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OPTIMAL TRANSPORT AND DYNAMICS OF

EXPANDING CIRCLE MAPS ACTING ON

MEASURES

by

Benôıt Kloeckner

Abstract. — In this article we compute the derivative of the action on
probability measures of a expanding circle map at its absolutely continu-
ous invariant measure. The derivative is defined using optimal transport:
we use the rigorous framework set up by N. Gigli to endow the space of
measures with a kind of differential structure.

It turns out that 1 is an eigenvalue of infinite multiplicity of this
derivative, and we deduce that the absolutely continuous invariant mea-
sure can be deformed in many ways into atomless, nearly invariant mea-
sures.

We also show that the action of standard self-covering maps on mea-
sures has positive metric mean dimension.

1. Introduction

The theory of optimal transport has drawn much attention in recent
years. Its applications to geometry and PDEs have in particular been
largely disseminated. In this paper, we would like to show its effective-
ness in a dynamical context. We are interested in arguably the simplest
dynamical system where the action on measures is significantly different
from the action on points, namely expanding circle maps.

Another goal of the paper is to examplify the rigorous differential
structure defined by N. Gigli [Gig09a], for the simplest possible com-
pact manifold. Note that one can use absolutely continuous curves to
define the almost everywhere differentiability of maps, see in particular
[Gig09b] where this method is applied to the exponential map. Other
previous uses of variants of this manifold structure include the definition
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of gradient flows, as in the pioneering [Ott01] and in [AGS08], and
of curvature, as in [Lot08]. But up to our knowledge, no example of
explicit derivative of a measure-defined map at a given point had been
computed.

1.1. An important model example. — Let us first consider the
usual degree d self-covering map of the circle S1 = R/Z defined by

Φd(x) = dx mod 1.

It acts on the set P(S1) of Borel probability measures, endowed with
the topology of weak convergence, by the push-forward map Φd#.

A map like Φd can act by composition on the right on a function
space (e.g. Sobolev spaces). The adjoint of this map is usually called
a Perron-Frobenius operator or a transfer operator, and a great deal
of effort has been made to understand these operators, especially their
spectral properties (see for example [Bal00]). One can consider Φd#

as an analogue for possibly singular measures of the Perron-Frobenius
operator of Φd.

As pointed out by the referee of a previous version of this paper, using
the finite-to-one maps

(x1, . . . , xn) 7→
1

n
δx1

+ · · ·+ 1

n
δxn

it is easy to prove that Φd# is topologically transitive and has infinite
topological entropy. To refine this last remark, we shall prove that Φd#

has positive metric mean dimension (a metric dynamical invariant of
infinite-entropy maps).

Theorem 1.1. — For all integer d > 2 and all exponent p ∈ [1,+∞)
we have

mdimM(Φd#,Wp) > p(d− 1)

where Wp is the Wasserstein metric with cost | · |p.
The definition of Wasserstein metrics is given below; for the definiton

of metric mean dimension and the proof of the above result, see Section
2. Except in this result, we shall only use the quadratic Wasserstein
metric.

Our main goal is to study the first-order dynamics of Φd# near the
uniform measure λ. The precise setting will be exposed latter; let us
just give a few elements. The tangent space Tµ to P(S1) at a measure
µ that is absolutely continuous with continuous density identifies with
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the Hilbert space L2
0(µ) of all vector fields v : S1 → R that are L2 with

respect to µ, and such that
∫

v λ = 0. More generally, if µ is atomless
Tµ identifies with a Hilbert subspace L2

0(µ) of L
2(µ).

We have a kind of exponential map: expµ(v) = µ + v := (Id + v)#µ.
Then we say that a map f acting on P(S1) has Gâteau derivative L at
µ if f(µ) has no atom and L : L2

0(µ) → L2
0(f(µ)) is a continous linear

operator such that for all v we have

W(f(µ+ tv), f(µ) + tLv) = o(t).

Our first differentiability result is the following.

Theorem 1.2. — The map Φd# has a Gâteaux derivative at λ, equal to
d times the Perron-Frobenius operator of Φd acting on L2

0(λ). In partic-

ular its spectrum is the disc of radius d and all numbers of modulus < d
are eigenvalues with infinite multiplicity.

This result is detailled as Theorem 4.1 and Proposition 4.4 below. We
shall also see that Φd# is not Fréchet differentiable.

1.2. General expanding maps. — The next step is to consider the
action on measures of expanding circle maps. In Section 5, given a gen-
eral C2 expanding map Φ, we compute the derivative of Φ# at its unique
absolutely continuous invariant measure (Theorem 5.1). Instead of writ-
ting down the expression here, let us simply state the following.

Theorem 1.3. — If Φ is a C2 expanding circle map, Φ# has a Gâteaux

derivative at its unique invariant absolutely continuous measure ρλ, whose
adjoint operator in L2

0(ρλ) is u 7→ Φ′ u ◦ Φ.

In particular this derivative is a multiple of the Perron-Fronenius op-
erator (on L2

0(ρλ)) only when Φ′ is constant, that is when Φ is a model
map. Using general results in the spectral theory of transfert operator,
it is however possible to prove that 1 is always an eigenvalue of infinite
multiplicity, with continuous eigenfunctions.

1.3. Nearly invariant measures. — The spectral study of Dλ(Φ#)
gives us large families of nearly invariant measures, with Lipschitz para-
metrization.
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Theorem 1.4. — For all integer n, there is a bi-Lipschitz embedding

F : Bn → P(S1) mapping 0 to the absolutely continuous invariant mea-

sure ρλ of Φ such that for all a ∈ Bn,

W
(

Φ#(F (a)), F (a)
)

= o(|a|).
As a consequence, for all ε > 0 and all integer K there is a radius r > 0
such that for all k 6 K and all a ∈ Bn(0, r) the following holds:

W
(

Φk
d#(F (a)), F (a)

)

6 ε|a|.
Here Bn denotes the unit Euclidean ball centered at 0 and W is the

quadratic Wasserstein distance (whose definition is recalled below).
It is easy to construct invariant measures near the absolutely contin-

uous one, for example supported on a union of periodic orbits. One can
also consider convex sums (1− a)ρλ+ aµ where µ is any invariant mea-
sure and a ≪ 1. But note that the curves a 7→ (1− a)ρλ + aµ need not
be rectifiable, let alone Lipschitz. Bernoulli measures are also examples;
they are singular, atomless, fully supported invariant measures of Φd that
can be arbitrary close to λ.

The nearly invariant measures above seem of a different nature, and
a natural question is how regular they are. They are given by push-
forwards of the uniform measure by continuous functions; for example in
the model case a one parameter family is given by

(

Id + t
∞
∑

ℓ=0

d−ℓ cos(2πdℓ·)
)

#
λ

where t ∈ [0, ε). This makes it easy to prove that almost all of them are
atomless.

Proposition 1.5. — If µ is an atomless measure and v ∈ L2(µ), for
all but a countable number of values of t ∈ [0, 1], the measure µ + tv =
(Id + tv)#µ has no atom.

In particular, with the notation of Theorem 1.4, for almost all a the

measure F (a) has no atom.

This leaves open the following, antagonist questions.

Question 1. — Is the measure F (a) absolutely continuous for most, or

at least some a 6= 0?

Question 2. — Is the measure F (a) invariant for most, or at least some

a 6= 0?
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The next natural questions, not adressed at all here, concerns the
dynamical properties of the action on measures of higher dimensional
hyperbolic dynamical systems like Anosov maps or flows, or of discon-
tinuous systems like interval exchange maps.

1.4. Recalls and notations. — The most convenient point of view
here is to construct the circle as the quotient R/Z. We shall often and
without notice write a real number x ∈ [0, 1) to mean its image by the
canonical projection. We proceed similarly for intervals of length less
than 1.

Recall that the push-forward of a measure is defined by Φ#µ(A) =
µ(Φ−1A) for all Borelian set A.

For a detailled introduction on optimal transport, the interested reader
can for example consult [Vil03]. Let us give an overview of the properties
we shall need. Given an exponent p ∈ [1,∞), if (X, d) is a general metric
space, assumed to be polish (complete separable) to avoid mesurability
issues and endowed with its Borel σ-algebra, its Lp Wasserstein space

is the set Wp(X) of probability measures µ on X whose p-th moment is
finite:

∫

dp(x0, x)µ(dx) <∞ for some, hence all x0 ∈ X

endowed with the following metric: given µ, ν ∈ Wp(X) one sets

Wp(µ, ν) =

(

inf
Π

∫

X×X

dp(x, y) Π(dxdy)

)1/p

where the infimum is over all probability measures Π on X × X that
projects to µ on the first factor and to ν on the second one. Such a mea-
sure is called a transport plan between µ and ν, and is said to be optimal
when it achieves the infimum. In this setting, an optimal transport plan
always exist. Note that when X is compact, the set Wp(X) is equal to
the set P(X) of all probability measures on X .

The name “transport plan” is suggestive: it is a way to describe what
amount of mass is transported from one region to another.

The function Wp is a metric, called the (Lp) Wasserstein metric, and
when X is compact it induces the weak topology. We sometimes denote

W2 simply by W.
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2. Metric mean dimension

Metric mean dimension is a metric invariant of dynamical systems
introduced by Lindenstrauss and Weiss [LW00], that refines topological
entropy for infinite-entropy systems.

Let us briefly recall the definitions. Given a map f : X → X acting
on a metric space, for any n ∈ N one defines a new metric on X by

dn(x, y) := max{d(fk(x), fk(y)); 0 6 k 6 n}.

Given ε > 0, one says that a subset S ofX is (n, ε)-separated if dn(x, y) >
ε whenever x 6= y ∈ S. Denoting by N(f, ε, n) the maximal size of a
(n, ε)-separated set, the topological entropy of f is defined as

h(f) := lim
ε→0

lim sup
n→+∞

logN(f, ε, n)

n
.

Note that this limit exists since lim supn→+∞
1
n
logN(f, ε, n) is nonin-

creasing in ε. The adjective “topological” is relevant since h(f) does not
depend upon the distance on X , but only on the topology it defines. The
topological entropy is in some sense a global measure of the dependance
on initial condition of the considered dynamical system. The map Φd is
a classical example, whose topological entropy is log d.

Now, the metric mean dimension is

mdimM(f, d) := lim inf
ε→0

lim sup
n→+∞

logN(f, ε, n)

n| log ε| .

It is zero as soon as topological entropy is finite. Note that this quantity
does depend upon the metric; here we shall use Wp. Lindenstrauss and
Weiss define the metric mean dimension using covering sets rather than
separated sets, but this does not matter since their sizes are comparable.

Let us prove Theorem 1.1: the metric mean dimension of Φd# is at
least p(d − 1) when P(S1) is endowed with the Wp metric. In another
paper [Klo10], we prove the same kind of result, replacing Φd by any
map having positive entropy. However Theorem 1.1 has a better constant
and its proof is simpler.

Proof of Theorem 1.1. — To construct a large (n, ε)-separated set, we
proceed as follows: we start with the point δ0, and choose a ε-separated
set of its inverse images. Then we inductively choose ε-separated sets of
inverse images of each elements of the set previously defined. Doing this,
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we need not control the distance between inverse images of two different
elements.

Let k ≫ 1 and α > 0 be integers; ε will be exponential in −k. Let Ak

be the set all µ ∈ P(S1) such that µ((1− 2−k, 1)) = 0 and µ([0, 1/d]) >
1/2. These conditions are designed to bound from below the distances
between the antecedents to be constructed: a given amount of mass
(second condition) will have to travel a given distance (first condition).

An element µ ∈ Ak decomposes as µ = µh + µt where µh is supported
on [0, 1− d2−k] and µt is supported on (1− d2−k, 1− 2−k). Let e1, . . . , ed
be the right inverses to Φ defined onto [0, 1/d), [1/d, 2/d), . . . [(d−1)/d, 1)
respectively. For all integer tuples ℓ = (ℓ1, . . . , ℓd) such that ℓ1 > 2αk−1

and
∑

ℓi = 2αk, define

µℓ = e1#(ℓ12
−αkµh + µt) +

∑

i>1

ei#(ℓi2
−αkµh)

(see figure 1 that illustrates the case d = 2). It is a probability measure
on S

1, lies in Ak and Φd#(µℓ) = µ. Moreover, if ℓ′ 6= ℓ then any transport
plan from µℓ to µℓ′ has to move a mass at least 2−αk−1 by a distance at
least 2−kd−1. Therefore,

Wp(µℓ, µℓ′) > d−12−k(α/p+1)−1/p.

2−k

µh µt

µℓ (large ℓ)

µℓ (minimal ℓ)

Figure 1. Construction of separated antecedents of a given measure.
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Let ε = d−12−k(α/p+1)−1/p and define Sn inductively as follows. First,
S0 = {δ0}. Given Sn ⊂ Ak, Sn+1 is the set of all µℓ constructed above,
where µ runs through Sn.

By construction, Sn+1 has at least C2
αk(d−1) times has many elements

as Sn, for some constant C depending only on d. Then Sn has at least
Cn2nαk(d−1) elements. Let µ, ν be two distinct elements of Sn and m be
the greatest index such that Φm

d#µ 6= Φm
d#ν. Since Φn

d#µ = δ0 = Φn
d#ν, m

exists and is at most n−1. The measures µ′ = Φm
d#µ and ν ′ = Φm

d#ν both
lie in Sn−m and have the same image. Therefore, they are ε-separated.
This shows that Sn is (n, ε)-separated.

It follows that

logN(Φd#, ε, n)

n| log ε| >
C

| log ε| +
α(d− 1)

α
p
+ 1

(

−1
p
− log d

log 2

| log ε| + 1

)

>
α(d− 1)

α
p
+ 1

(1 + o(1)) + o(1).

In the case of a general ε, we get the same bound on logN up to an
additive term nα(d− 1) log 2, so that

mdimM(Φd#,Wp) >
α(d− 1)

α
p
+ 1

.

By taking α→ ∞ we get mdimM(Φd#,Wp) > p(d− 1).

3. The first-order differential structure on measures

In this section we give a short account on the work of Gigli [Gig09a]
in the particular case of the circle. Note that considering the Wasserstein
space of a Riemannian manifold as an infinite-dimensionnal Riemannian
manifold dates back to the work of Otto [Ott01]. However, in many
ways it stayed a formal view until the work of Gigli.

3.1. Why bother with this setting?— Before getting started, let us
explain why we do not simply use the natural affine structure on P(S1),
the tangent space at a point simply consisting on signed measures having
zero total mass. Similarly, one could consider simpler to just take the
smooth functions of S1 as coordinates to define a smooth structure on
P(S1).
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The first argument against these points of vue is that optimal trans-
portation is about pushing mass, not (directly) about recording the vari-
ation of density at each point.

More important, these simple ideas would lead a path of the form
γt = tδx + (1 − t)δy to be smooth. However, the Wasserstein distance

between γt and γs has the order of
√

|t− s|, so that γt is not rectifiable
(it has infinite length)! This also holds, for example, for convex sums of
measures with different supports.

One could argue that the previous paths can be made Lipschitz by
using W1 instead of W2, so let us give another argument: in the affine
structure, the Lebesgue measure does not have a tangent space but only
a tangent cone since λ+ tµ is not a positive measure for all small t unless
µ ≪ λ. If one wants to consider singular measures in the same setting
than regular ones, the W2 setting seems to be the right tool.

Note that it will appear that the differential structure on P(S1) de-
pends not only on the differential structure of the circle, but also on
its metric. This should not be considered surprising: in finite dimen-
sion, the fact that the differential structures are defined independently
of any reference to a metric comes from the equivalence of norms in
Euclidean space: here, in infinite dimension, even the simple formula

W(f(µ+ tv), f(µ) + tDxf(v)) = o(t) involves a metric in a crucial way.
One could also be surprised that this differential structure involving the

metric of the circle could be preserved by expanding maps of non-constant
derivative. This point shall be cleared in Section 5, see Proposition 5.2
and the discussion before it.

3.2. The exponential map. — Note that as is customary in these
topics, by a geodesic we mean a non-constant globally minimizing geodesic
segment or line, parametrized proportionaly to arc length.

Given µ ∈ P(S1), there are several equivalent ways to define its tan-
gent space Tµ. In fact, Tµ has a vectorial structure only when µ is atom-
less; otherwise it is only a tangent cone. Note that the atomless condition
has to be replaced by a more intricate one in higher dimension.

The most Riemannian way to construct Tµ is to use the exponential
map. Let P(TS1)µ be the set of probability measures on the tangent
bundle TS1 that are mapped to µ by the canonical projection.
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Given ξ, ζ ∈ P(TS1)µ, one defines

Wµ(ξ, ζ) =

(

inf
Π

∫

TS1×TS1

d2(x, y) Π(dxdy)

)1/2

where d is any metric whose restriction to the fibers is the riemannian
distance (here the fibers are isometric to R), and the infimum is over
transport plans Π that are mapped to the identity (Id, Id)#µ by the
canonical projection on S1 × S1. This means that we allow only to move
the mass along the fibers. Equivalently, one can desintegrate ξ and ζ
along µ, writing ξ =

∫

ξx µ(dx) and ζ =
∫

ζx µ(dx), with (ξx)x∈S1 and
(ζx)x∈S1 two families of probability measures on TxS

1 ≃ R uniquely de-
fined up to sets of measure zero. Then one gets

W
2
µ(ξ, ζ) =

∫

S1

W
2(ξx, ζx)µ(dx)

where one integrates the squared Wasserstein metric defined with respect
to the Riemannian metric, that is | · |.

There is a natural cone structure on P(TS1)µ, extending the scalar
multiplication on the tangent bundle: letting Dr be the dilation of ratio
r along fibers, acting on TS1, one defines r · ξ := (Dr)#ξ.

The exponential map exp : TS1 → S1 now gives a map

exp# : P(TS1)µ → P(S1).

The point is that not for all ξ ∈ P(TS1)µ, is there a ε > 0 such that
t 7→ exp#(t·ξ) defines a geodesic of P(S1) on [0, ε). Consider for example
µ = λ, and ξ be defined by ξx ≡ 1. Then exp#(t · ξ) = λ for all t: one
rotates all the mass while letting it in place would be more efficient.

The first definition is that Tµ is the closure in P(TS1)µ of the subset
of all ξ such that exp#(t · ξ) defines a geodesic for small enough t.

3.3. Another definition of the tangent space. — Let us now give
another definition, assuming µ is atomless. We denote by | · |L2(µ) the
norm defined by the measure µ, and by | · |2 the usual L2 norm defined
by the Lebesgue measure λ.

Given a smooth function f : S1 → R, its gradient ∇f : S1 → TS1 can
be used to push µ to an element ξf = (∇f)#µ of P(TS1)µ. This element
has the property that exp#(t · ξ) = (Id + tξf)#µ defines a geodesic for
small enough t, with a time bound depending on ∇f and not on µ. More
precisely, the geodesicness holds as soon as no mass is moved a distance
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more than 1/2, and no element of mass crosses another one, and these
conditions translate to t(∇f)′(x) > −1 for all x. This is a particular case
of Kantorovich duality, see for example [Vil09], especially figure 5.2.

Now, let L2
0(µ) be the set of all vector fields v ∈ L2(µ) that are L2(µ)-

approximable by gradient of smooth functions. Then the image of the
map v 7→ (Id, v)#µ defined on L2

0(µ) with value in P(TS1)µ is precisely
Tµ. In particular, this means that as soon as µ is atomless, the disin-
tegration (ξx)x of an element of Tµ writes ξx = δv(x) for some function
v and µ-almost all x. Moreover, v is L2(µ)-approximable by gradient of
smooth functions; note that amoung smooth vector fields, gradients are
characterized by

∫

∇fλ = 0. We shall freely identify the tangent space
with L2

0(µ) whenever µ has no atom.
In the important case when µ = ρλ for some continuous density ρ, a

vector field v ∈ L2(µ) is approximable by gradient of smooth functions if
and only if

∫

vλ = 0. We get that in this case, Tµ can be identified with
the set of functions v : S1 → R that are square-integrable with respect to
µ and of mean zero with respect to λ. When µ is the uniform measure, we
write L2

0 instead of L2
0(λ). Note that if v ∈ L2(µ) has neither its negative

part nor its positive part λ-integrable, then it can be approximated in
L2(µ) norm by gradient of smooth functions, and that if µ has not full
support, then L2

0(µ) = L2(µ).
For simplicity, given v ≃ ξ ∈ L2

0(µ) ≃ Tµ we shall denote exp#(t · ξ)
by µ+ tv. In other words, µ+ tv = (Id + tv)#µ.

This point of view is convenient, in particular because the distance
between exponential curves issued from µ can be estimated easily:

W(µ+ tv, µ+ tw) ∼
t→0

t|v − w|L2(µ).

Note that when v is differentiable, then by geodesicness for t small enough
we have

W(µ, µ+ tv) = t|v|L2(µ)

and not only an equivalent. This will prove useful in the next subsection
where several measures and vector fields will be involved.

3.4. Two properties. — We shall prove that the exponential map can
be used to construct bi-Lipschitz embeddings of small, finite-dimensional
balls into P(S1), then we shall study how the density of an absolutely
continuous measure evolves when pushed by a small vector field.

The following natural result shall be used in the proof of Theorem 1.4.
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Proposition 3.1. — Given µ ∈ P(S1) and (v1, . . . , vn) continuous,

linearly independent vector fields in L2
0(µ), there is an η > 0 such that

the map Bn(0, η) → P(S1) defined by E(a) = µ+
∑

aivi is bi-Lipschitz.

The difficulty is only technical: we already know that E is bi-Lipschitz
along rays and we need some uniformity in the distance estimates to prove
the global bi-Lipschitzness. The continuity hypothesis is not satisfactory
but is all we need in the sequel.

Note that we did not assume that µ has no atom; when it has, L2
0(µ)

(still defined as the closure in L2(µ) of gradients of smooth functions) is
not the tangent cone TµP(S1) but only a part of it. Note that if v is a
C1 vector field of vanishing λ-mean, (µ + tv)t still defines a geodesic as
long as tv′ > −1.

Proof. — Let a, b ∈ Bn. The plan (Id+
∑

aivi, Id+
∑

bivi)#λ transports
E(a) to E(b) at a cost

∣

∣

∣

∑

(ai − bi)vi

∣

∣

∣

2

2
6

(

∑

|vi|22
)

|a− b|2

so that E is Lipschitz.
Up to a linear change of coordinates, we assume that the vi form an

orthonormal family of L2
0(µ). To bound the distance between E(a) and

E(b) from below, we shall design a vector field ṽ such that pushing E(a)
by ṽ gives a measure close to E(b).

Choose ε > 0 such that for all i we have

|x− y| 6 ε ⇒ |vi(x)− vi(y)| 6
1

4
√
n
.

Assume moreover ε < 1/8.
Let wi be gradient of smooth functions such that |vi − wi|∞ 6 ε. Let

η > 0 be small enough to ensure 2
√
nη 6 1 and w′

i > −(4nη)−1 fo all i.
Fix a, b ∈ Bn(0, η) and introduce two maps defined by ψ(y) = y +

∑

aivi(y) and ψ̃(y) = y +
∑

aiwi(y). Note that ψ̃′ > 1/2 so that ψ̃ is a

diffeomorphism and ψ̃−1 is 2-Lipschitz. Let ṽ =
∑

(bi − ai)vi ◦ ψ̃−1.
On the first hand, given any y ∈ S1, we have

|ψ̃(y)− ψ(y)| 6 |a|
(

∑

(wi(y)− vi(y))
2
)1/2

6 |a|
√
nε

so that

|y − ψ̃−1ψ(y)| 6 2
√
n|a|ε 6 ε
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and
∣

∣

∣
vi(ψ̃

−1ψ(y))− vi(y)
∣

∣

∣
6

1

4
√
n
.

It follows that
∣

∣

∣

∑

(bi − ai)(vi(ψ̃
−1ψ(y))− vi(y))

∣

∣

∣
6

1

4
|b− a|,

and therefore

(1)
∣

∣

∣
ṽ ◦ ψ −

∑

(bi − ai)vi

∣

∣

∣

L2(ν)
6

1

4
|b− a|

where ν could be any probability measure. We shall take ν = µ+
∑

aivi.
Similarly,

|ṽ|L2(ν) =

(
∫

ṽ2(x) (ψ#µ)(dx)

)1/2

=

(
∫

ṽ2(ψx)µ(dx)

)1/2

=
∣

∣

∣

∑

(bi − ai)viψ̃
−1ψ

∣

∣

∣

L2(µ)

>
3

4

∣

∣

∣

∑

(bi − ai)vi

∣

∣

∣

L2(µ)

|ṽ|L2(ν) >
3

4
|b− a|.(2)

On the other hand, we have

W
(

µ+
∑

aivi, µ+
∑

bivi

)

> W(ν, ν + ṽ)−W
(

ν + ṽ, µ+
∑

bivi

)

.

Let w̃ =
∑

(bi−ai)wi◦ψ̃−1. We have |ṽ−w̃|∞ 6 ε|b−a|. In particular,
|w̃|L2(ν) >

5
8
|b− a|. The choice of η ensures that w̃′ > −1, so that

W(ν, ν + w̃) = |w̃|L2(ν) >
5

8
|b− a|.

Since W(ν + ṽ, ν + w̃) 6 |ṽ − w̃|∞ we get

(3) W(ν, ν + ṽ) >
1

2
|b− a|.

Finally, since ν + ṽ = (ψ + ṽψ)#µ, (1) shows that

W
(

ν + ṽ, µ+
∑

bivi

)

6
1

4
|b− a|
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so that

W
(

µ+
∑

aivi, µ+
∑

bivi

)

>
1

4
|b− a|.

Proposition 3.2. — Let ρ be a C1 density and v : S1 → R be a C1

vector field. Then for t ∈ R small enough ρλ+tv is absolutely continuous

and its density ρt is continuous and satisfy

ρt(x) = ρ(x)− t(ρv)′(x) + o(t)

where the remainder term is independent of x.

Proof. — Let t be small enough so that Id+tv is a diffeomorphism. Then
for all integrable function f , one has

∫

f(x)(ρλ+ tv)(dx) =

∫

f(x)(Id + tv)#(ρλ)(dx)

=

∫

f(x+ tv(x))ρ(x)dx

=

∫

f(y)

(

ρ

1 + tv′

)

◦ (Id + tv)−1(y)dy

by a change of variable. It follows that

ρt =
ρ

1 + tv′
◦ (Id + tv)−1

= (ρ(1− tv′)) ◦ (Id− tv) + o(t)

= ρ− t(ρ′v + v′ρ) + o(t)

where the o(t) term depends upon ρ and v but is uniform in x.

Note that the o(t) depends in particular on the moduli of continuity of
v′ and ρ′ and need not be an O(t2) unless v and ρ are C2.

4. First-order dynamics in the model case

In this section we show that Φd# is (weakly) differentiable at the point
λ. Its derivative is an explicit, simple endomorphism of a Hilbert space,
and we shall give a brief study of its spectrum.

Theorem 4.1. — Let Ld : L
2
0 → L2

0 be the linear operator defined by

Ldv(x) = v(x/d) + v((x+ 1)/d) + · · ·+ v((x+ d− 1)/d).
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Then Ld is the derivative of Φd# at λ in the following sense: for all

v ∈ L2
0 ≃ Tλ, one has

W(Φd#(λ+ tv), λ+ tLd(v)) = o(t).

First, we recognize in Ld a multiple of the Perron-Frobenius operator
of Φd, that is the adjoint of the map u 7→ u ◦ Φ, acting on the space
L2
0. Second, we only get a Gâteaux derivative, when one would prefer a

Fréchet one, that is a formula of the kind

W(Φd#(λ+ v), λ+ Ld(v)) = o(|v|).
However, we shall see that such a uniform bound does not hold. How-
ever, one easily gets uniform remainder terms in restriction to any finite-
dimensional subspace of L2

0.

4.1. Differentiability of Φd#. — The main point to prove in the
above theorem is the following estimate.

Lemma 4.2. — Given a density ρ, vector fields v1, . . . , vn ∈ L2(ρλ) and
positive numbers α1, . . . , αn adding up to 1, one has

W

(

ρλ+ t
∑

i

αivi ,
∑

i

αi(ρλ+ tvi)

)

= o(t).

We could deduce this result from Proposition 3.2 but for the sake of
diversity let us give a different proof, which is almost contained in Figure
2.

Proof. — We prove the case n = 2 since the general case can then be
deduced by a straightforward induction. Let ε be any positive number.
Let ρ̄, v̄1 and v̄2 be a piecewise constant density and two piecewise con-
stant vector fields that approximate ρ in L1 norm and v1 and v2 in L2

norm: |ρ− ρ̄|1 6 ε2 and |vi − v̄i|L2(ρλ) 6 ε.
The measure ((Id+vi)×(Id+v̄i))#ρλ is a transport plan from ρλ+vi to

ρλ+v̄i, whose cost is |vi−v̄i|2L2(ρλ). This shows that W(ρλ+vi, ρλ+v̄i) 6 ε.

A transport plan Π from ρλ to ρ̄λ that lets the common mass in place
and transports the rest in any way moves a mass 1

2
|ρ− ρ̄|1 by a distance

at most 1
2
, thus W(ρλ, ρ̄λ) 6 2−3/2ε. Now

(

Id + v̄i, Id + v̄i
)

#
Π is a

transport plan from ρλ + v̄i to ρ̄λ + v̄i with the same cost as Π, so that

W(ρλ + v̄i, ρ̄λ+ v̄i) 6 2−3/2ε. It follows that

W
(

∑

αi(ρλ + tvi),
∑

αi(ρ̄λ+ tv̄i)
)

6 Cεt
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for a constant C = 2−3/2 + 1, and similarly

W
(

ρλ+
∑

αitvi, ρ̄λ+
∑

αitv̄i

)

6 Cεt.

We can moreover assume that ρ̄ and v̄i are constant on each interval
of the form [i/k, (i + 1)/k) for some fixed k (depending upon ρ, v1, v2
and ε).

To see what happens on such an interval I, temporarily denoting by
ρ, v1 and v2 the values taken by the functions ρ̄ and v̄i on I, let us
construct for t small enough an economic transport plan from (Id +
t(α1v1 + α2v2))#ρλ|I to α1(Id + tv1)#ρλ|I + α2(Id + tv2)#ρλ|I . If the
intervals (Id + tv1)(I) and (Id + tv2)(I) meet, one can simply let the
common mass in place and move at each side a mass α1α2ρ|v1−v2|t by a
distance at most |v1 − v2|t (see figure 2; this is not optimal but sufficient
for our purpose). This transport plan has a cost t3α1α2ρ|v1 − v2|3 <
t3ρ|v1 − v2|3.

(Id + t(α1v1 + α2v2))#λ|I

λ|I

tv1

tv2

t(α1v1 + α2v2)

t|v1 − v2|

α1(Id + tv1)#λ|I + α2(Id + tv2)#λ|I

Figure 2. The cost of this transport plan has the order of
magnitude t3

If the intervals (Id+ tv1)(I) and (Id+ tv2)(I) do not meet, then t|v1−
v2| > 1/k and simple translations give a transport plan with cost at most

α1ρ/kt
2|v1 − v2|2 + α2ρ/kt

2|v1 − v2|2 6 ρt3|v1 − v2|3.
By adding one such plan for each interval [i/k, (i + 1)/k), we get a

transport plan from (Id+t(α1v̄1+α2v̄2))#ρ̄λ to α1(Id+tv̄1)#ρ̄λ+α2(Id+
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tv̄2)#ρ̄λ whose cost is at most k|v̄1 − v̄2|3L3(ρ̄λ)t
3. Note that even if the vi

are only L2, v̄i are bounded and therefore in L3(ρ̄λ). Now we have

W (ρ̄λ+ t(α1v̄1 + α2v̄2), α1(ρ̄λ+ tv̄1) + α2(ρ̄λ+ tv̄2)) 6 k1/2|v̄1−v̄2|3/2L3(ρ̄λ)t
3

2

so that, for t small enough,

W (ρ̄λ+ t(α1v̄1 + α2v̄2), α1(ρ̄λ+ tv̄1) + α2(ρ̄λ+ tv̄2)) 6 εt

By triangular inequality, it follows that

W (ρλ+ t(α1v1 + α2v2), α1(ρλ+ tv1) + α2(ρλ + tv2)) 6 C ′εt

for a constant C ′ = 2−1/2 + 3.

Proof of Theorem 4.1. — Remark that

Φd#(λ+ tv) =
1

d

(

λ+ dt v(·/d)
)

+
1

d

(

λ+ dt v((·+ 1)/d)
)

+ · · ·+ 1

d

(

λ + dt v((·+ d− 1)/d)
)

and apply the preceding lemma.

Let us prove that we cannot hope for the Fréchet differentiability of
Φd#. We only treat the case d = 2 for simplicity.

Proposition 4.3. — For all positive ε, there is a vector field v ∈ L2
0

that satisfies the following:

1. |v|2 6 ε,
2. L2v = 0 so that λ+ L2v = λ, and
3. W (Φ2#(λ+ v), λ) > cε

for some constant c independent of ε and v.

Proof. — Let k be a positive integer, to be precised later on. Let v be the
piecewise affine map defined as follows (see figure 3): v(x) = 1/(4k)− y
when x = i/(2k) + y with y ∈ [0, 1/(2k)) and 0 6 i < k an integer,
and v(x) = −1/(4k) + y when x = i/(2k) + y with y ∈ [0, 1/(2k)) and

k 6 i < 2k. We have |v|22 = (4k)−2/3 so that taking k >
√
3
4
ε−1 ensures

point 1. Moreover, 2 is straightforward, and we have left to prove that k
chosen with the order of ε−1 gives 3.

On any small enough interval I, if w is an affine function of slope −1
with a zero at the center of I, then λ|I +w is a Dirac mass at the center
of I (each element of mass is moved to the center). If w has slope 1, then
the mass moves in the other direction, and λ|I + w is uniform of density
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1/2 on the interval I ′ having the same center than I and twice as long.
By combining these two observations, one deduces that

µ := Φ2#(λ+ v) = 1/2λ+
k
∑

i=1

1

2k
δ i−1/2

k

.

Figure 3. The case k = 4. Up: the graph of v; middle: λ+ v;
down: Φ#(λ+ v).

Each interval of the form Ii = [(i− 5/8)/k, (i− 3/8)/k) is given by λ
a mass 1/(4k). The discrete part of µ consists in a Dirac mass of weight
1/(2k) at the center of each Ii. Any transport plan from µ to λ must
therefore move a mass at least 1/(4k) from each of these Dirac masses to
the outside of Ii, so that a total mass at least 1/4 has to move a distance
at least 1/(8k). From this it follows that W(λ, µ) > 1/(16k). When k is
chosen with the order of ε−1, this distance has at least the order of ε, as
required.

4.2. Spectral study of Ld. — Let us compute the spectrum of Ld =
Dλ(Φd#). The following proposition is very elementary and not new, but
we produce a proof for the sake of completeness.

Proposition 4.4. — A number α is an eigenvalue of Ld if and only if

|α| < d. Moreover, each eigenvalue has an infinite-dimensional eigen-

space. Last, the spectrum of Ld is the closed disc of radius 2.

The proof of Proposition 4.4 consist simply in using Fourier series
to show that (up to a multiplicative constant) Ld is conjugated to a
countable product of the shift on ℓ2(N).
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Proof. — Let ck denote the function x 7→ cos(2πkx) defined on the circle,
and sk : x 7→ sin(2πkx). Then it is readily checked that Ld ck = Ld sk =
0 when d does not divide k, and Ld ck = dck/d, Ld sk = dsk/d when d|k.

Let σ be the shift of the Hilbert space ℓ2 = ℓ2(N) of N-indexed square
integrable sequences: if x = (x0, x1, x2, . . .) then σx = (x1, x2, x3, . . .).
Let σN be the direct product of σ, acting diagonaly on the space (ℓ2)(N)

of sequences X = (x0, x1, x2, . . .) such that xi ∈ ℓ2 and
∑

|xi|22 < ∞.
Then the map Ψ : (ℓ2)(N) → L2

0 defined by

Ψ(X) =
∑

i,j∈N
x
2(d−1)i
j c(di+1)dj + x

2(d−1)i+1
j c(di+2)dj

+ · · ·+ x
2(d−1)i+d−2
j c(di+d−1)dj

+ x
2(d−1)i+d−1
j s(di+1)dj + x

2(d−1)i+d
j s(di+2)dj

+ · · ·+ x
2(d−1)i+2d−3
j s(di+d−1)dj

is an isomorphism (and even an isometry) that intertwins σN and 1
d
Ld.

The spectral study of Ld therefore reduces to that of σ.
A non-zero eigenvector of σ, associated to an eigenvalue α, must have

the form (x, αx, α2x, . . .) with x 6= 0. Such a sequence is square integrable
if and only if |α| < 1. Moreover the operator norm of σ is 1, so that its
complex spectrum is a subset of the closed unit disc. Since the spectrum
is closed, and contains the set of eigenvalues, it is equal to the closed unit
disc.

4.3. Discussion of the non-Fréchet differentiability. — The coun-
ter-example to the Fréchet differentiability of Φ# at λ has high total vari-
ation, and it is likely that using a norm that controls variations (e.g. a
Sobolev norm) on (a subspace of) Tλ shall provide a uniform error bound.

Moreover, up to multiplication by d the derivative Ld is the Perron-
Frobenius operator of Φd, and such operators have far more subtle spec-
tral properties when defined over Sobolev spaces.

For these two reasons, it seems that one could search for a modification
of optimal transport that would give a manifold structure to P(S1), in
such a way that Tλ identifies with a Sobolev space. A way to achieve
this could be to penalize not only the distance by which a transport plan
moves mass, but also the distorsion, that is the variation of the pairwise
distances of the elements of mass. This should impose more regularity
to optimal transport plans.
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5. First-order dynamics for general expanding maps

In this section, we consider a general map Φ : S1 → S1, assumed to be
C2 and expanding, i.e. |Φ′| > 1. Such a map is a self-covering, and has a
unique absolutely continuous invariant measure (see e.g. [KH95]) which
has a positive and C1 density [Krz77], denoted by ρ. The measure itself
is denoted by ρλ. Note that as sets, L2(ρλ) = L2, although they differ
as Hilbert spaces. All integrals where the variable is implicit are with
respect to the Lebesgue measure λ.

The result is as follows.

Theorem 5.1. — The map Φ# has a Gâteaux derivative L : L2
0(ρλ) →

L2
0(ρλ) at ρλ, given by

L v(x) =
∑

y∈Φ−1(x)

ρ(y)

ρ(x)
v(y)−

∫

vΦ′ ρ
ρ◦Φ

ρ(x)
∫

1/ρ

Moreover the adjoint operator of L in L2
0(ρλ) is given by

L
∗u = Φ′ u ◦ Φ.

5.1. Proof of Theorem 5.1. — First, as in the case of Φd#, Lemma
4.2 shows that for v ∈ L2

0(ρλ),

(4) d
(

Φ#(ρλ+ tv), ρλ+ tL̃ v
)

= o(t)

where

L̃ v(x) =
∑

y∈Φ−1(x)

ρ(y)

ρ(x)
v(y)

is the first term in the expression of L . In words, each of the inverse
image of x gives a contribution to the local displacement of mass that is
proportional to v(y) and to ρ(y).

This seems very similar to the case of Φ#, except that L̃ need not
map L2

0(ρλ) to itself! Let us stress, once again, that the condition that
v ∈ L2

0(ρλ) has mean zero is to be understood with respect to the uniform

measure λ, since it translates the metric property of being (close to) the
gradient of a smooth function. This does not prevent Equation (4) to

make sense, but shows that L̃ v cannot be considered as the directional
derivative of Φ# since it does not belong to Tρλ = L2

0(ρλ). In fact, we
shall see that there is another vector field, that lies in L2

0(ρλ) and gives
the same pushed measure (at least at order 1).
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Proposition 5.2. — Given w̃ ∈ L2(ρλ) and assuming that w̃ is C1,

there is a C1 vector field w ∈ L2
0(ρλ) such that W(ρλ+tw̃, ρλ+tw) = o(t).

Moreover, w is given by

w = w̃ +

∫

w̃

ρ
∫

1/ρ
.

Proof. — This is a direct application of Proposition 3.2: we search for a
w such that (ρw)′ = (ρw̃)′, so that the densities ρt and ρ̃t of ρλ+ tw and
ρλ + tw̃ are L∞ and therefore L1 close one to the other. This ensures
that W(ρλ+ tw̃, ρλ+ tw) 6 |ρt − ρ̃t| = o(t).

But there exists exactly one vector field w that is C1, has mean zero,
and such that (ρw)′ = (ρw̃)′: it is given by the claimed formula.

Note that we did not bother to prove the unicity of w: Gigli’s con-
struction shows that the first order perturbation of the measure (with
respect to the L2 Wasserstein metric) characterizes a tangent vector in
Tµ, see Theorem 5.5 in [Gig09a].

Now if one considers the “centering” operator C : L2(ρλ) → L2
0(ρλ)

defined by

C v = v −
∫

v

ρ
∫

1/ρ
,

the derivative of Φ# at ρλ is given by the composition C L̃ . Indeed,
the previous proposition shows this for a C1 argument, but C1 vector
fields are dense in L2

0(ρλ) and the involved operators are continuous in
the L2(ρλ) topology.

To get the expression of L given in Theorem 5.1, one only need a
change of variable: denoting by Φ−1

i (i = 1, 2, . . . , d) the right inverses to
Φ that are onto intervals [a1 = 0, a2), [a2, a3), . . . , [ad, ad+1 = 1) one has

∫

L̃ v =
∑

i

∫

ρ ◦ Φ−1
i

ρ
v ◦ Φ−1

i

=
∑

i

∫ ai+1

ai

ρ

ρ ◦ ΦvΦ
′

=

∫

vΦ′ ρ

ρ ◦ Φ .

The computation of the adjoint is a similar change of variable that we
omit. Note that the adjoint of the extension to L2(ρλ) of L (with the
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same expression) is

u 7→ Φ′ u ◦ Φ− Φ′ ∫ u

ρ ◦ Φ
∫

1/ρ

and the second term vanishes when u is in L2
0(ρλ). The first term is also

the adjoint in L2(ρλ) of L̃ , and this adjoint preserves L2
0(ρλ). In other

words, L is the adjoint in L2
0(ρλ) of the adjoint in L2(ρλ) of L̃ . An

interesting feature of the expression of L ∗ is that it does not involve the
invariant measure.

5.2. Spectral study. — Even if L is not a multiple of the Perron-
Frobenius operator of Φ, its first term L̃ is a weighted transfert operator,
with weight g = ρ

ρ◦Φ . According to Theorem 2.5 in [Bal00], every number

of modulus less than Rg = limn(sup L̃ n1)1/n is an eigenvalue of infinite
multiplicity with continuous eigenfunctions.

Proposition 5.3. — We have Rg > minΦ′ > 1, and in consequence

there is an infinite linearly independent family (vi)i of continuous func-

tions in L2
0(ρλ) such that L vi = vi.

Proof. — Let m = minΦ′: we have m > 1 and, since ρλ is invariant,

ρ(x) =
∑

y∈Φ−1(x)

ρ(y)

Φ′(y)
6

1

m

∑

y∈Φ−1(x)

ρ(y)

It follows that for all positive continuous function f ,

L̃ f =
∑

y∈Φ−1(x)

ρ(y)

ρ(x)
f(y) > m| inf f |;

in particular, Rg > m > 1 and there is a linearly independent infinite

family u0, u1, . . . , ui . . . of continuous 1-eigenfunctions of L̃ . If not all ui
have mean 0 (with respect to Lebesgue’s measure λ), assume the mean
of u0 is not zero and let vi = ui − αiu0 where αi is chosen such that
∫

viλ = 0. Otherwise, simply put vi = ui.

Now, since L̃ vi = vi and vi has mean zero, we get L vi = L̃ vi =
vi.

In the same way, we see that all numbers less than m > 1 are eigen-
values of L (with infinite multiplicity and continuous eigenfunctions).
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6. Nearly invariant measures

In this section we prove Theorem 1.4 and Proposition 1.5.

6.1. Construction. — Fix some positive integer n and let v1, . . . , vn
be continuous, linearly independent eigenfunctions for L = Dρλ(Φ#).

For all a = (a1, . . . , an) ∈ Bn(0, η), define E(a) = ρλ+
∑

i aivi ∈ P(S1)
and using Proposition 3.1, choose η small enough to ensure that E is bi-
Lipschitz. Then define F (a) = E(ηa) on the unit ball Bn.

Proposition 6.1. — We have

W
(

Φ#(F (a)), F (a)
)

= o(|a|)
and, as a consequence, for all ε > 0 and all integer K, there is a radius

r such that for all k 6 K and all a ∈ Bn(0, c) the following holds:

W
(

Φk
d#(F (a)), F (a)

)

6 ε|a|.

Proof. — Since we have restricted ourselves to a finite-dimensional space,
we have W

(

Φ#(ρλ + η
∑

aivi), ρλ + η
∑

aiL (vi)
)

= o(|a|) and, since

L (vi) = vi, we get W
(

Φ#(F (a)), F (a)
)

= o(|a|).
The second inequality follows easily. The map Φ# is L-Lipschitz for

some L > 1 (L = d in the model case, L > d otherwise). For all ε > 0
and for all integer K, let r > 0 be small enough to ensure that

|a| < δ ⇒ W
(

Φ#(F (a)), F (a)
)

6
L− 1

Lk−1 − 1
ε|a|.

Then

W
(

Φk
#(F (a)), F (a)

)

6

k−1
∑

ℓ=1

W
(

Φℓ
#(F (a)),Φ

ℓ−1
# (F (a))

)

6

k−1
∑

ℓ=1

Lℓ−1
W
(

Φd#(F (a)), F (a)
)

6 ε|a|.

This ends the proof of Theorem 1.4. It would be interesting to have
explicit control on r in terms of ε, n and K, and in particular to replace
the o(|a|) by a O(|a|α) for some α > 1. This seems uneasy because, even
in the model case where vi are explicit, we can approximate them by C∞
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vector fields wi with a good control on (−w′
i)

−1 and w′, but only bad
bounds on w′′ (and therefore the modulus of continuity of w′).

6.2. Regularity. — Let us prove that given µ an atomless measure
and v ∈ L2

0(µ) (or, indifferently, v ∈ L2(µ)), for all but countably many
values of the parameter t, the measure µ+ tv has no atom.

Proof of Proposition 1.5. — By a line in TS1 ≃ S1 × R, we mean the
image of a non-horizontal line of R2 by the quotient map (x, y) 7→ (x
mod 1, y). We sometimes refer to a line by an equation of one of its lifts
in R2.

The measure µ + tv has an atom at s if and only if the measure Γ =
(Id, v)#µ defined on TS1 gives a positive mass to the line (x + ty = s).
Since µ has no atom, neither does Γ, and since two lines intersect in a
countable set, the intersection of two lines is Γ-negligible. It follows that
there can be at most n different lines that are given a mass at least 1/n
by Γ. In particular, at most countably many lines are given a positive
mass by Γ, and the result follows.

For a general L2 vector field, we cannot hope for more. The following
folklore example shows a L2

0 function such that λ+ tv is stranger to λ for
almost all t.

Example 6.2. — Let K be a four-corner Cantor set of R2. More pre-
cisely, A,B,C,D are the vertices of a square, SA, SB, SC , SD are the ho-
motheties of coefficient 1/4 centered at these points, and K is the unique
fixed point of the map defined on compact sets M ⊂ R2 by

S (M) = SA(M) ∪ SB(M) ∪ SC(M) ∪ SD(M).

The Cantor set K projects on a well-chosen line to an interval, see figure
4, while in almost all directions it projects to λ-negligible sets, see e.g.
[PSS03] for a proof. Choose the square so that K projects vertically to
[0, 1] (identified to S

1), and for x ∈ [0, 1] define v(x) as the least y such
that (x, y) ∈ K. Then v is L2 and, up to a vertical translation, we can
even assume that v ∈ L2

0. But for almost all t, the measure λ + tv is
concentrated into a negligible set.
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Figure 4. A square Cantor set that projects vertically to a
segment, but projects in almost all directions to negligible sets.
On the right, an approximation of the graph of the function v.
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