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Abstract 19 

 20 

The census of vascular plants across a ten-year interval (1995-2005) at the fringe of a 21 

neotropical rainforest (Nouragues inselberg, French Guiana, South America) revealed that 22 

species richness decreased, both at quadrat scale (2 m
2
) and at the scale of the inselberg (three 23 

transects, embracing the whole variation in community composition). Juvenile stages of all 24 

tree and shrub species were most severely affected, without any discrimination between life 25 

and growth forms, fruit and dispersion types, or seed sizes. Species turnover in time resulted 26 

in a net loss of biodiversity, which was inversely related to species occurrence. The most 27 

probable cause of the observed species disappearance is global warming, which severely 28 

affected northern South America during the last 50 years (+2°C), with a concomitant increase 29 

in the occurrence of aridity. 30 

 31 

Introduction 32 

 33 

Threats to biodiversity in tropical forests have largely been attributed to deforestation and 34 

associated events such as habitat loss (Soares-Filho et al., 2006) and climate drift (Wright, 35 

2005). Fires attributed to El Niño Southern Oscillation (ENSO) dry climate anomalies have 36 

also been invoked as a cause of present-day losses of biodiversity (Barlow et al. 2003), 37 

similarly to fires involved in past extinctions (Charles-Dominique et al., 2001; Anderson et 38 

al., 2007). In unmanaged tropical forests, major changes are expected to stem from global 39 

warming as a chief result of the anthropogenic greenhouse effect (Rosenzweig et al., 2008), 40 

but recent observations show divergences between continents, Africa being most and South 41 

America least threatened by associated aridity (Malhi & Wright, 2004). However, recent 42 

climate studies established that northern South America, which is still more or less preserved 43 
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from massive destruction (Eva et al., 2004), was subject to altered precipitations resulting 44 

from a southward switch in the location of the Inter-Tropical Convergence Zone (ITCZ), 45 

possibly leading to severe biodiversity losses (Higgins, 2007). Moreover updated simulation 46 

models predict a 4°C warming during the 21th century over Chilean and Peruvian coasts, 47 

Central Amazon and Guianas Shield (Boulanger et al., 2006). 48 

 49 

Forest fringes in the tropics (‘low forests’) are more prone to shifts in biodiversity than 50 

adjoining environments such as savannas and tall-tree rain forests (Favier et al., 2004), even 51 

without any marked advance of ecotone limits (Noble, 1993). Our aim was to compare across 52 

a ten-year interval (1995-2005), encompassing a severe ENSO dry event in 1997-98 53 

(Laurance, 2000; Paine & Trimble, 2004; Wright & Calderon, 2006), the botanical 54 

composition of a neotropical forest fringe, free of human activity for centuries, embracing a 55 

wide floristic and environmental gradient (Sarthou et al., submitted). Our main expectation 56 

was that, as predicted by Jump & Peñuelas (2005), present-day global warming in the wet 57 

neotropics is too fast for the long-term maintenance of species-rich communities at the forest 58 

limit, as this has been shown to occur in more temperate zones of South America (Villalba & 59 

Veblen, 1998). Juvenile forms of plants are expected to suffer more than reproductive stages 60 

from severe El Niño years (Engelbrecht et al., 2002), resulting in a deficit of recruitment 61 

directly related to scarcity of the species. If this hypothesis is verified, then threats to 62 

biodiversity due to global warming itself (Thomas et al., 2004) should add to those stemming 63 

from fragmentation and shrinkage of tropical forested areas (Curran et al., 1999; Laurance, 64 

2000). 65 

 66 

Materials and methods 67 

 68 
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Study site 69 

 70 

The study site is included in a forest reserve located in French Guiana (northern South 71 

America, 4°5’N, 52°41’W) around the Nouragues inselberg, a granitic whaleback dome 72 

(altitude 410 m) protruding from the untouched rain forest which covers the Guianas plateau 73 

(Poncy et al., 1998). The climate is perhumid (4000 mm annual rainfall) and warm (mean 74 

temperature 27°C). Climate data were recorded over fifty years in a nearby meteorological 75 

station (Regina) and show seasonal changes in monthly precipitation, with a long rainy season 76 

from December to June (more than 300 mm per month) and a short dry season from July to 77 

November (Fig. 1). A regular increase in temperature was observed over the last 50 years 78 

amounting to 1.6°C, corresponding to a mean increase of 0.32°C per ten-year period. No 79 

decrease in annual precipitation was observed over the same period, but four years (1958, 80 

1976, 1997 and 2005) experienced a severe water deficit during the dry season, as exhibited 81 

by the Aridity Index which reached a value of 2 or more during the dry season (Fig. 1). The 82 

year 1997 was in the range of our botanical record (1995-2005), but the strong drought 83 

recorded in 2005 occurred several months after the completion of our study. The same 84 

warming trend was depicted by other meteorological stations in French Guiana, including 85 

coastal (open) as well as widely forested areas (Table 1), thus it could not be ascribed to 86 

potential effects of deforestation upon local climate (Marland et al., 2003). 87 

 88 

 Soils are enriched in water and nutrients around the granitic outcrop (Sarthou & 89 

Grimaldi, 1992; Dojani et al., 2007), supporting a lush species-rich vegetation in the low 90 

forest, involving abundant epiphytes in the understory (Larpin, 2001). The low forest borders 91 

the inselberg and is also established on its summit (Larpin et al., 2000). This vegetation has 92 

been described as a specific community, comprised of plant species from adjoining 93 
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communities (the savanna rock and the tall-tree rain forest) along with numerous species 94 

exclusive to the low forest (Théry & Larpin, 1993). Multi-stemming and vertical stratification 95 

of the vegetation are prominent features of the low forest, which was considered to be an 96 

ecocline according to transient relationships between botanical composition and shift from 97 

organic to mineral soil (Sarthou et al., submitted). 98 

 99 

The rock savanna covers the southern and western sides of the inselberg. Vegetation 100 

clumps of the rock savanna are sparsely distributed on slopes and become denser and taller in 101 

the vicinity of the low forest (Sarthou & Villiers, 1998). The rock savanna is dominated by 102 

epilithic wind- and bird-disseminated herb species and shrubs, which are established directly 103 

on the granite (on medium slopes or pools) or in the organic matter accumulated under woody 104 

vegetation (Sarthou, 2001; Kounda-Kiki et al., 2006). Primary and secondary successional 105 

trends have been described in the savanna rock, fires followed by biological attacks (fungi, 106 

termites) being mainly responsible for the destruction and renewal of shrub thickets (Kounda-107 

Kiki et al., 2008; Sarthou et al., 2009). 108 

 109 

The tall-tree rain forest is comprised of a variety of late- and early-successional tree 110 

species growing isolated or in small clumps (Poncy et al., 2001), mostly disseminated by 111 

rodents (Dubost & Henry, 2006), monkeys (Julliot, 1997) and bats (Lobova & Mori, 2004). 112 

Due to the absence of hurricanes, a peculiarity of the ITCZ (Liebmann et al., 2004), single 113 

tree-fall gaps, rapidly invaded by pioneer plant species, are mainly responsible for the renewal 114 

of the rain forest (Riéra, 1995; Van der Meer & Bongers, 2001). Dry periods, accompanied by 115 

forest fires and severe erosion, occurred in the past three millenaries (Granville, 1982) and 116 

shaped more open landscapes, the last dry event at the site of our study being dated around 117 
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1000-600 years B.P. (Ledru et al., 1997; Charles-Dominique et al., 1998; Rosique et al., 118 

2000). 119 

 120 

Sampling 121 

 122 

Three gradient-directed transects (Gillison & Brewer, 1985) were established across the low 123 

forest, located at the summit (T6) and along the southern slope (T4, T5). All transects started 124 

in the rock savanna on bare rock and their length varied from 52 to 89 m, so that they ended 125 

in the first metres of the tall-tree rain forest. The slope was nil or slight in the summit forest 126 

(T6), but reached almost 40% in transects T4 or T5. In April 1995 and April 2005, the 127 

vegetation was identified at the species level according to Funk et al. (2007) and surveyed 128 

every metre in adjacent 1x2 m quadrats. For each woody species the diameter and height of 129 

individual stems were measured as well as the number of specimens per quadrat. In case of 130 

multi-stemming, stems were pooled for each individual for the calculation of species 131 

abundance per quadrat. Woody species were classified into two groups according to their 132 

height (higher or lower than 50 cm). The same species could fall within both size categories, 133 

according to developmental stage or suppression state. The cover percentage of herb and 134 

suffrutescent plant species was estimated visually in each quadrat area. Biological traits 135 

(Raunkiaer’s life form, fruit type, dispersion mode, seed size) were established for the whole 136 

set of 164 plant species (Appendix). 137 

 138 

Data processing 139 

 140 

 Given that sampling was done along transect lines across variable environments, 141 

autocorrelation was expected (Legendre, 1993; Legendre & Legendre, 1998). Paired t-tests 142 
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were used for the detection of trends from 1995 to 2005, using a specific procedure in order to 143 

keep pace with autocorrelation. First, signed differences between years were calculated for 144 

each quadrat, and the normality of their distribution was verified using Shapiro-Wilk’s test 145 

(Shapiro & Wilk, 1965). Second, product-moment (Pearson) autocorrelation coefficients of 146 

increasing order (first-order = one lag, second-order = two lags, etc.) were calculated. If first-147 

order autocorrelation coefficients did not display any significant deviation from null 148 

expectation at 0.05 level (tested by t-test) then all quadrats of the same transect were used in 149 

further calculations. If the first-order autocorrelation coefficient was significant at 0.05 level, 150 

then the lag was increased until non-significance was reached. According to the order of the 151 

first non-significant coefficient, one or more quadrats were discarded for further calculations, 152 

thereby increasing the distance between successive samples and decreasing the effective 153 

sample size until autocorrelation was no longer found. This procedure, although prone to 154 

some loss of information, was preferred over tedious calculations of the ‘effective sample 155 

size’ (Clifford et al., 1989; Dutilleul, 1993; Dale & Fortin, 2002) which have been shown by 156 

Wagner & Fortin (2005) not to be fully applicable to any kind of data. 157 

 158 

 Fractal dimensions were calculated for each transect using the slope of log-log curves 159 

relating the semi-variance γ (h) of the series to the lag (h) of autocorrelated data (Burrough, 160 

1983; Gonzato et al., 2000; Dale et al., 2002). We used the linear portion of the log-log curve 161 

to compute the fractal (Hausdorff) dimension according to the formula D = 2 – m/2, D being 162 

the fractal dimension of the series and m the slope of the log-log curve. 163 

 164 

 Series of plant species present in both years were compared between 1995 and 2005 in 165 

order to check for possible changes in density (trees and shrubs), percent cover (herbs and 166 

suffrutex) and basal area over the whole set of 258 quadrats. Differences between both years 167 
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were tested using the Wilcoxon signed-rank test (Sokal & Rohlf, 1995). The effect of 168 

frequency of species on their disappearance expectancy was tested by logistic regression 169 

(Sokal & Rohlf, 1995). 170 

 171 

 All abovementioned calculations were done using XLSTAT (Addinsoft
®
) statistical 172 

software. 173 

 174 

 Species accumulation or rarefaction curves (Simberloff, 1978; Colwell & Coddington, 175 

1994) were calculated for the whole set of quadrats, in order to check for the 176 

representativeness of our sampling effort, using EstimateS version 8.0 for Windows 177 

(http://viceroy.eeb.uconn.edu/estimates). The expected number of species was calculated 178 

using the first-order jackknife richness estimator JACK1, which is considered as the most 179 

precise estimator for large sample sizes (Palmer, 1990). 180 

 181 

Results 182 

 183 

Species accumulation curves of woody plant species for the years 1995 and 2005 show that (i) 184 

threshold values were nearly reached in both years, (ii) woody species total richness 185 

(inselberg scale) was lower in 2005 compared to 1995 (Fig. 2). Over the three transects, 205 186 

quadrats (2 m
2
 each, totalling 410 m

2
) harboured a total of 19,591 individuals belonging to 187 

102 species in 1995, compared to 14,871 individuals and 80 species in 2005, representing a 188 

decrease of 24% for individuals and 22% for species. The expected species richness (JACK1 189 

estimator) was 116.9 species in 1995 and 89.95 in 2005, thus not much higher than the 190 

cumulative species richness. 191 

 192 

http://viceroy.eeb.uconn.edu/estimates
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 Quadrat species richness (all species included) decreased from 1995 to 2005, whatever 193 

the transect (Fig. 3). The mean decrease observed at the quadrat level was 12%, 17% and 16% 194 

in transects T4, T5 and T6, respectively. This net decrease resulted from the combination of 195 

additions and subtractions of species, as shown by Figure 4. It can be seen from this figure 196 

that increases and decreases are not independent and that communities with many species per 197 

quadrat seem to be less stable than poorer ones. 198 

 199 

 The semi-variance of species richness series was higher in 2005 than in 1995 at short 200 

lags (1 to 3 m distance), but lower for longer distances, whatever the transect (Fig. 5). This 201 

resulted in a higher fractal dimension in 2005 than in 1995 for all transects, which suggests 202 

that the change in species richness between adjacent quadrats increased from 1995 to 2005 203 

whereas the net loss of species caused homogenization at the transect scale. 204 

 205 

 All major species traits were affected by the observed decrease in plant species 206 

richness (Fig. 6). Only minor species traits did not follow the general trend, which was not 207 

judged significant: lianas and megaphanerophytes (among Raunkiaer’s life forms), climbing 208 

plants (among growth forms) and follicles (among fruit types) marginally increased in mean 209 

density per quadrat but all of them were poorly represented in the study area. Table 2 shows 210 

that growth forms, life forms, fruit types, dispersion modes and seed classes did not display 211 

any significant shift in species trait distribution. 212 

 213 

 At the quadrat scale, the observed trend of decreasing species richness affected mainly 214 

juveniles and only to a weak and insignificant extent adults of the same woody species, and 215 

basal area did not decrease significantly (Table 3). This result points to a deficit of 216 
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recruitment rather than to adult increased mortality. Herbs and suffrutex were not affected at 217 

all by this phenomenon. 218 

 219 

The probability of disappearance of plant species was strongly dependent on their 220 

abundance, as ascertained by logistic regression (Fig. 7). The model predicted that rarest 221 

species (species present in only one quadrat in 1995) showed 50% disappearance, while the 222 

rate of disappearance of species present in more than 60 quadrats was nil. 223 

 224 

Discussion 225 

 226 

The decrease in plant species richness observed in ten years at the scale of three transects 227 

representative of the Nouragues inselberg as well as at the scale of individual quadrats was 228 

accompanied by a small-scale instability of species richness, thereby indicating a severe 229 

disturbance. The distribution of species traits was not affected, but most concern was on 230 

juveniles of woody species, pointing to a random process at species level and to a non-random 231 

process at individual level. The recruitment of species was affected all the more they were 232 

scarcely distributed. Neutral models (Hubbell, 2001; Ulrich, 2004; Gotelli & McGill, 2006) 233 

make similar predictions but it can be postulated that in the long term the higher sensitivity of 234 

juvenile stages would affect the composition of the whole plant community, by privileging 235 

species with a low turnover rate (Gourlet-Fleury et al., 2005). The warming trend observed in 236 

northern South America can be invoked to explain our results, in particular the severe dry 237 

season which occurred two years after the first census done in 1995. We suspect that 238 

following a wave of moisture deficit, known to affect more seedlings and saplings than adult 239 

trees and shrubs (Poorter & Markesteijn, 2008), further recruitment by seed production 240 

(Wright & Calderón, 2006), seed dispersal to safe sites (Janzen, 1970; Julliot, 1997; Dalling et 241 
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al., 2002) and germination of the soil seed bank (Dalling et al., 1998) never compensated for 242 

impoverishment of the plant community, which did not recover its original level at the end of 243 

the following eight years. 244 

 245 

 Other hypotheses for the observed collapse in plant species richness could be 246 

proposed, but none is satisfactory. From the last dry period with wildfire events, which ended 247 

600 years ago, the forest ecosystem could be in a phase of development, still far from 248 

equilibrium (Odum, 1969). A decrease in plant species richness is commonly advocated in 249 

late stages of ecosystem development, following competition for light and nutrients by a few 250 

dominant species (Connell, 1979). In this case, development of the forest ecosystem 251 

following a major disturbance is accompanied by an increase in basal area (Chazdon et al., 252 

2007), which was not supported by our data. It would also be accompanied by a change in the 253 

distribution of species traits, in particular shade-tolerant tall tree species, with big seeds and 254 

autochory, should be increasingly represented (Swaine & Whitmore, 1988; Whitmore, 1989; 255 

Ter Steege & Hammond, 2001), which was not the case. The effects of CO
2
 fertilization 256 

issued from fossil fuel combustion would be similar, by stimulating the growth of dominant 257 

species and increasing the basal area (Laurance, 2000). This hypothesis can be discarded too, 258 

for the same reasons. Interestingly, recent results by Wardle et al. (2008) showed that 259 

retrogression of forest ecosystems could occur in the absence of disturbance, displaying a 260 

pronounced decrease in basal area, accompanied, or not, by concomitant changes in plant 261 

species richness. Such a decrease in basal area was not observed, thus retrogression is not 262 

supported by our data either. 263 

 264 

 Another possible cause for the observed phenomenon could be the worldwide increase 265 

in infectious diseases and parasite outbreaks caused by climate warming (Harvell et al., 2002; 266 
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Rosenberg & Ben-Haim, 2002; Mouritsen et al., 2005). This can be thought to affect juvenile 267 

stages of all plant species, a number of which currently die from damping-off (Hood et al., 268 

2004). Such an explanation cannot be considered as antagonist to the hypothesis of a severe 269 

moisture deficit affecting all plant species. Rather, it should be considered as an additional 270 

cause of mortality, affecting indiscriminately the whole array of plant species living in the 271 

low forest. 272 

 273 

 Dramatic declines in plant species diversity were observed in temperate, boreal and 274 

mountain areas, following forced or actual climate warming (Klein et al., 2004; Walker et al., 275 

2006), but such trends had not been demonstrated in species-rich neotropical forests yet, 276 

where most changes in tree growth, mortality and recruitment were attributed to rising CO
2
 277 

(Laurance et al., 2004) and only more recently to global warming (Feeley et al., 2007). 278 

Studies done at Barro Colorado, Panama, concluded that seedlings of common tree species 279 

were not affected by the severe 1997-98 ENSO dry event (Engelbrecht et al., 2002), although 280 

previous studies on the same sites demonstrated long-term effects of severe El Niño years on 281 

drought-sensitive species (Condit et al., 1995). However, the same 1997-1998 ENSO event 282 

was shown to be a main cause of biodiversity loss in tropical rain forests of Southeast Asia 283 

(Harrison, 2001), and decelerating growth rates of tropical trees are now recorded worldwide 284 

(Feeley et al., 2007). Experimental studies showed that warming trends could result in 285 

changes in species trait distribution, by privileging species better adapted to warmer climate 286 

(Post et al., 2008) or reaching dominance through increased growth (Harte & Shaw, 1995), 287 

and it is now admitted that the rapidity of present-day climate warming is likely to affect the 288 

capacity of adaptation of most plant communities (Walther, 2003; Jump & Peñuelas, 2005). In 289 

American and African rain forests lianas have been shown to increase in species trait 290 

representation (Phillips et al., 2002; Wright & Calderón, 2005; Swaine & Grace, 2007; but 291 
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see Caballé & Martin, 2001). Neither increase nor decrease in lianas species could be 292 

demonstrated in our study because of the poor abundance of this growth form in the low 293 

forest. We suspect that none of the low forest species are clearly adapted to drought, except 294 

for those composing the rock savanna (Sarthou & Villiers, 1998). Surprisingly, no shift 295 

towards a better representation of rock savanna species was observed along our three transects 296 

(Sarthou et al., submitted). Species typical of rock savanna are always associated with the 297 

presence of organic soil and the concomitant absence of any mineral soil, even when 298 

established within the low forest (Sarthou et al., submitted). Thus, it is possible that any 299 

displacement of the whole plant community, as reported in other transition areas (Camill et 300 

al., 2003; Sanz-Elorza et al., 2003; Shiyatov et al., 2005), is prevented by the absence of 301 

adequate soil conditions, which may constitute an ecological barrier to community drift in the 302 

presence of a rapid environmental change (Higgins, 2007). In this case, erosion events with 303 

total removal of the mineral soil (Rosique et al., 2000), as may have occurred in the past, 304 

should be a prerequisite for any development of a community better adapted to dry 305 

environments. 306 
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Meteorological station Recording  period Mean 10-yr increase Coefficient of determination R
2

Cacao 1981-2005 0.78°C 0.71***

Camopi 1955-2005 0.26°C 0.47***

Kourou 1967-2005 0.33°C 0.71***

Maripasoula 1955-2005 0.26°C 0.64***

Regina 1955-2005 0.32°C 0.67***

Rochambeau 1950-2005 0.16°C 0.44***

Saint-Georges 1956-2005 0.30°C 0.73***

Saint-Laurent du Maroni 1950-2003 0.19°C 0.44***

Saül 1955-2005 0.36°C 0.61***

Sinnamary 1955-2006 0.13°C 0.16**

Table 1. Mean warming trends on the longest possible record period in ten meteorological stations of French 

Guiana 
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667 
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1995 2005

Woody 100 78

Herb 33 22

Suffrutex 4 5

Palm 2 2

Therophyte 1 0

Geophyte 1 1

Chamaephyte 4 5

Hemicryptophyte 28 20

Liana 9.5 7

Nanophanerophyte 5 5

Microphanerophyte 31.5 29

Mesophanerophyte 37 27

Megaphanerophyte 8 8

Berry 34 33

Capsule 35 23

Achene 5 5

Drupe 24 20

Fleshy 7 7

Pod 9 8

Follicle 3 4

Samara 3 2

Caryopsis 7 5

Sporangium 2 1

Zoochorous 81 71

Anemochorous 42.5 31

Barochorous 2 1.5

Autochorous 6 3

Hydrochorous 0.5 0.5

Creeping 4 2

Rosette 8 7

Erect 79 67.5

Leaning 21 19.5

Climbing 10 7

Multi-stemmed 13 13

Seed class 1 48 34.5

Seed class 2 47.5 46.5

Seed class 3 18.5 15

Seed class 4 8 8

Winged seed 8 7

Plumose seed 3 2

c
2
 =  0.79

P =  0.98

c
2
 =  1.23

P =  0.94

Table 2. Variation in species trait distribution from 1995 to 

2005 on the whole study area

c
2
 =  2.18

P =  0.98 

c
2
 =  0.88

P =  0.83 

c
2
 =  2.09

P =  0.99

c
2
 =  0.92

P =  0.92
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1995 2005 Wilcoxon signed test

Adults (> 50 cm) 23.5 20.8 P = 0.13

Juveniles (< 50 cm) 261 192 P = 0.0006

Herbs and suffrutex 1.2 1.2 P = 0.53

Basal area (m
2
) 250 202 P = 0.99

Table 3. Variation in mean number of adults and juveniles (trees and 

shrubs), mean percent cover (herbs and suffrutex) and basal area per 

plant species from 1995 to 2005 on the whole study area

 670 
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Figure legends 672 

 673 

Figure 1. Climate data at Regina meteorological station (nearest from study site). Left: mean 674 

annual temperature over the previous 50 years. Right: mean monthly aridity index 675 

(mean temperature in °C divided by monthly rainfall in mm) over the previous 50 676 

years and individual curves for the four most arid years, i.e. years with a monthly 677 

aridity index higher than 2 678 

 679 

Figure 2. Species accumulation curves of woody plant species for 1995 and 2005. These 680 

curves being based on a random resampling of all individuals, only species which 681 

were recorded at the individual level (woody species) were accounted for 682 

 683 

Figure 3. Mean plant species richness (trees, shrubs, herbs and suffrutex included) at quadrat 684 

scale in the three transects. Comparisons between census years (1995 vs 2005) were 685 

done by t-test. The number of degrees of freedom (d.f.) takes into account 686 

autocorrelation (see text for more details). n = number of quadrats in each sample 687 

 688 

Figure 4. Increases and decreases in the number of plant species in each quadrat in the three 689 

transects (left scale). The broken line indicates the total number of species in 1995 690 

(right scale) 691 

 692 

Figure 5. Semivariogram of species richness on the three transects. Abscissa (lag) and 693 

ordinate (semivariance) were in logarithmic scale, in order to show the straight line 694 

used for the calculation of fractal distance (see text for more details) 695 

 696 



 33 

Figure 6. Changes in plant species traits (in mean number of species per quadrat) from 1995 697 

to 2005 698 

 699 

Figure 7. Logistic regression modelling the relationship between the disappearance of species 700 

from 1995 to 2005 (0 = persistence, 1 = disappearance) and their frequency (number 701 

of quadrats where the species was present) in 1995. Black dots indicate the species 702 

which were still present (bottom line) or had disappeared (upper line) in 2005 703 

704 
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Trees and shrubs Family Raunkiaer's life forms Fruit types Dispersion modes Seed size
Herbs and suffrutescent 

plants
Family

Raunkiaer's life 

forms
Fruit types Dispersion modes Seed size

Alibertia myrciifolia Rubiaceae microphanerophyte berry zoochory 0.5-1 cm Aechmea melinonii Bromeliaceae hemicryptophyte berry    zoochory <0.5 cm 0.5-1 cm

Antonia ovata (*) Loganiaceae mesophanerophyte capsule anemochory unknown (winged) Aganisia pulchella  (*) Orchidaceae hemicryptophyte capsule anemochory <0.5 cm

Apocynaceae sp. (*) Apocynaceae unknown unknown unknown unknown Anthurium jenmanii Araceae hemicryptophyte berry zoochory <0.5 cm

Asclepiadaceae sp. Asclepiadaceae liana follicle anemochory unknown Axonopus ramosus Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Aspidosperma cruentum Apocynaceae megaphanerophyte follicle anemochory >2 cm (winged) Bromelia  sp. Bromeliaceae hemicryptophyte berry    zoochory <0.5 cm 0.5-1 cm

Aspidosperma marcgravianum Apocynaceae megaphanerophyte follicle anemochory >2 cm (winged) Calathea squarrosa Marantaceae geophyte berry zoochory or myrmechory 0.5-1 cm 1-2 cm

Aspidosperma  sp. Apocynaceae mesophanerophyte follicle anemochory >2 cm (winged) Chamaecrista desvauxii Fabaceae chamaephyte pod anemochory <0.5 cm

Bignoniaceae sp. (*) Bignoniaceae liana capsule anemochory unknown Chelonanthus alatus Gentanaceae hemicryptophyte capsule anemochory <0.5 cm

Brosimum guianense Moraceae megaphanerophyte fleshy endozoochory 0.5-1 cm Chelonanthus purpurascens Gentanaceae hemicryptophyte capsule anemochory <0.5 cm

Burseraceae sp. 1 (*) Burseraceae mesophanerophyte drupe endozoochory unknown Cleistes rosea  (*) Orchidaceae therophyte             capsule              anemochory <0.5 cm

Burseraceae sp. 2 (*) Burseraceae mesophanerophyte drupe endozoochory unknown Cuphea blackii Lythraceae chamaephyte capsule           anemochory                       <0.5 cm

Calyptranthes lepida Myrtaceae mesophanerophyte berry         zoochory <0.5 cm 0.5-1 cm Cyperaceae sp. Cyperaceae hemicryptophyte achene autochory or anemochory <0.5 cm

Casearia  sp. Flacourtiaceae mesophanerophyte capsule zoochory unknown Disteganthus lateralis Bromeliaceae hemicryptophyte berry zoochory 0.5-1 cm

Cassipourea guianensis Rhizophoraceae mesophanerophyte capsule zoochory 0.5-1 cm Elleanthus brasiliensis  (*) Orchidaceae hemicryptophyte capsule anemochory <0.5 cm

Chrysobalanaceae sp. (*) Chrysobalanaceae phanerophyte drupe endo/synzoochory unknown Encyclia ionosma Orchidaceae hemicryptophyte capsule               anemochory <0.5 cm

Clusia grandiflora Clusiaceae mesophanerophyte capsule zoochory 0.5-1 cm 1-2 cm Episcia sphalera  (*) Gesneriaceae hemicryptophyte capsule autochory <0.5 cm

Clusia minor Clusiaceae microphanerophyte capsule                   zoochory <0.5 cm Guzmania lingulata Bromeliaceae hemicryptophyte capsule anemochory <0.5 cm

Clusia nemorosa Clusiaceae microphanerophyte capsule zoochory 0.5-1 cm Ichnanthus nemoralis Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Coccoloba  sp. Polygonaceae liana fleshy zoochory/hydrochory 0.5-1 cm Jessenia bataua Arecaceae microphanerophyte drupe barochory or zoochory >2 cm

Cordia  sp. Boraginaceae microphanerophyte drupe                            zoochory 0.5-1 cm Lindsaea  sp. (*) Dennstaedtiaceae hemicryptophyte sporangium anemochory <0.5 cm

Croton tafelbergicus Euphorbiaceae microphanerophyte capsule auto/barochory <0.5 cm Ludovia lancifolia Cyclanthaceae hemicryptophyte berry zoochory <0.5 cm

Croton  sp. (*) Euphorbiaceae microphanerophyte capsule auto/barochory <0.5 cm Macrocentrum cristatum Melastomataceae chamaephyte capsule anemochory <0.5 cm

Cupania diphylla Sapindaceae mesophanerophyte capsule         endozoochory 0.5-1 cm Olyra obliquifolia Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Cybianthus guianensis Myrsinaceae microphanerophyte drupe zoochory 0.5-1 cm Paradrymonia campostyla  (*) Gesneriaceae liana capsule autochory <0.5 cm

Daphnopsis granitica Thymeleaceae microphanerophyte drupe zoochory 0.5-1 cm Paradrymonia densa Gesneriaceae liana capsule autochory <0.5 cm

Dileniaceae sp. (*) Dileniaceae liana unknown zoochory unknown (arilled) Pariana campestris Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Duroia  sp. Rubiaceae phanerophyte berry zoochory 0.5-1 cm Phramipedium lindleyanum  (*) Orchidaceae hemicryptophyte capsule               anemochory <0.5 cm

Eriotheca surinamensis Bombacaceae microphanerophyte capsule anemochory 0.5-1 cm Pitcairnia geyskesii Bromeliaceae hemicryptophyte capsule anemochory <0.5 cm (winged)

Ernestia granvillei Melastomataceae nanophanerophyte capsule-like barochory or anemochory <0.5 cm Poaceae sp. 1 Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Erythroxylum citrifolium Erythroxylaceae microphanerophyte drupe                                   zoochory 0.5-1 cm Poaceae sp. 2 (*) Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Erythroxylum ligustrinum Erythroxylaceae mesophanerophyte drupe zoochory 0.5-1 cm Poaceae sp. 3 (*) Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Erythroxylum squamatum Erythroxylaceae mesophanerophyte drupe zoochory 0.5-1 cm Poaceae sp. 4 Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Eugenia albicans Myrtaceae microphanerophyte berry zoochory 0.5-1 cm Poaceae sp. 5 (*) Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Eugenia florida Myrtaceae microphanerophyte berry zoochory 0.5-1 cm 1-2 cm Poaceae sp. 6 Poaceae hemicryptophyte caryopsis anemochory <0.5 cm

Eugenia marowynensis Myrtaceae mesophanerophyte berry zoochory 1-2 cm Sauvagesia aliciae Ochnaceae chamaephyte capsule anemochory <0.5 cm

Eugenia ramiflora Myrtaceae microphanerophyte berry zoochory 0.5-1 cm Schizea pennula Schizaeaceae hemicryptophyte sporangium anemochory <0.5 cm

Eugenia  sp. 1 (*) Myrtaceae mesophanerophyte berry zoochory 0.5-1 cm Scleria cyperina Cyperaceae hemicryptophyte achene anemochory <0.5 cm

Eugenia  sp. 2 (*) Myrtaceae microphanerophyte berry zoochory 0.5-1 cm Scleria secans Cyperaceae liana achene anemochory <0.5 cm

Euplassa pinata Proteaceae mesophanerophyte drupe zoochory 1-2 cm Selaginella  sp. Selaginellaceae hemipcryptophyte sporangium anemochory <0.5 cm

Guapira eggersiana Nyctaginaceae mesophanerophyte fleshy zoochory 0.5-1 cm Stelestylis surinamensis Cyclanthaceae hemicryptophyte berry zoochory         <0.5 cm

Hebepetalum  sp. Linaceae mesophanerophyte drupe zoochory 0.5-1 cm Stylosanthes guianensis Fabaceae chamaephyte pod anemochory <0.5 cm

Henriettea  sp. (*) Melastomataceae mesophanerophyte berry zoochory <0.5 cm Syagrus stratincola Arecaceae micro-mesophanerophyte drupe zoochory >2 cm

Heteropteris  sp. Malpighiaceae liana samara  anemochory 0.5-1 cm (winged) Vanilla ovata  (*) Orchidaceae liana capsule anemochory <0.5 cm

Himatanthus bracteatus  (*) Apocynaceae mesophanerophyte capsule anemochory >2 cm Vriesea gladioliflora Bromeliaceae hemicryptophyte capsule anemochory <0.5 cm 0.5-1 cm (plumose)

Hippocrateaceae sp. (*) Hippocrateaceae liana or microphanerophyte unknown zoochory or anemochory unknown Vriesea pleiostica  (*) Bromeliaceae hemicryptophyte capsule anemochory <0.5 cm 0.5-1 cm (plumose)

Hirtella racemosa Chrysobalanaceae mesophanerophyte drupe zoochory 0.5-1 cm 1-2 cm Vriesea splendens Bromeliaceae hemicryptophyte capsule anemochory <0.5 cm 0.5-1 cm (plumose)

Humiria balsamifera  (*) Humiriaceae mesophanerophyte drupe zoochory 0.5-1 cm 1-2 cm

Inga lateriflora  (*) Mimosaceae mesophanerophyte pod endozoochory 1-2 cm

Inga stipularis Mimosaceae mesophanerophyte pod endozoochory 1-2 cm

Inga umbellifera Mimosaceae microphanerophyte pod endozoochory 1-2 cm

Inga virgultosa Mimosaceae mesophanerophyte pod endozoochory 0.5-1 cm 1-2 cm

Inga  sp. (*) Mimosaceae mesophanerophyte pod endozoochory 1-2 cm

Licania irwinii Chrysobalanaceae mesophanerophyte drupe zoochory >2 cm

Manilkara bidentata Sapotaceae megaphanerophyte berry zoochory >2 cm

Maytenus  myrsinoides Celastraceae mesophanerophyte capsule zoochory 1-2 cm

Melastomataceae sp. 1 (*) Melastomataceae phanerophyte unknown autochory or zoochory <0.5 cm

Melastomataceae sp. 2 (*) Melastomataceae phanerophyte unknown autochory or zoochory <0.5 cm

Miconia ciliata Melastomataceae nanophanerophyte berry zoochory <0.5 cm

Miconia holosericea Melastomataceae mesophanerophyte berry zoochory <0.5 cm

Micrandra  sp. Euphorbiaceae mesophanerophyte capsule autochory or myrmechochory 0.5-1 cm

Morinda  sp. Rubiaceae microphanerophyte fleshy zoochory <0.5 cm 0.5-1 cm

Myrcia citrifolia Myrtaceae mesophanerophyte berry zoochory 0.5-1 cm

Myrcia fallax Myrtaceae mesophanerophyte berry zoochory 0.5-1 cm

Myrcia guianensis Myrtaceae microphanerophyte berry zoochory 0.5-1 cm

Myrcia quitarensis Myrtaceae mesophanerophyte berry zoochory 0.5-1 cm

Myrcia saxatilis Myrtaceae microphanerophyte berry zoochory 0.5-1 cm

Myrcia sylvatica Myrtaceae microphanerophyte berry zoochory 0.5-1 cm

Myrciaria floribunda Myrtaceae mesophanerophyte berry zoochory  0.5-1 cm 1-2 cm

Myrciaria  sp. 1 Myrtaceae phanerophyte berry zoochory  0.5-1 cm

Myrciaria  sp. 2 Myrtaceae phanerophyte berry zoochory  0.5-1 cm

Myrtaceae sp. 1 (*) Myrtaceae phanerophyte fleshy zoochory  0.5-1 cm or 1-2 cm

Myrtaceae sp. 2 Myrtaceae phanerophyte fleshy zoochory  0.5-1 cm or 1-2 cm

Myrtaceae sp. 3 (*) Myrtaceae phanerophyte fleshy zoochory  0.5-1 cm or 1-2 cm

Myrtaceae sp. 4 Myrtaceae phanerophyte fleshy zoochory  0.5-1 cm or 1-2 cm

Myrtaceae sp. 5 Myrtaceae phanerophyte fleshy zoochory  0.5-1 cm or 1-2 cm

Myrtaceae sp. 6 Myrtaceae phanerophyte fleshy zoochory  0.5-1 cm or 1-2 cm

Neea ovalifolia Nyctaginaceae mesophanerophyte drupe-like zoochory 1-2 cm

Nyctaginaceae sp. Nyctaginaceae phanerophyte drupe-like zoochory unknown

Ocotea  sp. Lauraceae microphanerophyte berry zoochory 0.5-1 cm 1-2 cm

Ouratea candollei  (*) Ochnaceae mesophanerophyte drupelet zoochory 0.5-1 cm

Ouratea leblondii Ochnaceae microphanerophyte drupelet zoochory 0.5-1 cm

Oxandra asbeckii Annonaceae mesophanerophyte fleshy zoochory 1-2 cm

Parinaria excelsa Chrysobalanaceae megaphanerophyte drupe zoochory >2 cm

Parkia  sp. Mimosaceae megaphanerophyte pod zoochory 1-2 cm

Peltogyne paniculata Caesalpiniaceae megaphanerophyte pod zoochory >2 cm

Petrea volubilis Verbenaceae liana wing-like calyx lobes anemochory 0.5-1 cm

Phyllanthus attenuatus Euphorbiaceae microphanerophyte capsule probable autochory <0.5 cm

Picramnia guianensis Simaroubaceae microphanerophyte berry zoochory 0.5-1 cm 1-2 cm

Piptocoma schomburgkii Asteraceae microphanerophyte achene  anemochory <0.5 cm

Pogonophora schomburgkiana Euphorbiaceae mesophanerophyte capsule autochory <0.5 cm

Polygala spectabilis Polygalaceae nanophanerophyte capsule anemochory or myrmechochory 0.5-1 cm

Pourouma  sp. Cecropiaceae mesophanerophyte drupe-like zoochory 0.5-1 cm

Protium heptaphyllum Burseraceae mesophanerophyte drupe zoochory 0.5-1 cm 1-2 cm

Psychotria ctenophora Rubiaceae microphanerophyte berry zoochory 0.5-1 cm

Psychotria cupularis Rubiaceae microphanerophyte drupe zoochory <0.5 cm 0.5-1 cm

Psychotria hoffmannseggiana Rubiaceae nanophanerophyte drupe zoochory <0.5 cm

Psychotria moroidea Rubiaceae microphanerophyte drupe zoochory <0.5 cm 0.5-1 cm

Roupala montana Proteaceae mesophanerophyte follicle anemochory 0.5-1 cm

Rubiaceae sp. 1 (*) Rubiaceae phanerophyte unknown zoochory or anemochory unknown

Rubiaceae sp. 2 (*) Rubiaceae phanerophyte unknown zoochory or anemochory unknown

Rudgea crassiloba Rubiaceae microphanerophyte drupe zoochory 0.5-1 cm

Sagotia racemosa Euphorbiaceae mesophanerophyte capsule autochory 0.5-1 cm

Sapium montanum Euphorbiaceae microphanerophyte capsule zoochory <0.5 cm 0.5-1 cm

Schefflera decaphylla  (*) Araliaceae megaphanerophyte drupe zoochory 0.5-1 cm

Sclerolobium albiflorum Caesalpiniaceae megaphanerophyte pod anemochory >2 cm (winged)

Securidaca uniflora  (*) Polygalaceae liana samara  anemochory 0.5-1 cm (winged)

Smilax  sp. Smilacaceae liana berry zoochory 0.5-1 cm

Souroubea guianensis Marcgraviaceae liana berry zoochory <0.5 cm

Tabebuia capitata Bignoniaceae microphanerophyte capsule anemochory >2 cm

Tapirira guianensis Anacardiaceae mesophanerophyte drupe zoochory 0.5-1 cm

Terminalia amazonia Combretaceae mesophanerophyte drupe anemochory 0.5-1 cm (winged)

Ternstroemia dentata Theaceae mesophanerophyte berry zoochory 1-2 cm

Thyrsodium guianense  (*) Anacardiaceae mesophanerophyte drupe endozoochory 1-2 cm

Zygia tetragona Mimosaceae mesophanerophyte pod endozoochory 1-2 cm

Undetermined 1 (*) phanerophyte unknown unknown unknown

Undetermined 2 (*) phanerophyte unknown unknown unknown

Undetermined 3 (*) phanerophyte unknown unknown unknown

Undetermined 4 (*) phanerophyte unknown unknown unknown

Undetermined 5 (*) unknown unknown unknown unknown

Appendix. List of latin names and traits of plant species found in the three studied transects. Species which totally disappeared in 2005 (compared to 1995) are indicated by (*)
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