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Norm of polynomials in large random and

deterministic matrices

C. Male
∗

abstract:

In this article we show the convergence of the operator norm (the largest singular value) of

any polynomial in some random matrices. If XN = (X
(N)
1 , . . . , X

(N)
p ) denotes a family ofN×

N independent random matrices from the Gaussian Unitary Ensemble (GUE), then we state

sufficient conditions on (possibly random) matrices YN = (Y
(N)
1 , . . . , Y

(N)
q ), independent

with XN , for which ‖P (XN ,YN ,Y
∗
N )‖ converges for all polynomial P . Limits are described

by operator norms of objects from free probability theory. We give examples of diagonal
matrices YN for which the convergence holds. Convergence of the operator norm is shown
to hold for some block matrices, even with rectangular gaussian blocks, a situation including
non-white Wishart matrices.

1 Statement of results

Let XN = (X
(N)
1 , . . . , X

(N)
p ) be independent N × N matrices of the normalized Gaussian Unitary En-

semble (GUE), i.e. for each j = 1, . . . , p, the matrix X
(N)
j is selfadjoint with entries

X
(N)
j = (Xn,m)16n,m6N

the set of random variables (Xn,n)16n6N , and (
√
2Re (Xn,m),

√
2Im (Xn,m) )16n<m6N forms a centered

Gaussian vector with covariance matrix 1
N 1N2 .

Let YN = (Y
(N)
1 , . . . , Y

(N)
q ) be N × N random matrices. Some assumptions on the generalized mo-

ments of this family, namely the convergence of its non commutative law, will be made in Section 3 after
a recall in free probability theory.

Voiculescu showed in [26] that when the size of the matrices goes to infinity, the generalized moments of
the family (XN ,YN ) can be described by a non negative linear form τ on the set C〈x,y,y∗〉 of non com-
mutative polynomials in the p + 2q non commutative indeterminates x = (x1, . . . , xp), y = (y1, . . . , yq),
y∗ = (y∗1 , . . . , y

∗
q ): for all P in C〈x,y,y∗〉,

lim
N→∞

τN

[

P (XN ,YN ,Y
∗
N )

]

= τ
[

P (x,y,y∗)
]

, (1.1)

almost surely and in expectation, where τN = 1
N TrN is the normalized trace.

A different problem is the question of convergence with respect to the operator norm instead of con-
vergence relative to the trace in (1.1); in the context of free probability, that is known as strong conver-
gence. Let ‖P (XN ,YN ,Y

∗
N )‖ denote the operator norm of P (XN ,YN ,Y

∗
N ), i.e. the norm induced by

the Euclidean norm in CN or, equivalently, the largest singular value of P (XN ,YN ,Y
∗
N ) which is equal

to the root square of the largest eigenvalue of P (XN ,YN ,Y
∗
N )∗P (XN ,YN ,Y

∗
N ). For the polynomial

P (x,y,y∗) in (1.1), the operator norm is defined by

‖P (x,y,y∗)‖τ := lim
k→∞

(

τ
[

(

P (x,y,y∗)∗P (x,y,y∗)
)k

]

)1/2k

. (1.2)
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The problem we address in this paper is to give sufficient conditions on the matrices YN so that

lim
N→∞

‖P (XN ,YN ,Y
∗
N )‖ = ‖P (x,y,y∗)‖τ , almost surely. (1.3)

The asymptotic behavior of extremal singular values or eigenvalues of large random matrices has been
a longstanding question. It originally appared in multivariate analysis, to resolve technical difficulties
for computation of statistics written as integrals of unbounded functions with respect to the empirical
spectral distribution of a random matrix, via the Helly-Bray theorem, .

The first results on the convergence of the largest eigenvalue for a Wigner or a Wishart matrix when
the size goes to the infinity appeared in the early 1980’s in the works of Geman [11], Juhász [17], Füredi
and Komlós [10], Jonsson [16] and Silverstein [23]. In 1988, in the case of a Wigner matrix, by Bai
and Yin stated in [5] necessary and sufficient conditions for the convergence in terms of the first four
moments of the entries of these matrices. In the case of a Wishart matrix, the result is due to Yin, Bai,
and Krishnaiah in [28] and Bai, Silverstein, and Yin [3]. The case of a complex matrix has been investi-
gated later by Bai [2]. In this series of papers, where the assumptions on the matrices where progressively
relaxed up to the optimal ones, proofs were basically combinatorial, and based on the truncation of entries.

The method of Stieltjes transform may be applied to investigated the support of the limiting empiri-
cal spectral distribution of a random matrix. In 1998 Bai and Silverstein showed [4] for large sample
covariance matrices the convergence of the support of the limiting distribution.

In 2005, Haagerup and Thorbjørnsen showed [15] in the case where the matrices YN are zero that
the convergence in (1.3) holds. Their method (which will be presented in Section 3) is based on a lin-
earization trick and and on free harmonic analysis of some Stieltjes transforms. It has been used by
Schultz to obtain the same result for Gaussian random matrices with real or symplectic entries [22], and
by Capitaine and Donati-Martin for non Gaussian Wigner matrices with symmetric distribution of the
entries satisfying a Poincaré’s inequality and for Wishart matrices [7]. Some details of the method have
been improved by Haagerup, Schultz, and Thorbjørnsen in [14] to extend the class of random matrices
that satisfy Bai and Silverstein’s "no eigenvalues outside the limiting spectra" phenomena [4].

This article is mainly devoted to the following theorem.

Theorem 1 (Strong asymptotic freeness). In Section 3 we make precise assumptions on (1) the gener-
alized moments of YN , (2) the concentration of the entries of matrices YN , and on (3) the good rate of
convergence for some Stieltjes transforms, under which for all polynomial P in p+ 2q non commutative
variables we have almost surely

lim
N→∞

‖P (XN ,YN ,Y
∗
N )‖ = ‖P (x,y,y∗)‖τ . (1.4)

The first and the simpler matrix model that may be investigated to play the role of matrices YN in
Theorem 1 consists in diagonal matrices with real entries. Let µ1, . . . , µq be probability measures in R

with compact support. For j = 1, . . . , q, denote by Fj the cumulative distribution function of µj defined
by: for all t in R, Fj(t) = µj

(

] −∞, t]
)

. Let F−1
j , j = 1, . . . , q be the generalized inverse of Fj : for all

u in ]0, 1], F−1
j (u) = inf

{

t ∈
∣

∣ F (t) ≥ u
}

and1 F−1
j (0) = lim

u→0+
F−1
j (u). Let DN = (D

(N)
1 , . . . , D

(N)
q ) be

the family of N ×N deterministic diagonal matrices defined by: for j = 1, . . . , q

D
(N)
j = diag

(

F−1
j

( 0

N

)

, . . . , F−1
j

(N − 1

N

) )

. (1.5)

Then the empirical spectral distribution of D
(N)
j converges weakly to the measure µj , and hence the con-

vergence (1.1) holds by Voiculescu’s theorem for a certain linear form τ on non commutative polynomials
in selfadjoint indeterminates (x,d) = (x1, . . . , xp, d1, . . . , dq). We show in Section 5.1 the following:

Corollary 1 (diagonal matrices). If for j = 1 . . . q the support of µj is a single interval then Theorem 1
holds for DN : for all non commutative polynomial P ∈ C〈x,d〉,

lim
N→∞

‖P (XN ,DN )‖ = ‖P (x,d)‖τ .

1This definition made F
−1

j
continuous at 0
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Theorem 1 may be used to deduce the same result for Wishart matrices as for the GUE matrices. Let

r ≥ s be integers and let WN = (W
(N)
1 , . . . ,W

(N)
p ) be independent rN × rN matrices of the normalized

Wishart ensemble with parameter r/s, i.e. for each j = 1, . . . , p, W
(N)
j = M

(N)
j M

(N)∗
j where M

(N)
j is a

rN × sN matrix whose entries are random variables,

M
(N)
j = (Mn,m)16n6rN

16m6sN
,

and the random variables (
√
2Re (Mn,m),

√
2Im (Mn,m) )16n6rN,16m6sN form a centered Gaussian vector

with covariance matrix 1
rN 12rsN2 . Consider rN×rN random matrices YN = (Y

(N)
1 , . . . , Y

(N)
q ) satisfying

the assumptions of Theorem 1 or of the diagonal form of Corollary 1.

Corollary 2 (Wishart matrices). For all polynomial P in p+ 2q non commutative variables

lim
N→∞

‖P (WN ,YN ,Y
∗
N )‖ = ‖P (w,y,y∗)‖τ , a.s. (1.6)

for a non negative linear form τ .

Let ΣN = (Σ
(N)
1 , . . . ,Σ

(N)
p ) be a family of rN × rN non negative definite Hermitian matrix and define

ZN = (Z
(N)
1 , . . . , Z

(N)
p ) by: for j = 1, . . . , p

Z
(N)
j = (Σ

(N)
j )1/2W

(N)
j (Σ

(N)
j )1/2. (1.7)

The matrices Z
(N)
1 , . . . , Z

(N)
p are called non-white Wishart matrices. Then if the matrices

(

(Σ
(N)
1 )1/2, . . . , (Σ

(N)
p )1/2

)

are diagonal as in Corollary 1 we get the convergence of ‖P (Z(N)
1 , . . . , Z

(N)
p )‖ for any polynomial P . For

Wishart matrices with rational parameter, this extends the result of Capitaine and Donati-Martin [7],

where the convergence of the norm of polynomials in white Wishart matrices (where Σ
(N)
j = 1rN and

YN = 0) has been investigated.

It will be shown as a consequence of Theorem 1 that the convergence of norms (1.4) also holds for
block matrices.

Corollary 3 (Block matrices). Let XN ,YN , τ be as in Theorem 1. For all ℓ in N, let (Pu,v)16u,v6ℓ be
non commutative polynomials. Then the operator norm of the ℓN × ℓlN block matrix







P1,1(XN ,YN ,Y
∗
N ) . . . P1,ℓ(XN ,YN ,Y

∗
N )

...
...

Pℓ,1(XN ,YN ,Y
∗
N ) . . . Pℓ,ℓ(XN ,YN ,Y

∗
N )






, (1.8)

converges almost surely to the norm ‖.‖(τℓ⊗τ) of







P1,1(x,y,y
∗) . . . P1,ℓ(x,y,y

∗)
...

...
Pℓ,1(x,y,y

∗) . . . Pℓ,ℓ(x,y,y
∗)






, (1.9)

where the linear form (τℓ ⊗ τ) is given by

(τℓ ⊗ τ)













P1,1(x,y,y
∗) . . . P1,ℓ(x,y,y

∗)
...

...
Pℓ,1(x,y,y

∗) . . . Pℓ,ℓ(x,y,y
∗)












= τ

[

ℓ
∑

i=1

Pi,i(x,y,y
∗)
]

.

In the context of communication, rectangular block random matrices are sometimes investigated for the
study of wireless Multiple-input Multiple-Output (MIMO) systems [18, 25]. In the case of Intersymbol-
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Interference the channel matrix H reflects the channel effect during a transmission and is of the form

H =

























A1 A2 . . . AL 0 . . . . . . 0

0 A1 A1 . . . AL 0
...

... 0 A1 A2 . . . AL 0

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . . 0

0 . . . . . . 0 A1 A2 . . . AL

























, (1.10)

where L is the length of the impulse response of the channel, (Al)16ℓ6L are nR × nT matrices that are
very often modeled by random matrices, nT is the number of transmitter antenna and nR is the number
of receiver antenna.
In order to calculate the capacity of such a channel, one must know the singular value distribution of H ,
which is predicted by free probability theory. Theorem 1 provides a large class of matrices of the form
(1.10) for which the norm convergence holds i.e. the extremal singular values converge to the extrema of
the singular spectra. For instance we investigate in Section 5.4 the following case:

Corollary 4 (Rectangular band matrices). Let r, t ≥ 1 be integers. Let H be the matrix given by (1.10)
where nR = rN , nT = tN , the matrices A1, . . . , AL are independent and for l = 1 . . . L the entries of the
matrix Al are independent identically distributed according to the complex Gaussian measure with mean
ml ∈ C and variance σ2

l /N (σ ≥ 0). Then the norm of H converges.

The convergence also holds when the matrices Al, for l = 1 . . . L are multiplied on the left and on the
right by rN × rN and respectively tN × tN diagonal matrices of the form of Corollary 1.

In Section 2, we recall basic facts in free probability theory. Section 3 is dedicated to the method of
Haagerup and Thorbjørnsen [15], and we introduce some notations to give the precise assumptions on
the non Gaussian matrices YN . We also give a sketch of the proof of Theorem 1. Theorem 1 is proven
in Section 4. Section 5 contains the proofs of Corollaries 1-4.

Acknowledgments: We would like to thank Alice Guionnet for dedicating much time over many dis-
cussions to the subjects of this paper and, along with Manjunath Krishnapur and Ofer Zeitouni, for the
communication of Lemma 15.

2 Recall on free probability theory

Even if this paper concerns random matrices, it is relevant to describe the limits in the context of free
probability. We remind for reader convenience the following basic facts from this theory (see [21] and [1]
for details).

1. A ∗-probability space (A, .∗, τ) consists in a unital C-algebraA endowed with an antilinear involution
.∗ such that (ab)∗ = b∗a∗ for all a, b in A, and a trace τ . A trace τ is a unital linear functional
τ : A 7→ C satisfying

τ [1] = 1, τ [ab] = τ [ba], ∀a, b ∈ A. (2.1)

The elements of A are called non commutative random variables, or in short non commutative
variables. We will always suppose that τ is a tracial state, that means

τ [a∗a] ≥ 0, ∀a ∈ A. (2.2)

The tracial state τ will always supposed to be faithful, i.e. satisfies τ [a∗a] = 0 only if a = 0. A
tracial state τ satisfies the Cauchy-Schwarz inequality

∣

∣τ [b∗a]
∣

∣

2
6 τ [a∗a]τ [b∗b], ∀a, b ∈ A. (2.3)
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2. Given (A, .∗, τ) a ∗-probability space, we can define a norm ‖.‖τ on A by

‖a‖τ = lim
k→∞

(

τ
[

(a∗a)k
]

)
1
2k

, ∀a ∈ A. (2.4)

Then ‖.‖τ satisfies

‖ab‖τ 6 ‖a‖τ ‖b‖τ , ∀a, b ∈ A, (2.5)

‖a∗a‖τ = ‖a‖2τ , ∀a ∈ A. (2.6)

3. We denote by C〈x,x∗〉 the set of non commutative polynomials in non commutative indeterminates
x = (x1, . . . , xp),x

∗ = (x∗1, . . . , x
∗
p). We define the non commutative law of a family a = (a1, . . . , ap)

of elements of A as the linear functional τa : C〈x,x∗〉 → C determined by

τa[P ] = τ
[

P (a, a∗)
]

. (2.7)

In the following we write τ a shorthand for τa when there is no danger of confusion. For convenience
we use the notation P (a, a∗) = P (a1, . . . , ap, a

∗
1, . . . , a

∗
p).

4. The families of non commutative variables a1, . . . , an are said to be free if for all K in N, for all
non commutative polynomials P1, . . . , PK

τ
[

P1(ai1 , a
∗
i1) . . . PK(aiK , a

∗
iK )

]

= 0 (2.8)

as soon as i1 6= i2 6= . . . 6= iK and τ
[

Pk(aik , a
∗
ik
)
]

= 0 for k = 1, . . . ,K. For free families a1, . . . , an,
the non commutative laws τa1

, . . . , τan completely determines the joint law τ(a1,...,an).

5. A family x = (x1, . . . , xp) in A is called a semicircular family when the non commutative variables
are free, selfadjoint (xi = x∗i , i = 1, . . . , p), and for all k in N and i = 1, . . . , p

τ [xki ] =

∫

tkdσ(t), (2.9)

with dσ(t) = 1
2π

√
4− t2 1|t|62 dt the semicircle distribution.

6. ForN in N∪{∞}, let (AN , .
∗, τN ) be a sequence of ∗-probability spaces and let aN = (a

(N)
1 , . . . , a

(N)
n )

in AN be non commutative random variables. We say that the sequence (aN )N∈N converges in law
(or in moment) to a∞ when for all P ∈ C〈x,x∗〉

lim
N→∞

τaN [P ] = τa∞ [P ]. (2.10)

We say that a∞ is the non commutative limit of (aN )N∈N. When the sequence of families (a
(N)
1 , . . . , a

(N)
n )

converges in law to free families (a1, . . . , an), we say that the families are asymptotically free.

7. A C∗-probability space (B, .∗, τ, ‖.‖) consists in a ∗-probability space (B, .∗, τ) and a norm ‖.‖ such
that (B, .∗, ‖.‖) is a C∗-algebra. By the Gelfand-Naimark-Segal construction, one can always realized
B as a norm-closed C∗-subalgebra of the algebra of bounded operators on a Hilbert space. The
norm ‖.‖ is unique and coincides with the norm ‖.‖τ defined in Equation (2.4). The framework
of C∗-probability theory is a good one for a meaningful harmonic analysis (see section 4.2); for
instance, if a is a non commutative variable in a C∗-probability space (B, .∗, τ, ‖.‖), the Stieltjes (or
Cauchy) transform of a, given by

∀λ ∈ C, such that Im λ > 0, g(λ) =
1

λ
+

∞
∑

n=1

τ [an]

λn+1
= τ

[

(λ1− a)−1
]

,

is an analytic function.
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The set of N ×N matrices MN (C) is a ∗-probability space when equipped with the conjugate transpose
involution and tracial state τN = 1

N TrN the normalized trace; TrN denotes the usual trace in MN (C),
sum of diagonal elements of a matrix. In this case, the norm ‖.‖τN defined by Equation (2.4) is the
operator norm i.e. the norm induced by the Euclidean norm in C

N and will be denoted in short ‖.‖ in
the rest of this article. Equivalently, for any matrices A in MN (C) the number ‖A‖ is the largest singular
value of A i.e. the root square of the largest eigenvalue of the matrix A∗A (consequence of the spectral
theorem). To obtain an algebra in the case of random matrices, one has to suppose that the entries are
random variables with finite moments of any order. Hence we have two possible frameworks, with τN or
E[τN .] for the tracial state, where E stands for the expectation.

3 Method, assumptions and sketch of the proof of Theorem 1

Let XN = (X
(N)
1 , . . . , X

(N)
p ) be independent GUE matrices, and YN = (Y

(N)
1 , . . . , Y

(N)
q ) be random

matrices, independent with XN that satisfy the two following assumptions (a third one will be assumed,
and will be presented after some notations):

Assumption 1 (Moments assumption). The non commutative law of YN in (MN (C), .∗, τN ) converges
almost surely and in expectation to the law of non commutative variables y = (y1, . . . , yq) in a C∗-
probability space and there exists a D ≥ 0 such that for j = 1, . . . , q we have almost surely

lim sup
N→∞

‖Y (N)
j ‖ < D (3.1)

Assumption 2 (Poincaré’s inequality). We suppose that there exists σ > 0 such that for every N , the
joint law of the entries of the matrices YN satisfies a Poincaré’s inequality with constant σ/N i.e. for

all f R2qN2 → C, function of the entries of q matrices, of class C1 and such that E

[

|f(YN )|2
]

< ∞
one has

Var
(

f(YN )
)

6
σ

N
E

[

‖∇f(YN )‖2
]

, (3.2)

where ∇f denotes the gradient of f , Var denotes the variance, Var( x ) = E
[ ∣

∣ x− E[ x ]
∣

∣

2]
.

Voiculescu’s Theorem [26], Assumption 1 and the fact that XN and YN are independent imply that
the non commutative law of (XN ,YN ) in (MN (C), .∗,E[τN .]) converges to the law of non commutative
random variables (x,y) in a C∗-probability space (B, .∗, τ, ‖.‖τ), where the trace τ is defined by the facts
that
• x = (x1, . . . , xp) is a semicircular system (Item 5 in Section 2),
• y = (y1, . . . , yq) is the non commutative limit of YN ,
• x,y are free (Item 4).
The convergence also holds almost surely when the random non commutative law of the matrices is
viewed in (MN (C), .∗, τN ) [1, Theorem 5.4.5]: for all polynomial P in p+ 2q non commutative variables,

lim
N→∞

τN

[

P (XN ,YN ,Y
∗
N )

]

= τ
[

P (x,y,y∗)
]

, a. s. and in expectation, (3.3)

Hence it is easy to see that one has (see [15, Lemma 7.2] )

lim inf
N→∞

‖P (XN ,YN ,Y
∗
N )‖ ≥ ‖P (x,y,y∗)‖, a. s. (3.4)

It remains to show that the limsup is smaller than the right hand side in (3.4). The method of Haagerup
and Thorbjørnsen described in [15] is carried out in three steps:

Step 1. Linearization Trick: Inequality (3.4) known, the question of almost sure convergence of the norm
of any polynomial in random matrices can be reduced to the question of the convergence of the
spectra of any matrix-valued selfadjoint degree one polynomials in these matrices (see [15, parts
2 and 7]). More precisely, in order to get Theorem 1, it is sufficient to show that given ε > 0, k
positive integer, L a self adjoint degree one polynomial in Mk(C) ⊗ C〈x,y,y∗〉, then there exists
N0 such that for all N ≥ N0

Sp
(

L(XN ,YN ,Y
∗
N )

)

⊂ Sp
(

L(x,y,y∗)
)

+ (−ε, ε) (3.5)
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Step 2. From Stieltjes transform to spectra: here we use a slight modification of the method in [15]
due to [1, subsection 5.5] and [13]. For convenience, we will recall its proof in Appendix B. Fix

a selfadjoint degree one polynomial L ∈ Mk(C) ⊗ C〈x,y,y∗〉, and denote by G
(1)
N and G(1) the

Mk(C)-valued Stieltjes transforms of L(XN ,YN ,Y
∗
N ) and L(x,y,y∗) respectively, given by

G
(1)
N (Λ) = E

[

(idk ⊗ τN )
[

(

Λ⊗ 1N − L(XN ,YN ,Y
∗
N )

)−1
]

]

∈Mk(C), (3.6)

G(1)(Λ) = E

[

(idk ⊗ τN )
[

(

Λ⊗ 1− L(x,y,y∗)
)−1

]

]

∈Mk(C), (3.7)

for all matrices Λ in Mk(C) such that Im Λ := 1
2i (Λ−Λ∗) is definite positive (we will write in short

Im Λ > 0). Then in order to show (3.5), since the matrices (XN ,YN ,Y
∗
N ) satisfy a Poincaré’s

inequality (by the tensor property), it is sufficient to show that: for every ε, ε̃ > 0, there exist
N0, c, η, γ, α > 0 such that for all N ≥ N0, for all matrices Λ in Mk(C) of the form Λ = λ1k such
that ε 6 (Im λ)−1 6 Nγ and |Re λ| 6 ε̃

‖G(1)
N (Λ)−G(1)(Λ)‖ 6

c

N1+η
λ−α, (3.8)

where ‖.‖ stands as before for the operator norm, i.e. the largest singular value in Mk(C).

Step 3. Proof of Estimate (3.8): This part is the main purpose of this paper. For this task we show that
the Stieltjes transform for random matrices (3.6) approximatively satisfies an equation predicted
by free probability theory for (3.7). In [15], [14] and [7] the authors have used a generalization, in
the context of operator-valued non commutative variables, of the fact that the Stieltjes transform
of a non commutative random variable is invertible and its inverse can be expressed in term of its
R-transform (see Section 4.2). In this paper, since we deal with two families of random matrices
that are asymptotically free, the so-called subordination property (which encodes the fundamental
property of R-transforms, namely linearity under free convolution) may be applied.

We first come back to the notations in order to state the last assumption and stress the main ideas of the
proof. Fix a self adjoint degree one non commutative polynomial L ∈ Mk(C)⊗C〈x,y,y∗〉. We can write

L(XN ,YN ,Y
∗
N ) = a0 ⊗ 1N + SN + TN ∈ Mk(C)⊗ MN (C),

L(x,y,y∗) = a0 ⊗ 1+ s+ t ∈Mk(C)⊗ C〈x,y,y∗〉,
where

SN =

p
∑

j=1

aj ⊗X
(N)
j , TN =

q
∑

j=1

bj ⊗ Y
(N)
j + b∗j ⊗ Y

(N)∗
j ,

s =

p
∑

j=1

aj ⊗ xj , t =

q
∑

j=1

bj ⊗ yj + b∗j ⊗ y∗j ,

a0, . . . , ap ∈ Mk(C) being selfadjoint, b1, . . . , bq ∈ Mk(C).

Define the Stieltjes transforms of the linear component of L in the matrices of YN and, respectively,
in the non commutative variables y: for all Γ in Mk(C) such that Im Γ > 0,

G
(2)
N (Γ) = E

[

(idk ⊗ τN )
[

(

Γ⊗ 1N − TN
)−1

]

]

∈ Mk(C),

G(2)(Γ) = (idk ⊗ τ)
[

(

Γ⊗ 1− t
)−1

]

∈ Mk(C).

In the following we will denote, for γ, γ̃ > 0, by Oγ,γ̃ the set

Oγ,γ̃ =

{

Λ ∈ Mk(C)
∣

∣

∣
Im Λ > 0, ‖(Im Λ)−1‖ 6 Nγ , ‖Λ‖ 6 N γ̃

}

, (3.9)

where ‖.‖ stands as before for the operator norm. We can now describe the last assumption on YN :
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Assumption 3 (Rate of convergence for Mk(C)-valued Stieltjes transforms). We suppose that the fol-

lowing speed of convergence of G
(2)
N to G(2) holds: there exist N2, γ2, γ̃2, c2, η2, α2 > 0 such that for all

N ≥ N2, for all matrices Γ in Oγ2,γ̃2
we have

∥

∥

∥G
(2)
N (Γ)−G(2)(Γ)

∥

∥

∥ 6
c2

N1+η2
‖(Im Γ)−1‖α2 . (3.10)

Remark: The order 1/N1+η is the optimal one we can expect to obtain the convergence of the extremal

singular values. Modifying a single eigenvalue of a matrix produces a perturbation of order 1/N in G
(1)
N

which can modify the asymptotic behavior of the norm of the matrix.

We show that we can obtain a similar control on the speed of convergence of G
(1)
N to G(1) and then deduce

Estimate (3.8):

Theorem 2 (Estimation of Mk(C)-valued Stieltjes transforms). Under Assumptions 1, 2 and 3, there
exist constants N0, γ, γ̃ such that for all N ≥ N0, for all Λ in Oγ,γ̃, one has

‖G(1)(Λ)−G
(1)
N (Λ)‖ 6

(

1 + 2‖(Im Λ)−1‖2
p

∑

j=1

‖aj‖2
) ( c1

N2
‖(Im Λ)−1‖5 + c2

N1+η2
‖(Im Λ)−1‖α2

)

,

(3.11)

with c2, η2, α2 of Assumption 3 and c1 = 2k9/2σ
N2

∑p
j=1 ‖aj‖

(

∑p
j=1 ‖aj‖+ 2

∑q
j=1 ‖bj‖

)2

.

Hence, for every ε, ε̃ > 0, for all matrices Λ of the form Λ = λ1k with Im λ > 0 such that ε 6 (Im λ)−1 6

Nγ and |Re λ| 6 ε̃, we have for N large enough

‖G(1)(Λ)−G
(1)
N (Λ)‖ 6

c

N1+η
(Im λ)−α (3.12)

where η = min(η2, 1/2), α = max(7, α2 + 2) and c a positive constant that does not depend on λ or N .

Remark: The central limit theorem (CLT) for certain linear eigenvalue statistics of random matrices
was considered in many papers (see [20] and the references therein). Results are often stated for statistics
re-centered by their mean: for a large class of random matrix MN and functions f , it is shown that the
random variable N

(

τN [f(MN)] − E[τN [f(MN)]]
)

converges in law to a Gaussian random variable. We
obtain from Theorem 2 and classical manipulations of Stieltjes transforms that if the CLT holds for a
kN × kN matrix MN = L(XN ,YN ,Y

∗
N ) (L being in Mk(C) ⊗ C〈x,y,y∗〉 self adjoint of degree 1) and

f : R → R a smooth function, then we get the CLT re-centered by the limit: N
(

τN [f(MN)] − τ [f(m)]
)

converges in law to a Gaussian random variable, where m is the non commutative limit of MN .

The key point of the proof of Estimate (3.11) is to show an asymptotic subordination property for
random matrices: we show in Section 4.1 that ∀Λ ∈ Mk(C) with Im Λ > 0

G
(1)
N (Λ) = G

(2)
N

(

Λ⊗ 1N − a0 ⊗ 1N −R
(

G
(1)
N (Λ)

)

)

+ ΘN(Λ), (3.13)

where:
• R is the Mk(C)-amalgamated R-transform of s (see Section 4.2):

R : Mk(C) → Mk(C)
G 7→ ∑p

j=1 ajGaj
(3.14)

• ΘN an error term well controlled by concentration inequalities.

The so-called subordination property for operator-valued non commutative random variables encodes
the relation of freeness in term of Stieltjes and R-transforms (see Section 4.2). In this case the freeness
between x and y gives: for Im Λ > 0

G(1)(Λ) = G(2)
(

Λ − a0 −R
(

G(1)(Λ)
)

)

. (3.15)
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To relate precisely these two equations we use analytical changes of variables (purpose of Section 4.3.1):
at the source for the exact subordination property and at the goal for the asymptotic one. More precisely

we introduce perturbations G̃
(1)
N of the Stieltjes transform G

(1)
N and ΛN of the parameter Λ, such that







G̃
(1)
N (Λ) = G(2)

(

ΛN − a0 −R
(

G̃
(1)
N (Λ)

)

)

,

G(1)(ΛN ) = G(2)
(

ΛN − a0 −R
(

G(1)(ΛN )
)

)

.
(3.16)

We show (Lemma 3) that the fixed point equation

GΛ = G(2)
(

Λ− a0 −R
(

GΛ

)

)

(3.17)

admits a unique solution GΛ in Mk(C) whose imaginary part is non positive semi definite, provided
(Im Λ)−1 is small enough. By analyticity of the functions we will conclude that

G̃
(1)
N (Λ) = G(1)(ΛN), ∀ Im Λ > 0. (3.18)

The convergence of G
(1)
N to G(1) is deduced from some controls on G̃

(1)
N and ΛN .

4 Details of the proof of Theorem 2

4.1 Asymptotic subordination property for random matrices

Let XN = (X
(N)
1 , . . . , X

(N)
p ) be independent G.U.E. matrices, and YN = (Y

(N)
1 , . . . , Y

(N)
q ) random

matrices. Consider a selfadjoint degree one polynomial L in Mk(C)⊗ C〈x,y,y∗〉, and write

L(XN ,YN ,Y
∗
N ) = a0 ⊗ 1N + SN + TN ,

with

SN =

p
∑

j=1

aj ⊗X
(N)
j , TN =

q
∑

j=1

bj ⊗ Y
(N)
j + b∗j ⊗ Y

(N)∗
j ,

the matrices a0, . . . , ap being selfadjoint.

For Im Λ > 0, Im Γ > 0, define the k × k random matrices

H
(1)
N (Λ) = (idk ⊗ τN )

[

(

Λ⊗ 1N − a0 ⊗ 1N − SN − TN
)−1

]

,

H
(2)
N (Γ) = (idk ⊗ τN )

[

(

Γ⊗ 1N − TN
)−1

]

.

Since L(XN ,YN ,Y
∗
N ) and TN are selfadjoint and Im Λ > 0, Im Γ > 0, these matrices are well defined

(see [15, Lemma 3.1]). The Mk(C)-valued Stieltjes transforms of L(XN ,YN ,Y
∗
N ) and of TN are defined

respectively by

G
(1)
N (Λ) = E

[

H
(1)
N (Λ)

]

= E

[

(idk ⊗ τN )
[

(

Λ⊗ 1N − a0 ⊗ 1N − SN − TN
)−1

]

]

,

G
(2)
N (Γ) = E

[

H
(2)
N (Γ)

]

= E

[

(idk ⊗ τN )
[

(

Γ⊗ 1N − TN
)−1

]

]

.

The purpose of this section is to show the following theorem which shows that G
(1)
N approximately satisfies

(3.17).

Theorem 3 (Asymptotic subordination property). Under Assumptions 1 and 2, for Im Λ > 0 define

ΓN (Λ) = Λ− a0 −
p

∑

j=1

ajG
(1)
N (Λ)aj .
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In the following, we denote for simplicity ΓN = ΓN (Λ). Then one has Im ΓN > 0 and the Stieltjes
transforms satisfy the equation

G
(1)
N (Λ) = G

(2)
N

(

Λ− a0 −
p

∑

j=1

ajG
(1)
N (Λ)aj

)

−ΘN (Λ,ΓN), (4.1)

where

‖ΘN(Λ,Γ)‖ 6
c1
N2

∥

∥(Im Γ)−1
∥

∥

∥

∥(Im Λ)−1
∥

∥

3
(

‖(Im Γ)−1‖+ ‖(Im Λ)−1‖
)

,

‖(Im ΓN )−1‖ 6 ‖(Im Λ)−1‖,

with c1 = k9/2σ
N2

∑p
j=1 ‖aj‖

(

∑p
j=1 ‖aj‖+ 2

∑q
j=1 ‖bj‖

)2

, ‖.‖ being the operator norm in Mk(C).

We first obtain in Section 4.1.1 an equation relating H
(1)
N and H

(2)
N and some related quantities. In

Section 4.1.2 we deduce by using concentration properties an equation relating G
(1)
N and G

(2)
N . Theorem

3 is then obtained in Section 4.1.3.

4.1.1 Mean Schwinger-Dyson equation for random Stieltjes transforms

To condense our equation we define for all Λ,Γ in Mk(C) such that Im Λ > 0, Im Γ > 0 the elements of
Mk(C) ⊗ MN (C)

h
(1)
N (Λ) = (Λ ⊗ 1N − a0 ⊗ 1N − SN − TN )−1,

h
(2)
N (Γ) = (Γ⊗ 1N − TN )−1,

and recall that H
(1)
N (Λ) = (idk ⊗ τN )

[

h
(1)
N (Λ)

]

, H
(2)
N (Λ) = (idk ⊗ τN )

[

h
(2)
N (Λ)

]

.

Proposition 1 (Mean Schwinger-Dyson equation for random Stieltjes transforms). For all Λ,Γ in Mk(C)
such that Im Λ > 0, Im Γ > 0, we have

E

[

(idk ⊗ τN )
[

h
(2)
N (Γ)

(

p
∑

j=1

ajH
(1)
N (Λ)aj − Λ + a0 + Γ

)

⊗ 1N h
(1)
N (Λ)

]

+H
(2)
N (Γ)−H

(1)
N (Λ)

]

= 0. (4.2)

The result is a consequence of integration by parts for Gaussian densities and of the formula for the
differentiation of the inverse of a matrix. If (g1, . . . , gN) are independent identically distributed centered
real Gaussian variables with variance σ2 and F : RN → C a differentiable map such that F and its partial
derivatives are polynomially bounded one has for i = 1, . . . , N

E

[

gi F (g1, . . . , gN )
]

= σ2
E

[

∂F

∂xi
(g1, . . . , gN)

]

.

This induces an analogue formula for independent matrices of the GUE, called the Schwinger-Dyson
equation, where the Hermitian symmetry of the matrices plays a key role. If P is a monomial in p non
commutative indeterminates x1, . . . , xp, one has for i = 1, . . . , p

E

[

τN

[

X
(N)
i P (X

(N)
1 , . . . , X(N)

p )
]

]

=
∑

P=LxiR

E

[

τN

[

L(X
(N)
1 , . . . , X(N)

p )
]

τN

[

R(X
(N)
1 , . . . , X(N)

p )
]

]

,

the sum over all decompositions P = LxiR being viewed as the partial derivative. Such a formula
extends to the case of smooth maps instead of polynomials. The case of the function (Λ ⊗ 1N − SN )−1

is investigated in details in [15, Formula (3.9)], our proof is obtained by minor modifications.
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Proof. Recall we have defined SN =
∑p

j=1 aj ⊗X
(N)
j . Denote by (ǫm,n)m,n=1,...,N the canonical basis of

MN (C): using Gaussian integration by parts, summed in Formula (3.9) of [15], we get the following

E

[

(Γ⊗ 1N − TN)−1 SN (Λ⊗ 1N − a0 ⊗ 1N − SN − TN)−1
]

=

p
∑

j=1

E

[

(Γ⊗ 1N − TN )−1(aj ⊗X
(N)
j )(Λ⊗ 1N − a0 ⊗ 1N − SN − TN)−1

]

=

p
∑

j=1

E

[

(Γ⊗ 1N − TN)−1 1

N

N
∑

m,n=1

(aj ⊗ ǫm,n)(Λ ⊗ 1N − a0 ⊗ 1N − SN − TN )−1

× (aj ⊗ ǫn,m)(Λ⊗ 1N − a0 ⊗ 1N − SN − TN)−1

]

= E

[

(Γ⊗ 1N − TN )−1
(

p
∑

j=1

ajH
(1)
N (Λ)aj ⊗ 1N

)

(Λ⊗ 1N − a0 ⊗ 1N − SN − TN )−1

]

= E

[

h
(2)
N (Γ)

(

p
∑

j=1

ajH
(1)
N (Λ)aj ⊗ 1N

)

h
(1)
N (Λ)

]

. (4.3)

We take the partial trace in Equation (4.3) to obtain:

E

[

(idk ⊗ τN )
[

h
(2)
N (Γ)

(

p
∑

j=1

ajH
(1)
N (Λ)aj ⊗ 1N

)

h
(1)
N (Λ)

]

]

= E

[

(idk ⊗ τN )
[

h
(2)
N (Γ) SN h

(1)
N (Λ)

]

]

. (4.4)

We now rewrite SN as follow:

SN = (Λ− a0 − Γ)⊗ 1N + (Γ⊗ 1N − TN)− (Λ⊗ 1N − a0 ⊗ 1N − SN − TN ).

Re-injecting this expression in Equation (4.4), one gets Equation (4.2):

E

[

(idk ⊗ τN )
[

h
(2)
N (Γ)

(

p
∑

j=1

ajH
(1)
N (Λ)aj ⊗ 1N

)

h
(1)
N (Λ)

]

]

= E

[

(idk ⊗ τN )
[

h
(2)
N (Γ) (Λ− a0 − Γ)⊗ 1N h

(1)
N (Λ) + h

(1)
N (Λ)− h

(2)
N (Γ)

]

]

= E

[

(idk ⊗ τN )
[

h
(2)
N (Γ)

(

(Λ− a0 − Γ)⊗ 1N

)

h
(1)
N (Λ)

]

+H
(1)
N (Λ) − H

(2)
N (Γ)

]

.

4.1.2 Schwinger-Dyson equation for mean Stieltjes transforms

We use the concentration properties of the law of (XN ,YN ) to get from Equation (4.2) a relation between

G
(1)
N and G

(2)
N . We define the centered version of H

(1)
N , for Im Λ > 0, by

K
(1)
N (Λ) = H

(1)
N (Λ)−G

(1)
N (Λ), in Mk(C). (4.5)

Introduce the random linear map

lN,Λ,Γ : Mk(C)⊗ MN (C) → Mk(C)⊗ MN (C)

M 7→ h
(2)
N (Γ) M h

(1)
N (Λ)

(4.6)

and its mean
LN,Λ,Γ :M 7→ E

[

lN,Λ,Γ(M)
]

. (4.7)
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Proposition 2 (Schwinger-Dyson equation for mean Stieltjes transforms). For all Λ,Γ in Mk(C) such
that Im Λ > 0, Im Γ > 0,

(idk ⊗ τN )

[

LN,Λ,Γ

(

(

p
∑

j=1

ajG
(1)
N (Λ)aj − Λ + a0 + Γ

)

⊗ 1N

) ]

+G
(2)
N (Γ)−G

(1)
N (Λ) = ΘN (Λ,Γ), (4.8)

where

ΘN(Λ,Γ) = −E

[

(idk ⊗ τN )
[

(lN,Λ,Γ − LN,Λ,Γ)
(

p
∑

j=1

ajK
(1)
N (Λ)aj ⊗ 1N

) ]

]

(4.9)

can be controlled in operator norm by the following estimate:

‖ΘN (Λ,Γ)‖ 6
c1
N2

∥

∥(Im Γ)−1
∥

∥

∥

∥(Im Λ)−1
∥

∥

3
(

‖(Im Γ)−1‖+ ‖(Im Λ)−1‖
)

, (4.10)

with c1 = k9/2σ
N2

∑p
j=1 ‖aj‖

(

∑p
j=1 ‖aj‖+ 2

∑q
j=1 ‖bj‖

)2

We show the estimate of ΘN in Appendix A. Equation (4.8) follows immediately from the previous
proposition.

Proof. We first develop ΘN(Λ,Γ):

−ΘN(Λ,Γ) := E

[

(idk ⊗ τN )

[

(lN,Λ,Γ − LN,Λ,Γ)
(

p
∑

j=1

aj
(

H
(1)
N (Λ)−G

(1)
N (Λ)

)

aj ⊗ 1N

)

]

]

= E

[

(idk ⊗ τN )

[

lN,Λ,Γ

(

p
∑

j=1

ajH
(1)
N (Λ)aj ⊗ 1N

)

]

]

−E

[

(idk ⊗ τN )

[

LN,Λ,Γ

(

p
∑

j=1

ajG
(1)
N (Λ)aj ⊗ 1N

)

]

]

.

By Equation (4.2) we get the following:

E

[

(idk ⊗ τN )

[

lN,Λ,Γ

(

p
∑

j=1

ajH
(1)
N (Λ)aj ⊗ 1N

)

]

]

= E

[

(idk ⊗ τN )

[

lN,Λ,Γ

(

(Λ− a0 − Γ)⊗ 1N

)

]

−H
(2)
N (Γ) +H

(1)
N (Λ)

]

= (idk ⊗ τN )

[

LN,Λ,Γ

(

(Λ− a0 − Γ)⊗ 1N

)

]

−G
(2)
N (Γ) +G

(1)
N (Λ),

which gives Equation (4.8).

4.1.3 Proof of Theorem 3: the asymptotic subordination property

Since the map LN,Λ,Γ is linear, if in the Schwinger-Dyson Equation (4.8) we formally take Γ equals to

ΓN = Λ− a0 −
p

∑

j=1

ajG
(1)
N (Λ)aj , (4.11)

then we obtain the expected equation

G
(1)
N (Λ) = G

(2)
N (ΓN )−ΘN (Λ,ΓN ). (4.12)

We show that Im ΓN > 0, so that Theorem 3 follows.
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Lemma 1 (Control of ΓN). There exists K > 0 such that for Im Λ > 0

Im ΓN ≥ Im Λ + ‖(Im Λ)−1‖−1 (‖Λ‖+K)−2

p
∑

j=1

a2j . (4.13)

In particular Im ΓN > 0 as soon as Im Λ > 0 and

‖(Im ΓN )−1‖ 6 ‖(Im Λ)−1‖. (4.14)

Proof. The aj ’s being selfadjoint, we have

Im ΓN = Im
(

Λ− a0 −
p

∑

j=1

ajG
(1)
N (Λ)aj

)

= Im Λ−
p

∑

j=1

aj Im
(

G
(1)
N (Λ)

)

aj . (4.15)

Recall the definition of G
(1)
N :

G
(1)
N (Λ) = E

[

(idk ⊗ τN )
[

(Λ ⊗ 1N − a0 ⊗ 1N − SN − TN )−1)
]

]

.

The imaginary part of the kN × kN matrix in the partial trace is non positive definite:

Im
[

(Λ ⊗ 1N − a0 ⊗ 1N − SN − TN)−1
]

=
1

2i

[

(Λ⊗ 1N − a0 ⊗ 1N − SN − TN )−1 − (Λ∗ ⊗ 1N − a0 ⊗ 1N − SN − TN)−1
]

= −(Λ⊗ 1N − a0 ⊗ 1N − SN − TN )−1 (Im Λ⊗ 1N ) (Λ∗ ⊗ 1N − a0 ⊗ 1N − SN − TN )−1.

For a non negative definite matrix A, the number ‖A−1‖−1 is the smallest eigenvalue of A, hence

−Im
[

(Λ⊗ 1N − a0 ⊗ 1N − SN − TN )−1
]

≥
∥

∥

∥

∥

(

− Im
[

(Λ ⊗ 1N − a0 ⊗ 1N − SN − TN)−1
]

)−1
∥

∥

∥

∥

−1

1k ⊗ 1N

≥ ‖Λ⊗ 1N − a0 ⊗ 1N − SN − TN‖−2 ‖(Im Λ)−1‖−1 1k ⊗ 1N ,

where we have used the fact that for any matrices A such that Im A > 0, ‖A−1‖ 6 ‖(Im A)−1‖. By
positivity of (idk ⊗ τN ) we get

−Im H
(1)
N (Λ) ≥ ‖(Λ− a0)⊗ 1N − SN − TN)‖−2 ‖(Im Λ)−1‖−1 1k

≥
(

‖Λ‖+ ‖a0‖+ ‖SN‖+ ‖TN‖
)−2 ‖ (Im Λ)−1‖−1 1k.

For a N × N normalized G.U.E. matrix XN one has always E[‖XN‖] 6 4

(see [15, Lemma 5.1]). By Assumption 1, for j = 1, . . . , q one has lim sup‖Y (N)
j ‖ < D almost surely.

Hence there exists a D̃ such that E[‖TN‖] 6 D̃ almost surely. Using Jensen’s inequality we then obtain
the following

−Im G
(1)
N (Λ) ≥

(

‖Λ‖+ ‖a0‖+ E[‖SN‖] + E[‖TN‖]
)−2

‖ (Im Λ)−1‖−1 1k

≥
(

‖Λ‖+ ‖a0‖+ 4

p
∑

j=1

‖aj‖+ D̃
)−2

‖ (Im Λ)−1‖−1 1k.

As a result we obtain (4.13) form (4.15) with K = ‖a0‖+ 4
∑p

j=1 ‖aj‖+ D̃.



4 DETAILS OF THE PROOF OF THEOREM 2 14

4.2 The subordination property in free probability

In this section, Equation (4.1) is illuminated in the context of free probability. The reader is referred
to Speicher’s note in [24] for detailed definitions and proofs, especially Section 22.7 concerning operator-
valued free probability. For the origins of the subordination property, see the works of Voiculescu in [27]
and Biane in [6].

Let (B, .∗, τ, ‖.‖) be a C∗-probability space. For any non commutative variable a, one can define a
map Ra : C → C which is a free analogue of the log Fourier transform in the sense that it characterizes
the non commutative law of a and is linearized under free convolution: if a, b are free non commutative
variables, then the R-transform Ra+b of the sum a+ b is given by

Ra+b = Ra +Rb. (4.16)

Define for all λ in C such that Im λ > 0 the Stieltjes transform of a selfadjoint element a by

Ga(λ) = τ
[

(λ − a)−1
]

. (4.17)

Then the following relations between Ra and Ga hold: for Im λ > 0

1

Ga(λ)
+Ra

(

Ga(λ)
)

= λ, (4.18)

Ga

(

Ra(λ) +
1

λ

)

= λ. (4.19)

With equations (4.16), (4.18) and (4.19) admitted it is easy to derive the subordination property for
scalar-valued non commutative variables.

Proposition 3. Let a, b in B be free non commutative variables. Denote by Ga and Ga+b, respectively,
the Stieltjes transforms of a and a + b; denote by Rb and Ra+b, respectively, the R-transforms of b and
a+ b. Then for all λ in C such that Im λ > 0

Ga+b(λ) = Ga

(

λ−Rb

(

Ga+b(λ)
)

)

. (4.20)

Proof. for Im λ > 0 by (4.18)
1

Ga+b(λ)
+Ra+b

(

Ga+b(λ)
)

= λ.

By freeness of a and b we can use Equation (4.16):

λ−Rb

(

Ga+b(λ)
)

=
1

Ga+b(λ)
+Ra

(

Ga+b(λ)
)

.

Compose by Ga and use (4.19)

Ga

(

λ−Rb

(

Ga+b(λ)
)

)

= Ga

(

Ra

(

Ga+b(λ)
)

+
1

Ga+b(λ)

)

= Ga+b(λ).

Now let (x,y) = (x1, . . . , xp, y1, . . . , yq) be a family of non commutative variables in a C∗-probability
space such that,

1. x = (x1, . . . , xp) is a semicircular system (see Equation (2.9) )

2. y is the non commutative limit of YN

3. The families x and y are free (see Property (2.8) ).
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We introduce the matrix-valued Stieltjes transforms:

∀Λ,Γ ∈ Mk(C) with Im Λ > 0, Im Γ > 0

G(1)(Λ) = (idk ⊗ τ)
[

(

Λ⊗ 1N − a0 ⊗ 1N −
p

∑

j=1

aj ⊗ xj −
q

∑

j=1

bj ⊗ yj + b∗j ⊗ y∗j
)−1

]

,

G(2)(Γ) = (idk ⊗ τ)
[

(

Γ⊗ 1N −
q

∑

j=1

bj ⊗ yj + b∗j ⊗ y∗j
)−1

]

.

with the matrix coefficients (aj)06j6p and (bj)16j6q as in the previous Section.
Let R be the map Mk(C) → Mk(C) defined by

∀M ∈ Mk(C), R(M) =

p
∑

j=1

ajMaj

It has been shown by Lehner [19] that R is the so-called Mk(C)-amalgamated R-transform of s =
∑p

j=1 aj ⊗ xj , generalization of the R-transform for Mk(C)-valued non commutative variables. The lin-
earization Property (4.16) of R-transforms for the free convolution of non commutative random variables
extends to operator-valued non commutative variables (see [24]) as Relations (4.18) and (4.18) between
Mk(C)-amalgamated R-transforms and Mk(C)-valued Stieltjes transforms. In this case one gets:

Proposition 4 (The subordination property). The Stieltjes transforms satisfy

∀Λ ∈Mk(C) such that Im Λ > 0,

G(1)(Λ) = G(2)
(

Λ− a0 −R
(

G(1)(Λ)
)

)

(4.21)

4.3 Manipulations of the Stieltjes transforms

4.3.1 Strategy for the end of the proof

We now suppose that YN satisfies assumptions 1, 2 and 3. We have shown in Section 4.1 that if we define
for Im Λ > 0

ΓN = Λ − a0 −R
(

G
(1)
N (Λ)

)

, (4.22)

then we have the (almost) closed relation between the Stieltjes transforms:

G
(1)
N (Λ) = G

(2)
N

(

Λ− a0 −R
(

G
(1)
N (Λ)

)

)

−ΘN (Λ,ΓN). (4.23)

We introduce a perturbation of G
(1)
N to compare the subordination property for random matrices (4.23)

with the one for the non commutative random variables (4.21). The asymptotic subordination property
for random matrices (4.23) suggests to define ∀Λ ∈Mk(C) with Im Λ > 0,

G̃
(1)
N (Λ) = G(2)(ΓN ) = G

(1)
N (Λ) +

(

G(2)(ΓN )−G
(2)
N (ΓN )

)

−ΘN(Λ,ΓN ). (4.24)

Note that Estimate (3.9) in Assumption 3 and the control (4.10) of the norm of ΘN allow us to conclude

that G̃
(1)
N (Λ) is a perturbation of G

(1)
N provided we can say that ΓN is in the domain where the control

of ‖G(2)
N (Γ)−G(2)(Γ)‖ holds.

Recall that we have define for all γ, γ̃ > 0 the set

Oγ,γ̃ =
{

Λ ∈ Mk(C)
∣

∣

∣ Im Λ > 0, ‖(Im Λ)−1‖ 6 Nγ , ‖Λ‖ 6 N γ̃
}

. (4.25)

We will show in the following:

Lemma 2 (Domain of ΓN ). With γ2, γ̃2 the constants of Assumption 3, there exist γ, γ̃ > 0, N0 ≥ 1,
such that for all N ≥ N0

Λ ∈ Oγ,γ̃ ⇒ ΓN ∈ Oγ2,γ̃2
. (4.26)



4 DETAILS OF THE PROOF OF THEOREM 2 16

With Lemma 2 taken for granted momentarily, we can write the precise estimate for ‖G̃(1)
N (Λ)−G(1)

N (Λ)‖.
Use the triangle inequality in Equation (4.24): for Im Λ > 0

‖G̃(1)
N (Λ)−G

(1)
N (Λ)‖ 6 ‖G(2)(ΓN )−G

(2)
N (ΓN )‖ + ‖ΘN(Λ,ΓN)‖.

With the constants of Lemma 2, take N ≥ N0 and Λ in Oγ,γ̃ . Then ΓN is in Oγ2,γ̃2
, the domain where

Assumption 3 is satisfied and hence we have (3.9):

‖G(2)(ΓN )−G
(2)
N (ΓN )‖ 6

c2
N1+η2

‖(Im ΓN )−1‖α2 .

Recall that in Lemma 1 we have shown that ‖(Im ΓN)−1‖ 6 ‖(Im Λ)−1‖, so that

‖G(2)(ΓN )−G
(2)
N (ΓN )‖ 6

c2
N1+η2

‖(Im Λ)−1‖α2 . (4.27)

On the other hand, by the Estimate (4.10) for the norm of ΘN , we get: for Im Λ > 0

‖ΘN(Λ,ΓN)‖ 6
c1
N2

‖(Im Λ)−1‖3 ‖(Im ΓN )−1‖
(

‖(Im Λ)−1‖+ ‖(Im ΓN )−1‖
)

,

6
2c1
N2

‖(Im Λ)−1‖5,

where we have used again Lemma 1. Hence we have the following control of G̃
(1)
N : for N ≥ N0, for Λ in

Oγ,γ̃

‖G̃(1)
N (Λ)−G

(1)
N (Λ)‖ 6

c2
N1+η2

‖(Im Λ)−1‖α2 +
2c1
N2

‖(Im Λ)−1‖5. (4.28)

By the definition of ΓN , G̃
(1)
N can be written

G̃
(1)
N (Λ) = G(2)

(

Λ− a0 −R
(

G
(1)
N (Λ)

)

)

. (4.29)

In order to improve our comparison of the equation of subordination (4.21) for non commutative random
variable and the latter one, we introduce a change of matrix variable ΛN = ΛN (Λ):

∀Λ ∈ Mk(C) with Im Λ > 0,

ΛN = ΓN + a0 +R
(

G̃
(1)
N (Λ)

)

. (4.30)

By (4.22) and (4.30) we get

Λ− a0 −R
(

G
(1)
N (Λ)

)

= ΛN − a0 −R
(

G̃
(1)
N .(Λ)

)

(4.31)

Hence, by using (4.31) in Equation (4.29) and taking ΛN instead of Λ in (4.21), we see that G(1)(ΛN )

and G̃
(1)
N (Λ) appear to be two solutions of the same fixed point equation:















G̃
(1)
N (Λ) = G(2)

(

ΛN − a0 −R
(

G̃
(1)
N (Λ)

)

)

,

G(1)(ΛN ) = G(2)
(

ΛN − a0 −R
(

G(1)(ΛN )
)

)

.

(4.32)

Lemma 3 (Uniqueness of the fixed point). For all Λ ∈Mk(C) with Im Λ > 0 and such that

∥

∥(Im Λ)−1
∥

∥ <

√

√

√

√

p
∑

j=1

‖aj‖2,

the equation
MΛ = G(2)

(

Λ− a0 −R( MΛ )
)

(4.33)

admits a unique solution MΛ in Mk(C) whose imaginary part is non positive semi definite.
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To use this lemma it will be necessary to have a lower bound for the smallest eigenvalue of Im ΛN . We
will show the following:

Lemma 4 (Control of ΛN ). There exist γ, γ̃ > 0, N0 ≥ 1, such that for all N ≥ N0, for all Λ in Oγ,γ̃

one has
‖(Im ΛN)−1‖ 6 2‖(Im Λ)−1‖. (4.34)

Admitting these lemmas, we obtain the following:

Proposition 5. There exists a N0 such that for N ≥ N0, for all Λ ∈Mk(C) with Im Λ > 0

G̃
(1)
N (Λ) = G(1)(ΛN ). (4.35)

Proof of Proposition 5. According to Lemma 4, there exist γ, γ̃ > 0, N0 ≥ 1 such that for every N ≥ N0,
for every Λ in Oγ,γ̃ satisfying

‖(Im Λ)−1‖ < 1

2

√

√

√

√

p
∑

j=1

‖aj‖2, (4.36)

we have

‖(Im ΛN )−1‖ 6 2‖(Im Λ)−1‖ <

√

√

√

√

p
∑

j=1

‖aj‖2.

Hence ΛN satisfies the assumption of Lemma 3 and by uniqueness of the fixed point we obtain the equality

G(1)(ΛN ) = G̃
(1)
N (Λ) (4.37)

on the connected set (with non empty interior) of k × k matrices Λ in Oγ,γ̃ satisfying (4.36). The
matrix-valued Stieltjes transforms are analytical function form the set of k × k matrices with complex
entries and positive definite imaginary part to Mk(C). Hence Equality (4.37) extends for all Λ such that
Im Λ > 0.

Assuming Lemmas 2-4 , we can now obtain Estimate (3.11) for ‖G(1)(Λ) −G
(1)
N (Λ)‖. By Proposition 5

there exists N0 ≥ 1 such that for all N ≥ N0, for all Im Λ > 0

‖G(1)(Λ)−G
(1)
N (Λ)‖ = ‖G(1)

N (Λ)− G̃
(1)
N (Λ) +G(1)(ΛN )−G(1)(Λ)‖

6 ‖G(1)
N (Λ)− G̃

(1)
N (Λ)‖+ ‖G(1)(ΛN )−G(1)(Λ)‖.

The first term was already estimated in Inequality (4.28): there exists a constant we again denote N0,
there exist γ, γ̃, such that for all N ≥ N0, for Λ in Oγ,γ̃ we have

‖G(1)
N (Λ)− G̃

(1)
N (Λ)‖ 6

c2
N1+η2

‖(Im Λ)−1‖α2 +
2c1
N2

‖(Im Λ)−1‖5 (4.38)

For the second term we have the following

‖G(1)(Λ)−G(1)(ΛN )‖

=

∥

∥

∥

∥

E

[

(idk ⊗ τ)
[

(Λ⊗ 1− a0 ⊗ 1− s− t)−1 − (ΛN ⊗ 1− a0 ⊗ 1− s− t)−1
]

]

∥

∥

∥

∥

=

∥

∥

∥

∥

E

[

(idk ⊗ τ)
[

(Λ⊗ 1− a0 ⊗ 1− s− t)−1(ΛN ⊗ 1− Λ ⊗ 1)(ΛN ⊗ 1− a0 ⊗ 1− s− t)−1
]

]

∥

∥

∥

∥

6 ‖(Λ⊗ 1− a0 ⊗ 1− s− t)−1‖ ‖ΛN − Λ‖ ‖(ΛN ⊗ 1− a0 ⊗ 1− s− t)−1‖
6 ‖ΛN − Λ‖ ‖(Im Λ)−1‖ ‖(Im ΛN)−1‖.

By Lemma 4, there exist constants we again denote N0, γ, γ̃, such that, for N ≥ N0 and Λ in Oγ,γ̃ we
have additionally

‖(Im ΛN)−1‖ 6 2‖(Im Λ)−1‖,
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and hence
‖G(1)(Λ)−G(1)(ΛN )‖ 6 2‖ΛN − Λ‖ ‖(Im Λ)−1‖2. (4.39)

The term ‖ΛN − Λ‖ is easy to estimate since by definition ΛN = ΓN + a0 + R
(

G̃
(1)
N (Λ)

)

and ΓN =

Λ− a0 −R
(

G
(1)
N (Λ)

)

:

ΛN = Λ+

p
∑

j=1

aj
(

G̃
(1)
N (Λ)−G

(1)
N (Λ)

)

aj

so that (4.39) gives

‖G(1)(Λ)−G(1)(ΛN )‖ 6 2

p
∑

j=1

‖aj‖2 ‖(Im Λ)−1‖2 ‖G̃(1)
N (Λ)−G

(1)
N (Λ)‖. (4.40)

Combining (4.38) and (4.40) gives the main estimate of this paper: for N ≥ N0, for Λ in Oγ,γ̃

‖G(1)(Λ)−G(1)(ΛN )‖ 6

(

1 + 2

p
∑

j=1

‖aj‖2 ‖(Im Λ)−1‖2
)

(

c2
N1+η2

‖(Im Λ)−1‖α2 +
2c1
N2

‖(Im Λ)−1‖5
)

.

In a nutshell, it remains to show Lemma 2-4.

4.3.2 Proof of Lemma 2: control of ΓN

Let γ2, γ̃2 be the constants of Assumption 3. We want to find constants γ, γ̃ > 0, N0 ≥ 1, such that for
all N ≥ N0: Λ ∈ Oγ,γ̃ ⇒ ΓN ∈ Oγ2,γ̃2

. By Lemma 1, we always have ‖(Im ΓN )−1‖ 6 ‖(Im Λ)−1‖. Hence
we focus on the control of ‖ΓN‖. For Im Λ > 0,

‖ΓN‖ =
∥

∥

∥Λ− a0 −
p

∑

j=1

ajG
(1)
N (Λ)aj

∥

∥

∥ 6 ‖Λ‖+ ‖a0‖+
p

∑

j=1

‖aj‖2
∥

∥G
(1)
N (Λ)

∥

∥.

Remark that for A in Mk(C) ⊗ MN (C), ‖(idk ⊗ τN )A‖ 6 ‖A‖, so that

∥

∥G
(1)
N (Λ)

∥

∥ =
∥

∥

∥(idk ⊗ τN )
[

(Λ⊗ 1N − a0 ⊗ 1N − SN − TN )−1
]

∥

∥

∥

6

∥

∥

∥(Λ⊗ 1N − a0 ⊗ 1N − SN − TN)−1
∥

∥

∥

6 ‖(Im Λ)−1‖

Hence, with γ <min (γ2, γ̃2), γ̃ <min (γ̃2), there exists aN0 such that for allN ≥ N0 one has ‖ΓN‖ 6 Nγ2 .

4.3.3 Proof of Lemma 3: uniqueness of the fixed point

Fix Λ ∈ Mk(C) with Im Λ > 0 and

∥

∥(Im Λ)−1
∥

∥ <

√

√

√

√

p
∑

j=1

‖aj‖2. (4.41)

Denote in the following ψ(M) = Λ − a0 −
∑p

j=1 ajMaj. We show that the function

ΦΛ :M → G(2)
(

ψ(M)
)

is a contraction on the set of matrices of Mk(C) whose imaginary part is non positive semi definite. For
all M, M̃ in Mk(C) such matrices, it follows from the proof of Lemma 1 that ΦΛ(M) and ΦΛ(M̃) are well
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defined and that ΦΛ maps the subset of matrices whose imaginary part is non positive semi definite into
itself. Moreover

‖ΦΛ(M)− ΦΛ(M̃)‖

=

∥

∥

∥

∥

(idk ⊗ τ)

[

(

ψ(M)⊗ 1− t
)−1

−
(

ψ(M̃)⊗ 1− t
)−1

]∥

∥

∥

∥

=

∥

∥

∥

∥

(idk ⊗ τ)

[

(

ψ(M)⊗ 1− t
)−1(

p
∑

j=1

aj(M − M̃)aj

)

⊗ 1N

(

ψ(M̃)⊗ 1− t
)−1

]∥

∥

∥

∥

6

∥

∥

∥

∥

(

Im
(

ψ(M)⊗ 1− t
)

)−1
∥

∥

∥

∥

∥

∥

∥

∥

(

Im
(

ψ(M̃)⊗ 1− t
)

)−1
∥

∥

∥

∥

p
∑

j=1

‖aj‖2
∥

∥M − M̃
∥

∥

∥

6
∥

∥(Im Λ)−1
∥

∥

2
p

∑

j=1

‖aj‖2 ‖M − M̃‖

Hence the function ΦΛ is a contraction when (4.41) holds and by Picard’s theorem the fixed point equation
M = ΦΛ(M) admits an unique solution MΛ on the closed set of k × k matrices whose imaginary part is
non positive semi definite.

4.3.4 Proof of Lemma 4: control of ΛN

For convenience, we denote in this proof A = Im Λ, AN = Im ΛN and

εN(A) = −
p

∑

j=1

ajIm
(

G̃
(1)
N (Λ)−G

(1)
N (Λ)

)

aj .

Then by definition of ΛN and ΓN

AN = Im ΛN = Im
(

ΓN + a0 +R
(

G̃
(1)
N (Λ)

)

)

= Im
(

Λ− a0 −R
(

G
(1)
N (Λ)

)

+ a0 +R
(

G̃
(1)
N (Λ)

)

)

= A− εN (A)

By Estimate (4.28) there exist N0, γ, γ̃ such that for every N ≥ N0, for Λ in Oγ,γ̃ we have

‖εN (A)‖ 6

p
∑

j=1

‖aj‖2 ‖G(1)
N (Λ)− G̃

(1)
N (Λ)‖

6

p
∑

j=1

‖aj‖2
c2

N1+η2
‖A−1‖α2 +

p
∑

j=1

‖aj‖2
2c1
N2

‖A−1‖5

6
c

N1+η
‖A−1‖α(A)

where c =
∑p

j=1 ‖aj‖2 max (2c1, c2), η =min (1, η2), and

α(A) =

{

min (5, α2) if ‖A−1‖ 6 1
max (5, α2) if ‖A−1‖ > 1

We write
AN = A

(

1N −A−1εN (A)
)

.

If ‖A−1‖ 6 Nγ then

‖A−1εN (A)‖ 6 ‖A−1‖ ‖εN(A)‖ 6
c

N1+η
Nγ(α(A)+1)

6 cNγ(α(A)+1)−1−η. (4.42)
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We chose γ such that γ < (1+ η)/(max (2c1, c2)+ 1) < (1+ η)/(α(A)+ 1). Hence the last term in (4.42)
tends to zero uniformly in A, and there exists N1 (independent with A) such that for all N ≥ N1 we have
‖A−1εN (A)‖ < 1. For such an A and N , we can write

A−1
N =

∑

k≥0

(

A−1εN (A)
)k

A−1.

Notice that the term in the sum for k = 0 is just A−1, so that

‖A−1
N −A−1‖ 6

∑

k≥1

∥

∥

∥A−1εN (A)
∥

∥

∥

k

6
∑

k≥1

ckNk(γ(α+1)−1−η).

The r.h.s. vanishes as N → ∞: more precisely, there exist γ̃1, N1 (independent with A), such that
for all N ≥ N1 one has ‖A−1

N − A−1‖ 6 N−γ̃1 . Hence we get ‖A−1
N ‖ 6 ‖A−1‖ + N−γ1 . But since

‖A−1‖ ≥ ‖A‖−1 ≥ N−γ̃ , with γ̃1 < γ̃, there exists a constant still denoted N0, such that for N ≥ N0,
N−γ̃1 < N−γ̃ 6 ‖A−1‖ and hence we obtain as desired ‖A−1

N ‖ 6 2‖A−1‖.

5 Proof of Corollaries 1-4

5.1 Proof of Corollary 1: diagonal matrices

We first focus on the case of the uniform measure on [0, 1]. The corresponding matrix is then

DN = diag
( 0

N
, . . . ,

N − 1

N

)

. (5.1)

We cannot directly apply Theorem 1 to DN since it does not satisfy Assumption 3. We introduce an
auxiliary random diagonal matrix D̃N that satisfies Assumption 3 and which is sufficiently closed to DN

in operator norm in order to conclude that Corollary 1 holds for DN . The generalization to any family
of measures µ1, . . . , µq whose support is a single interval will be obtained by density of polynomials.

An auxiliary random matrix

Let D̃N be the N ×N random diagonal matrix given by

D̃N = diag
(0 + u0

N
, . . . ,

N − 1 + uN−1

N

)

, (5.2)

the (ui)06i6N−1 being random variables, independent identically distributed according to the uniform
measure on [0, 1]. We show that the matrix DN satisfies the three assumptions of Theorem 1.

Lemma 5. Assumption 1 is satisfied by D̃N : for all k ∈ N

τN
[

D̃k
N

]

−→
N→∞

τ [dk] :=

∫ 1

0

ukdu, (5.3)

almost surely and in expectation.

Proof. The non commutative law of D̃N in expectation equals the expected limit:

E

[

τN
[

D̃k
N

]

]

=
1

N

N−1
∑

i=0

∫ 1

0

( i+ u

N

)k

du =

∫ 1

0

ukdu.

For the almost sure limit, remark the following:

τN
[

D̃k
N

]

=
1

N

N−1
∑

i=0

( i+ ui
N

)k

=
1

N

N−1
∑

i=0

( i

N

)k

+RN , (5.4)
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where

RN =
1

N

N−1
∑

i=0

(

( i

N

)k

−
( i+ ui

N

)k
)

.

The first term in (5.4) is a Riemann sum and converges to τ [dk]. For all u ∈ [0, 1] and for i = 0, . . . , N−1

we have
∣

∣

(

i
N

)k −
(

i+ui

N

)k∣
∣ 6

k
N . Then |RN | 6 k

N tends to zero almost surely when N goes to infinity and

hence τN
[

D̃k
N

]

−→
N→∞

τ [dk].

Lemma 6. Assumption 2 is satisfied by D̃N .

Proof. The uniform measure on [0, 1] satisfies a Poincaré’s inequality with constant π−2 (see [8, Section
6.3]). Hence the law of the entries of D̃N satisfies a Poincaré’s inequality with constant π−2N−2.

Lemma 7. Assumption 3 is satisfied by D̃N .

Proof. Let a0, a1 in Mk(C) be selfadjoint matrices. For all Λ in Mk(C) such that Im Λ > 0, define

GN (Λ) = E

[

(idk ⊗ τN )
[

(Λ ⊗ 1N − a0 ⊗ 1N − a1 ⊗ D̃N )−1
]

]

G(Λ) = (idk ⊗ τ)
[

(Λ⊗ 1− a0 ⊗ 1− a1 ⊗ d)−1
]

,

where τ is given by (5.3). Then, the mean law of D̃N being the one of d, the functions are equal:

GN (Λ) = E

[

1

N

N−1
∑

i=0

(

Λ − a0 −
( i+ ui

N

)

a1

)−1 ]

=
1

N

N−1
∑

i=0

∫ 1

0

(

Λ − a0 −
( i+ u

N

)

a1

)−1

du

=

∫ 1

0

(

Λ− a0 − ua1
)−1

du = GN (Λ).

The case of the uniform measure on [0, 1]

Let DN be the N ×N diagonal matrix given by

DN = diag
( 0

N
, . . . ,

N − 1

N

)

. (5.5)

Let D̃N be the auxiliary matrix defined in (5.2). By Theorem 1, since D̃N satisfies the three assumptions,

if XN = (X
(N)
1 , . . . , X

(p)
N ) is a family of independent normalized GUE matrices, then for all polynomials

P in p+ 1 non commutative variables

‖P (XN , D̃N)‖ −→
N→∞

‖P (x, d)‖τ , (5.6)

where τ is defined by the fact that x is a semicircular system, the law of d is given by (5.3), x and d
being free. For any polynomial P , it is easy to see that there exists N0 such that for N ≥ N0, almost
surely we have

‖P (XN , D̃N)− P (XN , DN )‖ 6 c‖D̃N −DN‖ 6
c

N
, (5.7)

where c depends only on P (we have used that ‖DN‖ 6 1, ‖D̃N‖ 6 1 and that for N0 large enough and

N ≥ N0, ‖X(N)
j ‖ 6 3 almost surely for j = 1 . . . p). Then

∣

∣

∣‖P (XN , DN )‖ − ‖P (x, d)‖τ
∣

∣

∣ 6

∣

∣

∣‖P (XN , D̃N)‖ − ‖P (x, d)‖τ
∣

∣

∣+ ‖P (XN , D̃N)− P (XN , DN )‖ −→
N→∞

0

almost surely.



5 PROOF OF COROLLARIES 1-4 22

The general case

Let µ1, . . . , µq be probability measures whose support consists in a single interval. Recall that this
condition is equivalent for the generalized inverse of their cumulative distribution functions F−1

j to be

continuous on [0, 1]. Let DN = (D
(N)
1 , . . . , D

(N)
q ) be the matrices given by: for j = 1 . . . q

D
(N)
j = diag

(

F−1
j

( 0

N

)

, . . . , F−1
j

(N − 1

N

) )

, (5.8)

and let DN be the matrix given by (5.1). The non commutative law of DN , respectively, DN , converges
to the non commutative law of variables d = (d1, . . . , dq), respectively, d in a same C∗-probability space
(B, .∗, τ, ‖.‖τ): for all polynomial P

τ [P (d) ] =

∫ 1

0

P
(

F−1
1 (u), . . . , F−1

q (u)
)

du, τ [P (d) ] =

∫ 1

0

P (u)du.

Hence d =
(

F−1
1 (d), . . . , F−1

q (d)
)

. By Stone Weierstrass’s theorem, for all ε > 0 there exist polynomials
P1, . . . , Pq such that: for j = 1 . . . q, for u in [0, 1]

∣

∣F−1
j (u)− Pj(u)

∣

∣ 6 ε. (5.9)

Let XN = (X
(N)
1 , . . . , X

(p)
N ) be a family of independent normalized GUE matrices. We have seen that for

all polynomials P in p+ q non commutative variables

∥

∥P
(

XN , P1(DN ), . . . , Pq(DN )
) ∥

∥ −→
N→∞

∥

∥P
(

x, P1(d), . . . , Pq(d)
) ∥

∥

τ
.

By Inequality (5.9) it is easy to see that there exists N0 such that for N ≥ N0 we have almost surely

∥

∥

∥P
(

XN , D
(N)
1 , . . . , D(N)

q

)

− P
(

XN , P1(DN ), . . . , Pq(DN )
)

∥

∥

∥ 6 cε
∥

∥

∥P
(

x, d1, . . . , dq
)

− P
(

x, P1(d), . . . , Pq(d)
)

∥

∥

∥

τ
6 cε

where c only depends on P . Then we have

∣

∣

∣ ‖P (XN ,DN )‖ − ‖P (x,d)‖τ
∣

∣

∣ 6

∥

∥

∥P (XN ,DN )− P (XN , P1(DN ), . . . , Pq(DN ) )
∥

∥

∥

+
∣

∣

∣

∥

∥P (XN , P1(DN ), . . . , Pq(DN ) )
∥

∥−
∥

∥P (x, P1(d), . . . , Pq(d) )
∥

∥

τ

∣

∣

∣

+
∥

∥

∥P
(

x,d
)

− P
(

x, P1(d), . . . , Pq(d)
)

∥

∥

∥

τ

which vanishes when N goes to the infinity and ε goes to zero.

5.2 Proof of Corollary 2: Wishart matrices

Let r ≥ s and (WN ,YN ) be as in Corollary 2. It is well known that under Assumption 1 the non
commutative law of (WN ,YN ) in (MN (C), .∗, τN ) converges almost surely and in expectation to the non
commutative law of (w,y) in a C∗-probability space (A, .∗, τ, ‖.‖τ) where

1. w = (w1, . . . , wp) are free identically distributed selfadjoint non commutative random variables
with common law the Marchenko-Pastur distribution: ∀k ∈ N, ∀j = 1, . . . , p

τ [wk
j ] =

∫

tk dσ(t),

with dσ(t) = 1
2πt

√

4λ− (t− (1 +
√
λ))2 1(1−

√
λ)26t6(1+

√
λ)2 dt, λ = r/s,

2. y = (y1, . . . , yq) is the non commutative limit of YN ,

3. w and y being free.
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We prove Corollary 2 in the case where the matrices YN satisfy the three assumptions of Theorem 1.
The case where the matrices YN are diagonal of the form of Corollary 1 can be deduced with minor
modifications. We use matrix manipulations in order to see the norm of a polynomial in the rN × rN
matrices WN ,YN ,Y

∗
N as the norm of a polynomial in (r + s)N × (r + s)N matrices X̃N , ỸN , Ỹ

∗
N and

some elementary matrices, where X̃N is a family of independent GUE matrices and ỸN is a modification
of YN . We will obtain the result as a consequence of Theorem 1.

Recall that by definition of the Wishart matrix model, for j = 1, . . . , p

W
(N)
j =M

(N)
j M

(N)∗
j , (5.10)

where M
(N)
j is an rN × sN complex Gaussian matrix with independent identically distributed entries,

centered and of variance 1/rN . Define the (r + s)× (r + s) matrices

ǫ1 = diag (1r,0s), (5.11)

ǫ2 = diag (0r,1s)., (5.12)

and the (r + s)N × (r + s)N matrices eN = (e
(N)
1 , e

(N)
2 ):

e
(N)
1 = ǫ1 ⊗ 1N = diag (1rN ,0sN ), (5.13)

e
(N)
2 = ǫ2 ⊗ 1N = diag (0rN ,1sN ).. (5.14)

Let X̃N = (X̃
(N)
1 , . . . , X̃

(N)
p ) be a family of p independent (r+ s)N × (r+ s)N normalized GUE matrices,

independent with YN and such that for j = 1, . . . , p, the rN × sN right upper matrix of
√

r+s
r X̃

(N)
j is

M
(N)
j . Then for j = 1, . . . , p,

M̃
(N)
j :=

√

r + s

r
e
(N)
1 X̃

(N)
j e

(N)
2 =

(

0rN M
(N)
j

0sN,rN 0sN

)

. (5.15)

and

W̃
(N)
j := e

(N)
1 (M̃

(N)
j + M̃

(N)∗
j )2 =

(

W
(N)
j 0rN,sN

0sN,rN 0sN

)

. (5.16)

Let ỸN = (Ỹ
(N)
1 , . . . , Ỹ

(N)
p ) be the family of (r + s)N × (r + s)N matrices defined by: for j = 1, . . . , q

Ỹ
(N)
j = ǫ1 ⊗ Y

(N)
j =

(

Y
(N)
j 0rN,sN

0sN,rN 0sN

)

. (5.17)

Corollary 2 follows directly from the following lemma:

Lemma 8. 1. The family of (r + s)N × (r + s)N matrices (ỸN , eN ) satisfies the three assumptions
of Theorem 1. In particular, by Voiculescu theorem, the non commutative law of (X̃N , ỸN , eN ) in
(M(r+s)N (C), .∗, τ(r+s)N ) converges almost surely and in expectation to the non commutative law of

variables (x̃, ỹ, e) in a C∗-probability space (Ã, .∗, τ̃ , ‖.‖τ̃), where x̃ is a free semicircular system,
free with (ỹ, e).

2. For all P ∈ C〈w,y,y∗〉 there exists a polynomial P̃ in C〈x̃, ỹ, ỹ∗, e〉 such that

ǫ1 ⊗ P (WN ,YN ,Y
∗
N ) = P̃ (X̃N , ỸN , Ỹ

∗
N , eN ). (5.18)

Moreover, defining the non commutative indeterminates m̃ = (m̃1, . . . , m̃q) and w̃ = (w̃1, . . . , w̃q)
by: for j = 1, . . . , q

m̃j =

√

r + s

r
e1x̃je2, w̃j = e1(m̃j + m̃∗

j )
2, (5.19)

then P̃ is given by P̃ (x̃, ỹ, ỹ∗, e) = e1P (w̃, ỹ, ỹ
∗).
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3. For any Q in C〈w̃, ỹ, ỹ∗〉 one has that e1 and Q(w̃, ỹ, ỹ∗) commute and

τ̃ [e1Q(w̃, ỹ, ỹ∗)] =
r

r + s
τ [Q(w,y,y∗)]. (5.20)

In particular
‖e1Q(w̃, ỹ, ỹ∗)‖τ̃ = ‖Q(w,y,y∗)‖τ . (5.21)

Assuming Lemma 8, Corollary 2 follows easily from Theorem 1: it is obvious that ‖P (WN ,YN ,Y
∗
N )‖ =

‖ǫ1 ⊗ P (WN ,YN ,Y
∗
N )‖. But by Item 2 of Lemma 8 and Theorem 1:

‖P (WN ,YN ,Y
∗
N )‖ = ‖P̃ (X̃N , ỸN , Ỹ

∗
N , eN)‖ −→

N→∞
‖P̃ (x̃, ỹ, ỹ∗, e)‖τ̃ = ‖e1P (x̃, ỹ, ỹ∗, e)‖τ̃

Hence, by Item 4:
‖P (WN ,YN ,Y

∗
N )‖ −→

N→∞
‖P (w,y,y∗)‖τ

We start with the matrix manipulations, i.e. the proof of Item 2 of Lemma 8, which motivates the
introduction of the family of matrices (ỸN , eN ). Item 3 is a direct consequence of the construction. The
proof of the assumptions for (ỸN , eN ) (except the Poincaré’s inequality, which is obvious) are stated in
Lemmas 9 and 10.

Proof of Items 2 and 3. Let P be a polynomial in p + 2q non commutative indeterminates (w,y,y∗).
Then by Definitions (5.16) and (5.17):

P̂ (WN ,YN ,Y
∗
N ) = e

(N)
1 P (W̃N , ỸN , Ỹ

∗
N ) = e

(N)
1 P (e

(N)
1 (M̃N + M̃∗

N)2, ỸN , Ỹ
∗
N )

= e
(N)
1 P

(

e
(N)
1

r + s

r
(e

(N)
1 X̃Ne

(N)
2 + e

(N)
2 X̃Ne

(N)
1 )2, ỸN , Ỹ

∗
N

)

Define P̃ in C〈x̃, ỹ, ỹ∗, e〉 by

P̃ (x̃, ỹ, ỹ∗, e) = e1 P
(

e1
r + s

r
(e1x̃e2 + e2x̃e1)

2, ỹ, ỹ∗
)

. (5.22)

Then P̃ satisfies (5.18) and P̃ (w̃, ỹ, ỹ∗, e) = e1P (w̃, ỹ, ỹ
∗).

Lemma 9. Assumption 1 is satisfied by (ỸN , eN )

Proof. Let P ∈ C〈ỹ, ỹ∗, e〉:

τ(r+s)N [P (ỸN , Ỹ
∗
N , eN) ]

= τ(r+s)N

[ (

P (YN ,Y
∗
N ,1rN ,0rN) 0rN,sN

0sN,rN P (0sN , . . . ,0sN ,0sN ,1sN )

) ]

=
r

r + s
τrN [P (YN ,Y

∗
N ,1rN ,0rN) ] +

s

r + s
τsN [P (0sN , . . . ,0sN ,0sN ,1sN ) ]

−→
N→∞

r

r + s
τ [P (y,y∗,1,0) ] +

s

r + s
τs[P (0s, . . . ,0s,0s,1s)] (5.23)

almost surely and in expectation since YN is supposed to satisfy Assumption 1.

Lemma 10. Assumption 3 is satisfied by (ỸN , eN)

Proof. Let

L(ỹ, ỹ∗, e) = a0 ⊗ 1+ a1 ⊗ e1 + a2 ⊗ e2 +

q
∑

j=1

bj ⊗ yj + b∗j ⊗ y∗j

where a0, a1, a2, b1, . . . , bq are in Mk(C), a0, a1, a2 being selfadjoint. Then the Stieltjes transform GN of

L(ỸN , Ỹ
∗
N , eN) is given by: ∀Γ ∈ Mk(C) such that Im Γ > 0

GN (Γ) := E

[

τ(r+s)N

[

(Γ⊗ 1(r+s)N − L(ỸN , Ỹ
∗
N , eN) )−1

]

]

= E

[ r

r + s
τrN

[

(Γ⊗ 1rN − (a0 + a1)⊗ 1rN − TN)−1
]

]

+
s

r + s
(Γ− a0 − a1)

−1,
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where TN =
∑q

j=1 bj ⊗ Y
(N)
j + b∗j ⊗ Y

(N)∗
j . Similarly, by (5.23), the Stieltjes transform G of the non

commutative random variables L(ỹ, ỹ∗, e) is: ∀Γ ∈ Mk(C) such that Im Γ > 0

G(Γ) =
r

r + s
τ
[

(Γ⊗ 1− (a0 + a1)⊗ 1−
q

∑

j=1

bj ⊗ yj + b∗j ⊗ y∗j )
−1

]

+
s

r + s
(Γ− a0 − a1)

−1

Hence
‖GN (Γ)−G(Γ)‖ =

r

r + s
‖G̃N(Γ)− G̃(Γ)‖

where G̃N (respectively G̃) is the Stieltjes transform of (a0 + a1)⊗ 1rN −∑q
j=1 bj ⊗ Y

(N)
j + b∗j ⊗ Y

(N)∗
j

(respectively of (a0 + a1) ⊗ 1 −
∑q

j=1 bj ⊗ yj + b∗j ⊗ y∗j ). Hence (3.10) holds for ‖GN (Γ) − G(Γ)‖ since
YN is supposed to satisfy Assumption 3.

5.3 Proof of Corollary 3: Block matrices

The convergence in norm for block matrices stated in Corollary 3 can be shown in an algebraic way
as a consequence of the strong convergence (1.4). We provide here a direct proof: it is shown to be
a consequence of Theorem 1 using some elementary block matrices that are compatible with the three
assumptions of the theorem.

Let (XN ,YN ) as in Theorem 1. By Assumption 1 and Voiculescu’s theorem, the non commutative
law of (XN ,YN ) in (MN (C), .∗, τN ) converges to the non commutative law of non commutative variables
(x,y) in a C∗-probability space (A, .∗, τ, ‖.‖τ).

Fix in the following a positive integer l and denote by (ǫu,v)16u,v6l the canonical basis of Ml(C). Define

the family of lN × lN matrices eN = (e
(N)
1 , . . . , e

(N)
l ): for all j = 1, . . . , l

e
(N)
j = ǫj,1 ⊗ 1N =































0N . . . . . . . . . 0N

...
...

0N

...

1N

...

0N

...
...

...
0N . . . . . . . . . 0N































, (5.24)

the identity block being at position (j, 1). Let X̃N = (X̃
(N)
1 , . . . , X̃

(N)
p ) be a family of p independent

normalized GUE matrices of size lN × lN , independent with YN , and such that for j = 1, . . . , p, the

N ×N block of
√
lX

(N)
j in position (1, 1) is X

(N)
j . Then we get

ǫ1,1 ⊗XN = e
(N)
1,1

√
lX̃Ne

(N)
1,1 . (5.25)

Let ỸN = (Ỹ
(N)
1 , . . . , Ỹ

(N)
q ) be the family of lN × lN matrices defined by: for j = 1, . . . , q,

Ỹ
(N)
j = ǫ1,1 ⊗ Y

(N)
j =











Y
(N)
j 0N . . . 0N

0N 0N . . . 0N

...
...

...
0N 0N . . . 0N











.. (5.26)

Lemma 11. 1. The family of lN×lN matrices (ỸN , eN ) satisfies the three assumptions of Theorem 1.
In particular, by Voiculescu theorem, the non commutative law of (X̃N , ỸN , eN ) in (MlN (C), .∗, τlN )
converges almost surely and in expectation to the non commutative law of variables (x̃, ỹ, e) in a
C∗-probability space (Ã, .∗, τ̃ , ‖.‖τ̃), where x̃ is a free semicircular system, free with (ỹ, e).
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2. For all B ∈ Ml(C)⊗ C〈x,y,y∗〉, there exists a polynomial B̃ in C〈x̃, ỹ, ỹ∗, e, e∗〉 such that

B(XN ,YN ,Y
∗
N ) = B̃(X̃N , ỸN , Ỹ

∗
N , eN , e

∗
N). (5.27)

Moreover, B̃ is in fact a polynomial in (e11
√
lx̃e11, ỹ, e);

3. The law of (ǫ11⊗x, ǫ11⊗y, (ǫj,1⊗1)j=1,...,l) in (Ml(C)⊗A, .∗, τl⊗ τ) is the law of (e11
√
lx̃e11, ỹ, e)

in (Ã, .∗, τ̃) and
‖B(x,y,y∗)‖τl⊗τ = ‖B̃(x̃, ỹ, ỹ∗, e, e∗)‖τ̃ . (5.28)

Assuming Lemma 11 we obtain Corollary 3: Theorem 1 ensures that, almost surely

‖B(XN ,YN ,Y
∗
N )‖ = ‖B̃(X̃N , ỸN , Ỹ

∗
N , eN , e

∗
N )‖ −→

N→∞
‖B̃(x̃, ỹ, ỹ∗, e, e∗)‖τ̃ = ‖B(x,y,y∗)‖τl⊗τ .

We start with the proof of Item 2 of Lemma 11. Item 3 of Lemma 11 is a direct consequence of Item 1
and of the proof of Item 2. The proof of the assumptions for (ỸN , eN ) (except the Poincaré’s inequality,
which is obvious) are stated in Lemmas 12 and 13.

Proof of Items 2 and 3. Let B ∈ Ml(C)⊗ C〈x,y,y∗〉 and write

B(x,y,y∗) =
l

∑

u,v=1

ǫu,v ⊗ Pu,v(x,y,y
∗) =







P1,1(x,y,y
∗) . . . P1,l(x,y,y

∗)
...

...
Pl,1(x,y,y

∗) . . . Pl,l(x,y,y
∗)






, (5.29)

(Pu,v)16u,v6l being non commutative polynomials in p+2q indeterminates. Then by Definition (5.24) of
eN :

B(XN ,YN ,Y
∗
N ) =

l
∑

u,v=1

e
(N)
u,1 . ǫ1,1 ⊗ Pu,v(XN ,YN ,Y

∗
N ) . e

(N)∗
v,1 .

It is easy to see that

B(XN ,YN ,Y
∗
N ) =

l
∑

u,v=1

e
(N)
u,1 Pu,v(ǫ1,1 ⊗XN , ỸN , Ỹ

∗
N )e

(N)∗
v,1 .

Define the polynomial B̃ ∈ C〈x̃, ỹ, ỹ∗, e, e∗〉 by

B̃ =

l
∑

u,v=1

eu,1Pu,v(e1,1
√
lx̃e1,1, ỹ, ỹ

∗)e∗v,1. (5.30)

Then by (5.25) we get as desired B(XN ,YN ,Y
∗
N ) = B̃(X̃N , ỸN , Ỹ

∗
N , eN , e

∗
N ) and B̃ is a polynomial in

the non commutative indeterminates (e11
√
lx̃e11, ỹ, e).

We now show the assumptions for (ỸN , eN). Recall that since YN satisfies Assumption 1, there exists a
tracial state τ such that for all non commutative polynomial P ∈ C〈y,y∗〉,

τN
[

P (YN ,Y
∗
N )

]

−→
N→∞

τ
[

P (y,y∗)
]

a.s. and in expectation. (5.31)

Lemma 12. Assumption 1 is satisfied by (ỸN , eN). More precisely, the non commutative law of
(ỸN , eN ) in (MlN (C), .∗, τlN ) converges almost surely and in expectation to the non commutative law
given by the trace τ̃ given by the following. Denote by ỹ = (ỹ1, . . . , ỹq), e = (e1, . . . , el) non commutative
indeterminates. For all monic monomial Q in C〈ỹ, ỹ∗, e, e∗〉

τlN
[

Q(ỸN , Ỹ
∗
N , e, e

∗)
]

−→
N→∞

τ̃
[

Q(ỹ, ỹ∗, e, e∗)
]

a.s. and in expectation

where

τ̃
[

Q(ỹ, ỹ∗, e, e∗)
]

= τl

[

Q
(

ǫ1,1, . . . , ǫ1,1, (ǫj,1)j=1,...,l, (ǫ1,j)j=1,...,l

)

]

τ
[

Q
(

ỹ, ỹ∗, (1)j=1,...,l, (1)j=1,...,l

)

]

,

and ǫ = (ǫu,v)16u,v6l denote the canonical basis of Ml(C). Hence τ̃ = (τk ⊗ τ).
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Proof. Recall that with the tensor product notation we have written in (5.24) and (5.26)

Ỹ
(N)
j = ǫ1,1 ⊗ Y

(N)
j , j = 1, . . . , q,

e
(N)
j = ǫj,1 ⊗ 1N , j = 1, . . . , l.

Now let Q ∈ C〈ỹ, ỹ∗, e, e∗〉 be a non commutative monic monomial; then by the product rule for tensor
product a⊗ b . c⊗ d = ac⊗ bd we have

Q(ỸN , Ỹ
∗
N , e, e

∗)

= Q
(

ǫ1,1 ⊗YN , ǫ1,1 ⊗Y∗
N , (ǫj,1 ⊗ 1N)j=1,...,l, (ǫ1,j ⊗ 1N)j=1,...,l

)

= Q
(

ǫ1,1, . . . , ǫ1,1, (ǫj,1)j=1,...,l, (ǫ1,j)j=1,...,l

)

⊗Q
(

YN ,Y
∗
N , (1N )j=1,...,l, (1N )j=1,...,l

)

.

Taking the normalized trace and letting N go to the infinity gives the result

τlN

[

Q
(

ỸN , Ỹ
∗
N , e, e

∗)
]

= (τl ⊗ τN )
[

Q
(

ǫ1,1, . . . , ǫ1,1, (ǫj,1)j=1,...,l, (ǫ1,j)j=1,...,l

)

⊗Q
(

YN ,Y
∗
N , (1N )j=1,...,l, (1N )j=1,...,l

)

]

= τl

[

Q
(

ǫ1,1, . . . , ǫ1,1, (ǫj,1)j=1,...,l, (ǫ1,j)j=1,...,l

)

]

τN

[

Q
(

YN ,Y
∗
N , (1N )j=1,...,l, (1N )j=1,...,l

)

]

−→
N→∞

τl

[

Q
(

ǫ1,1, . . . , ǫ1,1, (ǫj,1)j=1,...,l, (ǫ1,j)j=1,...,l

)

]

τ
[

Q
(

ỹ, ỹ∗, (1)j=1,...,l, (1)j=1,...,l

)

]

almost surely and in expectation.

It remains to show that the convergence of Mk(C)-valued Stieltjes transforms holds rapidly. Since YN

is supposed to satisfy Assumption 3 we have the following. For all non commutative selfadjoint degree
one polynomial L in (y,y∗) with coefficient in Mk(C), with GL

N denoting the Stieltjes transform of
L(YN ,Y

∗
N ), GL the one of L(y,y∗), respectively defined by: for Γ in Mk(C) such that Im Γ > 0

GL
N (Γ) = E

[

(idk ⊗ τN )
[

(Γ⊗ 1N − L(YN ,Y
∗
N ) )−1

]

]

GL(Γ) = (idk ⊗ τ)
[

(Γ⊗ 1− L(y,y∗) )−1
]

there exist N0, γ, γ̃, c, η, α > 0 such that for all N ≥ N0, for all matrices

Γ ∈ Oγ,γ̃ =

{

Λ ∈ Mk(C)
∣

∣

∣ Im Λ > 0, ‖(Im Λ)−1‖ 6 Nγ , ‖Λ‖ 6 N γ̃

}

,

we have
∥

∥GL
N (Γ)−GL(Γ)

∥

∥ 6
c

N1+η
‖(Im Γ)−1‖α. (5.32)

Lemma 13. Assumption 3 is satisfied by (YN , eN).

Proof. Consider a non commutative selfadjoint degree one polynomial L̃ with coefficient in Mk(C) in non
commutative indeterminates (ỹ, ỹ∗, e, e∗):

L̃(ỹ, ỹ∗, e, e∗) = ã0 ⊗ 1+
l

∑

j=1

ãj ⊗ ej + ã∗j ⊗ e∗j +
q

∑

j=1

b̃j ⊗ ỹj + b̃∗j ⊗ ỹ∗j ,

with a0 selfadjoint. We can reduce the problem by considering the polynomial L̃
(

ỸN , Ỹ
∗
N , eN , e

∗
N

)

as a

polynomial L in (YN ,Y
∗
N ), selfadjoint but with coefficient in Mlk(C): by Definitions (5.26) and (5.24)
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of ỸN and of eN

L̃(ỸN , Ỹ
∗
N , eN , e

∗
N)

= ã0 ⊗ 1lN +
l

∑

j=1

ãj ⊗ e
(N)
j + ã∗j ⊗ e

(N)∗
j +

q
∑

j=1

b̃j ⊗ Ỹ
(N)
j + b̃∗j ⊗ Ỹ

(N)∗
j

= ã0 ⊗ 1l ⊗ 1N +

l
∑

j=1

ãj ⊗ ǫj,1 ⊗ 1N + ã∗j ⊗ ǫ1,j ⊗ 1N +

q
∑

j=1

b̃j ⊗ ǫ1,1 ⊗ Y
(N)
j + b̃∗j ⊗ ǫ1,1 ⊗ Y

(N)∗
j

= a0 ⊗ 1N +

q
∑

j=1

bj ⊗ Y
(N)
j + b∗j ⊗ Y

(N)∗
j =: L

(

YN ,YN

)

where a0 = ã0⊗1l+
∑l

j=1 ãj⊗ǫj+ ã∗j ⊗ǫ∗j is selfadjoint, bj = b̃j⊗ǫ1,1 for j = 1, . . . , q. The Mk(C)-valued

Stieltjes transform GL̃
N of L̃(ỸN , Ỹ

∗
N , eN , e

∗
N ) can be written as the partial trace of the Mlk(C)-valued

Stieltjes transform GL
N of L(YN ,Y

∗
N ): for Γ̃ in Mk(C) such that Im Γ̃ > 0

GL̃
N (Γ̃) = E

[

(idk ⊗ τlN )
[(

Γ̃⊗ 1lN − L̃(ỸN , Ỹ
∗
N , eN , e

∗
N)

)−1 ]

]

= (idk ⊗ τl)
[

E

[

(idlk ⊗ τN )
[(

Γ̃⊗ 1lN − L̃(ỸN , Ỹ
∗
N , eN , e

∗
N )

) ]

] ]

= (idk ⊗ τl)
[

GL
N (Γ)

]

,

where Γ = Γ̃⊗ 1l and GL
N is the Mlk(C)-valued Stieltjes transform of L(ỸN , Ỹ

∗
N ). Remark that we have

Im Γ > 0, ‖Γ‖ = ‖Γ̃‖ and ‖(Im Γ)−1‖ = ‖(Im Γ̃)−1‖.
Similarly the Mk(C)-valued Stieltjes transform of L(ỹ, ỹ∗, e, e∗) can be re-written: for Γ̃ in Mk(C) such
that Im Γ̃ > 0

GL̃(Γ̃) = (idk ⊗ τl)
[

GL(Γ)
]

Hence by Cauchy-Schwarz inequality and (5.32): for Γ̃ in Oγ,γ̃ we have

‖GL̃
N (Γ̃)−GL̃(Γ̃)‖ =

∥

∥

∥(idk ⊗ τl)
[

GL
N (Γ)−GL(Γ)

] ∥

∥

∥ 6
1√
l

∥

∥

∥GL
N (Γ)−GL(Γ)

∥

∥

∥

e

6
√
k
∥

∥

∥GL
N (Γ)−G(Γ)

∥

∥

∥ 6 l1+η
√
k

c

(lN)1+η
‖(Im Γ)−1‖α

Hence the family (ỸN , eN ) satisfies Assumption 3 with a constant multiplied by l1+η
√
k.

5.4 Proof of Corollary 4: Rectangular band matrices

We only sketch the proof of this example, details are obtained by minor modification of the proofs of
Corollaries 2 and 3. Let H be as in Corollary 4:

H =

























A1 A2 . . . AL 0 . . . . . . 0

0 A1 A1 . . . AL 0
...

... 0 A1 A2 . . . AL 0

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . . 0

0 . . . . . . 0 A1 A2 . . . AL

























. (5.33)

We start with the following observation: the operator norm of H is the square root of the operator norm
of H∗H , which is a square block matrix which blocks consist in sums of tN × tN matrices of the form
A∗

lAm, l,m = 1 . . . L. For any l = 1 . . . L, Al = ml + σlMl were Ml is rN × tN complex Gaussian matrix
with independent identically distributed entries, centered and of variance 1/N .
By minor modifications of the proof of Corollary 2, we get that the norm of any polynomial in the matrices
AN = (A∗

lAm)l,m=1..L and in matrices YN that satisfy Assumptions 1-3 converges when N goes to the
infinity. By the same reasoning as in the proof of Corollary 3, we get that the convergence holds for
square block matrices and in particular for H∗H . Hence the result follows.
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A Proof of Proposition 2: estimate of ΘN(Λ,Γ)

We use the Poincaré inequality to control ΘN : if (g1, . . . , gN) are independent identically distributed
centered real Gaussian variables with variance v2 and F is a differentiable map RN → C such that F and
its partial derivatives are polynomially bounded, then (see [9, Theorem 2.1])

Var
(

F (g1, . . . , gN )
)

6 v2E
[

‖∇F (g1, . . . , gN ) ‖2
]

.

The Poincaré inequality is compatible with tensor product, then by Assumption (3.2) such a formula will
be valid when F is a function of the matrices XN and YN with v2 = σ

N (without loss of generality, one
may suppose σ ≥ 1).

We will often deal with matrices of size k × k. Since the integer k is fixed, we can use intensively
the equivalence of norms, the constants appearing will not modify the order of convergence. For K
integer, we denote the Euclidean norm of a K ×K matrix A = (am,n)16m,n6K by

‖A‖e =

√

√

√

√

K
∑

m,n=1

|am,n|2,

and its infinity norm by
‖A‖∞ = max

m,n=1,...,K
|am,n|.

Recall that if A,B are K ×K matrices,

‖A‖ 6 ‖A‖e 6
√
K‖A‖, (A.1)

‖A‖ 6
√
K‖A‖∞ 6

√
K‖A‖e, (A.2)

‖AB‖ 6 ‖A‖e ‖B‖. (A.3)

When A is in Mk(C) ⊗ MN (C), its euclidean norm is defined by considering A as a kN × kN matrix.In
the following we will write an element ω of Mk(C) ⊗ MN (C)

ω =

N
∑

m,n=1

k
∑

u,v=1

wm,n
u,v ǫu,v ⊗ ǫm,n =

N
∑

m,n=1

w(m,n) ⊗ ǫm,n =

k
∑

u,v=1

ǫu,v ⊗ w(u,v), (A.4)

where for m,n = 1, . . . , N and u, v = 1, . . . , k, ωm,n
u,v is a complex, ω(m,n) is a k × k matrix, and ω(u,v) is

a N ×N matrix; we use the same notation for the canonical bases of Mk(C) and MN (C).

We denote for convenience M =
∑p

j=1 ajK
(1)
N (Λ)aj and denote by (h̃

(1)
N , h̃

(2)
N ) an independent copy of

(h
(1)
N , h

(2)
N ). Recall that by definitions (4.6) and (4.7):

lN,Λ,Γ : A ∈ Mk(C) 7→ h
(2)
N (Γ) A h

(1)
N (Λ) ∈ Mk(C),

LN,Λ,Γ : A ∈ Mk(C) 7→ E

[

lN,Λ,Γ(A)
]

∈ Mk(C).

Then with the notations of (A.4) we have

(idk ⊗ τN )
[

(lN,Λ,Γ − LN,Λ,Γ) (M ⊗ 1N )
]

= (idk ⊗ τN )[h
(2)
N (Γ) (M ⊗ 1N ) h

(1)
N (Λ)]− E

[

(idk ⊗ τN )[h̃
(2)
N (Γ) (M ⊗ 1N) h̃

(1)
N (Λ)]

∣

∣

∣ M
]

=
1

N

N
∑

m,n=1

[

(

h
(2)
N (Γ)

)(m,n)

M
(

h
(1)
N (Λ)

)(n,m)

− E

[(

h̃
(2)
N (Γ)

)(m,n)

M
(

h̃
(1)
N (Λ)

)(n,m) ∣
∣

∣ M
]

]

.
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To estimate the operator norm of ΘN we use the domination by the infinity norm (A.2) in order to split
the contributions due to M and due to lN,Λ,Γ − LN,Λ,Γ: we get

‖ΘN(Λ,Γ)‖ =

∥

∥

∥

∥

E

[

(idk ⊗ τN ) [(lN,Λ,Γ − LN,Λ,Γ) (M ⊗ 1N )]
]

∥

∥

∥

∥

6
√
k

∥

∥

∥

∥

∥

E

[

1

N

N
∑

m,n=1

(

h
(2)
N (Γ)

)(m,n)

M
(

h
(1)
N (Λ)

)(n,m)

− E

[(

h̃
(2)
N (Γ)

)(m,n)

M
(

h̃
(1)
N (Λ)

)(n,m) ∣
∣

∣ M
]

]∥

∥

∥

∥

∥

∞

6 k5/2 max
16u,v6k
16u′,v′6k

∣

∣

∣

∣

∣

E

[

Mu′,v′ × 1

N

N
∑

m,n=1

(

h
(2)
N (Γ)

)m,n

u,u′

(

h
(1)
N (Λ)

)n,m

v′,v
− E

[(

h
(2)
N (Γ)

)m,n

u,u′

(

h
(1)
N (Λ)

)n,m

v′,v

]

]∣

∣

∣

∣

∣

6 k5/2 max
u,v,u′,v′

E

[

|Mu′,v′ | ×
∣

∣

∣τN
[

h
(1,2)
N (Λ,Γ) u,v

u′,v′

]

− E

[

τN
[

h
(1,2)
N (Λ,Γ) u,v

u′,v′

]

]∣

∣

∣

]

6 k5/2 max
u,v,u′,v′

E

[

|Mu′,v′ | ×
∣

∣

∣τN
[

k
(1,2)
N (Λ,Γ) u,v

u′,v′

]

∣

∣

∣

]

,

where we have denoted

h
(1,2)
N (Λ,Γ) u,v

u′,v′
=

(

h
(2)
N (Γ)

)

(u,u′)

(

h
(1)
N (Λ)

)

(v′,v)
,

k
(1,2)
N (Λ,Γ) u,v

u′,v′
= h

(1,2)
N (Λ,Γ) u,v

u′,v′
− E

[

h
(1,2)
N (Λ,Γ) u,v

u′,v′

]

.

Remark that by (A.3), for u′, v′ = 1, . . . , k

|Mu′,v′ | =
∣

∣

∣

(

p
∑

j=1

ajK
(1)
N (Λ)aj

)

u′,v′

∣

∣

∣ 6

∥

∥

∥

p
∑

j=1

ajK
(1)
N (Λ)aj

∥

∥

∥

e
6

p
∑

j=1

‖aj‖ ‖K(1)
N (Λ)‖e.

Then by Cauchy-Schwarz inequality we get:

‖ΘN(Λ,Γ)‖ 6 k5/2
p

∑

j=1

‖aj‖
(

E
[

‖K(1)
N (Λ)‖2e

]

max
u,v,u′,v′

E

[∣

∣

∣
τN

[

k
(1,2)
N (Λ,Γ) u,v

u′,v′

]

∣

∣

∣

2 ] )1/2

6 k5/2
p

∑

j=1

‖aj‖
( k

∑

u,v=1

Var
(

H
(1)
N (Λ)

)

u,v
max

u,v,u′,v′
Var

(

τN
[

h
(1,2)
N (Λ,Γ) u,v

u′,v′

]

)

)1/2

. (A.5)

One is reduced to the study of variances of random variables. To use Poincaré’s inequality, we write for
u, v, u′, v′ = 1, . . . , k

(

H
(1)
N (Λ)

)

u,v
= F (1)

u,v

(

X
(N)
1 , . . . , X(N)

p , Y
(N)
1 , . . . , Y (N)

q

)

,

τN

[

h
(1,2)
N (Λ,Γ) u,v

u′,v′

]

= F
(2)
u,v,u′,v′

(

X
(N)
1 , . . . , X(N)

p , Y
(N)
1 , . . . , Y (N)

q

)

,

where for all selfadjoint matrices A = (A1, . . . , Ap) in MN (C), for all B = (B1, . . . , Bq) in MN (C) and

with S̃N =
∑p

j=1 aj ⊗Aj , T̃N =
∑q

j=1 bj ⊗Bj + b∗j ⊗B∗
j ,

F (1)
u,v(A,B) =

(

(idk ⊗ τN )
[

(Λ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N )−1
]

)

u,v

=
1

N
(Trk ⊗ TrN )

[

(ǫv,u ⊗ 1N)(Λ ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N )−1
]

,

F
(2)
u,v,u′,v′(A,B) = τN

[

(

(Λ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N )−1
)

(u,u′)

(

(Γ⊗ 1N − T̃N)−1
)

(v′,v)

]

=
1

N
(Trk ⊗ TrN )

[

(ǫv,u ⊗ 1N )(Γ⊗ 1N − T̃N )−1(ǫu′,v′ ⊗ 1N ) (Λ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N )−1
]

.
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The functions and their partial derivatives are bounded (see [15, Lemma 4.6] with minor modifications),
so that, by the Poincaré inequality with constant σ

N satisfied by the law of (XN ,YN )

Var
(

H
(1)
N (Λ)

)

u,v
6

σ

N
E

[

∥

∥

∥
∇ F (1)

u,v(X
(N)
1 , . . . , X(N)

p , Y
(N)
1 , . . . , Y (N)

q )
∥

∥

∥

2
]

,

Var
(

τN
[

h
(1,2)
N (Λ,Γ) u,v

u′,v′

]

)

6
σ

N
E

[

∥

∥

∥∇ F
(2)
u,v,u′,v′(X

(N)
1 , . . . , X(N)

p , Y
(N)
1 , . . . , Y (N)

q )
∥

∥

∥

2
]

.

We define the set W of families (V,W) of N × N matrices, with V = (V1, . . . , Vp) self adjoint, W =

(W1, . . . ,Wq), of unit Euclidean norm in R(p+q)N2

. Then we have

Var
(

H
(1)
N (Λ)

)

u,v
6

σ

N
E

[

max
(V,W)∈W

∣

∣

∣

d

dt |t=0
F (1)
u,v(XN + tV,YN + tW)

∣

∣

∣

2]

,

Var
(

τN
[

h
(1,2)
N (Λ,Γ) u,v

u′,v′

]

)

6
σ

N
E

[

max
(V,W)∈W

∣

∣

∣

d

dt |t=0
F

(2)
u,v,u′,v′(XN + tV,YN + tW)

∣

∣

∣

2]

.

For all (V,W) in W , for all selfadjoint N × N matrices A = (A1, . . . , A1) and for all N × N matrices
B = (B1, . . . , B1):

∣

∣

∣

∣

d

dt |t=0
F (1)
u,v(A+ tV,B+ tW)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

d

dt |t=0

1

N
(Trk ⊗ TrN )

[

(ǫv,u ⊗ 1N)
(

Λ⊗ 1N − a0 ⊗ 1N −
p

∑

j=1

aj ⊗ (Aj + tVj)

−
q

∑

j=1

bj ⊗ (Bj + tWj) + bj ⊗ (B∗
j + tW ∗

j )
)−1

]

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

N
(Trk ⊗ TrN )

[

(ǫv,u ⊗ 1N )(Λ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N)−1

×
(

p
∑

j=1

aj ⊗ Vj +

q
∑

j=1

bj ⊗Wj + b∗j ⊗W ∗
j

)

(Λ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N )−1
]

∣

∣

∣

∣

2

.

The Cauchy-Schwarz inequality for Trk ⊗ TrN (i.e. for TrkN ) gives
∣

∣

∣

∣

d

dt |t=0
F (1)
u,v(A+ tV,B+ tW)

∣

∣

∣

∣

2

6
1

N2

∥

∥

∥(ǫv,u ⊗ 1N )(Λ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N)−1
∥

∥

∥

2

e

×

∥

∥

∥

∥

∥

∥

( p
∑

j=1

aj ⊗ Vj +

q
∑

j=1

bj ⊗Wj + b∗j ⊗W ∗
j

)

(Λ ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N)−1

∥

∥

∥

∥

∥

∥

2

e

Using (A.3) to split Euclidean norms into the product of an operator norm and an Euclidean norm, we
get:
∣

∣

∣

∣

d

dt |t=0
F (1)
u,v(A+ tV,B+ tW)

∣

∣

∣

∣

2

6
1

N2
‖ǫv,u ⊗ 1N‖2e ‖(Λ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N)−1‖2

∥

∥

∥

∥

p
∑

j=1

aj ⊗ Vj +

q
∑

j=1

bj ⊗Wj + b∗j ⊗W ∗
j

∥

∥

∥

∥

2

e

6
k

N
‖(Im Λ)−1‖4

∥

∥

∥

∥

p
∑

j=1

aj ⊗ Vj +

q
∑

j=1

bj ⊗Wj + b∗j ⊗W ∗
j

∥

∥

∥

∥

2

e

Remark that since (V,W) ∈ W the norm of the matrices Vj and Wj is bounded by one. Then we have
the following
∥

∥

∥

∥

p
∑

j=1

aj ⊗ Vj +

q
∑

j=1

bj ⊗Wj + b∗j ⊗W ∗
j

∥

∥

∥

∥

e

6

p
∑

j=1

‖aj‖e + 2

q
∑

j=1

‖bj‖e 6
√
k
(

p
∑

j=1

‖aj‖+
q

∑

j=1

2‖bj‖
)

.
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Hence we finally obtain an estimate of Var(H
(1)
N (Λ) )u,v)

Var
(

H
(1)
N (Λ)

)

u,v
6
k2σ

N2

(

p
∑

j=1

‖aj‖+ 2

q
∑

j=1

‖bj‖
)2

‖(Im Λ)−1‖4. (A.6)

We obtain a similar estimate for Var
(

τN
[

h
(1,2)
N (Λ,Γ) u,v

u′,v′

]

)

. The partial derivative of F
(2)
u,v,u′,v′ gives in

this case two terms: ∀(V,W) ∈ W , ∀(A,B) ∈ MN (C)p+q

d

dt |t=0
F

(2)
u,v,u′,v′(A+ tV,B+ tW)

=
1

N
(Trk ⊗ TrN )

[

(ǫv,u ⊗ 1N )(Γ⊗ 1N − T̃N)−1
(

q
∑

j=1

bj ⊗Wj + b∗j ⊗W ∗
j

)

× (Γ⊗ 1N − T̃N )−1(ǫu′,v′ ⊗ 1N )(Λ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N)−1

+ (ǫv,u ⊗ 1N )(Γ⊗ 1N − T̃N)−1(ǫu′,v′ ⊗ 1N )(Λ ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N )−1

×
(

p
∑

j=1

aj ⊗ V
(N)
j +

q
∑

j=1

bj ⊗W
(N)
j + b∗j ⊗W

(N)∗
j

)

(Λ⊗ 1N − a0 ⊗ 1N − S̃N − T̃N)−1
]

.

We then get the following

∣

∣

∣

∣

d

dt |t=0
F

(2)
u,v,u′,v′(A+ tV,B+ tW)

∣

∣

∣

∣

2

6
k2

N

(

p
∑

j=1

‖aj‖+ 2

q
∑

j=1

‖bj‖
)2

‖(Im Γ)−1‖2 ‖(Im Λ)−1‖2
(

‖(Im Λ)−1‖+ ‖(Im Γ)−1‖
)2

.

Hence we have

Var
(

τN
[

h
(1,2)
N (Λ,Γ) u,v

u′,v′

]

)

6
k2σ

N2

(

p
∑

j=1

‖aj‖+ 2

q
∑

j=1

‖bj‖
)2

‖(Im Γ)−1‖2 ‖(Im Λ)−1‖2
(

‖(Im Γ)−1‖+ ‖(Im Λ)−1‖
)2

(A.7)

We then obtain as desired, by (A.5), (A.6) and (A.7):

‖ΘN (Λ,Γ)‖ 6 c1
∥

∥(Im Γ)−1
∥

∥

∥

∥(Im Λ)−1
∥

∥

3
(

‖(Im Γ)−1‖+ ‖(Im Λ)−1‖
)

,

where c1 = k9/2σ
N2

∑p
j=1 ‖aj‖

(

∑p
j=1 ‖aj‖+ 2

∑q
j=1 ‖bj‖

)2

.

B Proof of Step 2: from Stieltjes transforms to spectra

For λ in C with Im λ > 0, define

gn(λ) = E

[

(τk ⊗ τN )
[

(

λ1kN − L(XN ,YN ,Y
∗
N )

)−1
]

]

= τk

[

G
(1)
N (λ1k)

]

, (B.1)

g(λ) = (τk ⊗ τ)
[

(

λ1k ⊗ 1− L(x,y,y∗)
)−1

]

= τk

[

G(1)(λ1k)
]

. (B.2)

Then, by (3.12), for every ε, ε̃ > 0, for all λ in C with Im λ > 0 such that ε 6 (Im λ)−1 6 Nγ and
|Re λ| 6 ε̃, we have for N large enough

|g(λ)− gN (λ)| 6 c

N1+η
λ−α, (B.3)

where c, η, α are positive constants.
In the following, for any smooth function f : R 7→ R, we will denote the real random variable DN (f) =

(τk ⊗ τN )
[

f
(

L(XN ,YN ,Y
∗
N )

)

]

.
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Lemma 14. For every smooth function f : R 7→ R non negative, compactly supported and vanishing on
a neighborhood of the spectrum of L(x,y,y∗), there exists a constant, still denoted c, such that for all N

∣

∣

∣E
[

DN (f)
]

∣

∣

∣ 6
c

N1+η
. (B.4)

Proof. see [1, Lemma 5.5.5] with minor modifications.

Lemma 15. With f as above, there exists κ > 0 such that

N1+κDN (f) −→
N→∞

0, a.s. (B.5)

Proof. The law of the random matrices satisfying a Poincaré’s inequality with constant σ
N and L being

a polynomial of degree one, for all Lipschitz function Ψ : MkN (C) 7→ R [12, Lemma 5.2]:

P

(

∣

∣

∣Ψ
(

L(XN ,YN , ,Y
∗
N )

)

− E

[

Ψ
(

L(XN ,YN , ,Y
∗
N )

)

] ∣

∣

∣ ≥ δ

)

6 K1e
−K2

√
Nδ

|Ψ|L , (B.6)

where K1,K2 are positive constants and |Ψ|L = sup
A 6=B∈MkN (C)

|Ψ(A)−Ψ(B)|
‖A−B‖2

.

For any f as in the lemma, we define Φ
(f)
N : MkN (C) 7→ R by

Φ
(f)
N (A) = (τk ⊗ τN )

[

f(A)
]

(B.7)

and denote for N and 0 < κ < η
4

BN,κ =

{

A ∈ MkN (C)
∣

∣

∣ Φ
(f ′2)
N (A) 6

1

N4κ

}

. (B.8)

Define Ψ
(f)
N : MkN (C) 7→ R by: ∀A ∈ MN (C)

Ψ
(f)
N (A) = max

(

0 , sup
B∈BN,κ

{

Φ
(f)
N (A) − |Φ(f)

N |L ‖A−B‖2
}

)

, (B.9)

and denote D̃N (f) = Ψ
(f)
N (L(XN ,YN ,Y

∗
N )). Then Ψ

(f)
N is Lipschitz, with |Ψ(f)

N |L 6 |(Φ(f)
N )|BN,κ

|L. But

if f is a polynomial it is easy to see that Φ
(f)
N is differentiable and

| (Φ(f)
N )|BN,κ

|L 6
1√
kN

‖ (Φ
(f ′2)
N )|BN,κ

‖1/2∞ , (B.10)

and then it is the case when f is not a polynomial by density of polynomials. Hence |Ψ(f)
N |L 6

1√
k
N−1/2−2κ. Moreover, by the Tchebychev inequality

P(Bc
N,κ) = P

(

DN (f ′2) ≥ 1

N4κ

)

6 N4κ
E

[

DN (f ′2)] 6
σ

N1+η−4κ
, (B.11)

where we used (B.4) and the fact that f ′2 also vanishes in a neighborhood of the spectrum of L(x,y,y∗);

at last, since Ψ
(j)
N and Φ

(j)
N are equals in BN,κ and ‖Ψ(j)

N ‖∞ 6 ‖Φ(j)
N ‖∞,

∣

∣

∣E
[

D̃N(f)−DN (f)
]

∣

∣

∣ 6 ‖Φ(j)
N ‖∞P(Bc

N,κ) 6 ‖Φ(j)
N ‖∞

σ

N1+η−4κ
(B.12)

Now, by (B.6) applied to Ψ
(j)
N :

P

(

∣

∣

∣DN (f)− E
[

DN(f)
]

∣

∣

∣ >
δ

N1+κ
∩ BN,κ

)

6 P

(

∣

∣

∣D̃N (f)− E
[

D̃N (f)
]

∣

∣

∣ >
δ

N1+κ
−

∣

∣

∣E
[

D̃N(f)−DN (f)
]

∣

∣

∣

)

6 K1 exp

(

−
√
kK2N

κ(δ −
∣

∣

∣E
[

D̃N (f)−DN (f)
]

∣

∣

∣)

)

By (B.11), (B.12), Lemma 14 and the Borel-Cantelli lemma, DN (f) is almost surely of order N1+κ at
most.
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Proposition 6. For every ε > 0 there exists N0 such that for N ≥ N0

Sp
(

L(XN ,YN ,Y
∗
N )

)

⊂ Sp
(

L(x,y,y∗)
)

+ (−ε, ε) (B.13)

Proof. By (3.1) and [1, Exercise 2.1.27], there exists N0 ∈ N and D ≥ 0 such that the spectral radii of
the matrices (XN ,YN ) is bounded by D for all N ≥ N0 almost surely, and then there exists a M ≥ 0
such that almost surely

Sp
(

L(XN ,YN ,Y
∗
N )

)

⊂ [−M,M ].

Let f : R 7→ R non negative, compactly supported, vanishing on Sp( L(x,y,y∗) )+(−ε/2, ε/2) and equal
to one on [−M,M ]r

(

Sp( L(x,y,y∗)) + (−ε, ε)
)

. Then almost surely for N large enough, no eigenvalue
of L(XN ,YN ,Y

∗
N ) can belong to the complementary of Sp( L(x,y,y∗) ) + (−ε, ε) since otherwise

(τk ⊗ τN )
[

f
(

L(XN ,YN ,Y
∗
N )

)

]

≥ N−1 ≥ N−1−κ

in contradiction with Lemma 15.
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