ≃ 13.384, (16)

quite close to the 2 + 1 critical value αc(2; 1) ≃ 13.607.

To gain some insight on this result, we have stud-
ied analytically an important feature of the spectrum
of Ms=0, the lower border of its continuum. When
x, x′ → +∞, which corresponds physically to having
k2 ≫ k1 in the function D(k1,k2), both the symmetrized
and non-symmetrized kernels reduce to the asymptotic
form

K(l)
ml,m

′

l

(x, u;x′, u′) ∼ eiS(x−x′)e−imlθ/2eim
′

lθ
′/2

×
∫ 2π

0

dφ

4π2

〈l,ml|eiφLx/~|l,m′
l〉

cosh(x− x′) + α
1+αD

. (17)

Since D is independent of x and x′, this is invariant by
translation over the x coordinates, leading to a contin-
uous spectrum of asymptotic plane wave eigenfunctions.
In the even sector of angular momentum l = 1, we found

that Φ
(1)
0 (x, u) ∼ eikx

√
1− u2 gives rise to an eigenfunc-

tion in the continuous spectrum of MiS with the real
eigenvalue Λ(k − S, α) [15] where

Λ(k, α) = cos 2β +
(1− ik) sin[2β(1 + ik)]− c.c.

2(1 + k2) sin2 2β sin(ikπ/2)
. (18)

In Eq.(18) we have set for convenience sin 2β = α/(1+α)
with β ∈ [0, π/2[. For real k, this function Λ(k, α) has a
global minimum in k = 0. We expect that Λ(k = 0, α)
is the lower border of the continuous spectrum of Ms=0.
Since Λ(0, α) exactly vanishes for the three-body critical
mass ratio αc(2; 1) ≃ 13.607, our asymptotic analysis
amounts to uncovering the three-body problem as a limit
k2/k1 → +∞ of the four-body problem.
We tested this prediction against the numerics, plot-

ting in Fig.1 the quantity Λ(k = 0, α) as a function of α
in dotted line. Except for the even sector of l = 1, the
minimal numerical eigenvalues are close to Λ(k = 0, α);
the fact that they are slightly above is due to a finite xmax

truncation effect, that indeed decreases for increasing
xmax (not shown). This implies that the eigenfunctions
corresponding to these minimal eigenvalues are extended,
that is not square integrable. The numerics agrees with
this analysis. In the even sector of l = 1, the minimal
numerical eigenvalue is clearly below Λ(0, α), for all val-
ues of α in Fig.1. This indicates that the correspond-
ing eigenvector must be a bound state of Ms=0, with a

square integrable eigenfunction Φ
(1)
0 (x, u). This is con-

firmed by the numerics, which shows that at large x,

Φ
(1)
0 (x, u) ∝

√
1− u2e−κx [16]. The analytical reasoning

even predicts the link between the minimal eigenvalue
Λmin of Ms=0 and the decay constant κ: The plane wave
eikx is analytically continuated into a decreasing expo-
nential if one sets k = iκ, so that

Λmin = Λ(iκ, α). (19)

Numerically, we have successfully tested this relation for
various values of α, and we also found that Ms=0 has no
other bound state in the even sector of l = 1.
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FIG. 2: In the Efimovian channel l = 1 with even parity,
modulus of the purely imaginary Efimov exponent s = iS as
a function of the mass ratio α = M/m. In the numerics, xmax

ranges from 40 to 120, dx = 1/10, dθ = π/20. The dashed line
results from a linear fit of |s|2 as a function of α in a vicinity
of the critical value αc(3; 1), |s|2fit ≃ 2.23 × (α − αc). The
vertical dotted line indicates the 2 + 1 critical value αc(2; 1).

Finally, we completed our study of the four-body Efi-
mov effect by calculating, as a function of the mass ratio
α, the exponent s = iS in the even sector of l = 1, the
real quantity S being such that the operator MiS has a
zero eigenvalue. The result is shown in Fig.2. Close to
the 2+ 1 critical mass ratio αc(2; 1) ≃ 13.607, the values
of |s| are not far from the three-boson Efimov exponent
|s0| ≃ 1 proved to have observable effects [3]. Close to the
3+1 critical mass ratio αc(3; 1), |s| varies as expected as
(α−αc)

1/2 (see dashed line). Low values of |s| may lead
to extremely low Efimov tetramer binding energies: For

an interaction of finite range b, setting Rf ≈ b and n = 1
in Eq.(6), we estimate the ground state Efimov tetramer
energy for |s| ≪ 1 as EEfim

min ≈ −e−2π/|s|
~
2/(2m̄b2) [17].

For |s| = 0.5, taking the mass of 3He for m and a few nm
for b gives EEfim

min /kB in the nK range, accessible to cold
atoms. Moreover, for a large but finite scattering length
a, successive Efimov tetramers come in for values of a in
geometric progression of ratio eπ/|s|, so that too low val-
ues of |s| require unrealistically large values of the scat-
tering length. Another experimental issue is the narrow-
ness of the mass interval. Several pairs of atomic species
have a mass ratio in the desired interval, e.g. 3He∗ and
41Ca (α ≃ 13.58), and with exotic species, 11B and 149Sm
(α ≃ 13.53), 7Li and 95Mo (α ≃ 13.53). A more flexi-
ble solution is to start with usual atomic species having a
slightly off mass ratio, such as 3He∗ and 40K (α ≃ 13.25),
and to use a weak optical lattice to finely tune the effec-
tive mass of one of the species [18].

To conclude, in the zero range model at unitarity, we
studied the interaction of three same spin state fermions
of massM with another particle of mass m. ForM/m <
13.384, no Efimov effect was found. Over the interval
13.384 < M/m < 13.607, remarkably a purely four-body
Efimov effect takes place, in the sector of even parity and
angular momentum l = 1, that may be observed with a
dedicated cold atom experiment. For M/m > 13.607,
the three-body Efimov effect sets in, and the zero range
model has to be supplemented by three-body contact con-
ditions that break its separability. The intriguing ques-
tion of wether the Efimov tetramers then survive as res-
onances, decaying in a trimer plus a free atom, is left for
the future. F. Werner is warmly thanked for discussions.
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