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OPTIMAL TRANSPORTATION AND

DYNAMICS OF MAPS ACTING ON

MEASURES, WHITH AN EMPHASIS ON

EXPANDING CIRCLE MAPS

by

Benôıt Kloeckner

Abstract. — Given a map that acts on a compact polish space, one
constructs by push-forward a map that acts on the set of probability
measures of the space, endowed with the weak topology. We use optimal
transportation (mainly with quadratic cost) to study such actions. In
a first part we consider the case of an expanding circle map, and show
that its action on measures is topologically transitive and has infinite
topological entropy. Moreover, we compute its derivative (with respect
to the structure of infinite dimensional manifold on the set of measures
formalized by Gigli) at its unique absolutely continuous invariant mea-
sure. In a second part we generalize one of these results by proving that
if a map has positive topological entropy, then its action on measures
has infinite topological entropy. It is a consequence of a geometric em-
bedding theorem that is interesting by itself: given any metric space X

and any positive integer n, there is a bi-Lipschitz embedding of Xn into
the Wasserstein space of X .

1. Introduction

The theory of optimal transport has drawn much attention in recent
years. Its applications to geometry and PDEs have in particular been
largely disseminated. In this paper, we would like to show its effectiveness
in a dynamical context.

The paper is divided in two parts. In the first one, whose goal is to
show on a concrete example what one can expect from optimal transport
in this context, we are interested in arguably the simplest dynamical
system where the action on measures is significantly different from the
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action on points, namely expanding circle maps. The second part, on the
contrary, gives a very general result on topological entropy.

1.1. Results of the first part. —

1.1.1. An important model example. — Let us first consider the usual
degree 2 self-covering map of the circle S1 = R/Z defined by

Φ(x) = 2x (mod1).

It acts on the set P(S1) of Borel probability measures, endowed with
the topology of weak convergence, by the push-forward map Φ#.

A map like Φ can act by composition on the right on a Hilbertian
function space of the circle (e.g. Sobolev spaces). The adjoint of this
map is usually called a Perron-Frobenius operator (or transfer operator),
and a great deal of effort has been made to understand these opera-
tors, especially their spectral properties (see for example [Bal00]). One
can consider Φ# as an analogue for (possibly singular) measures of the
Perron-Frobenius operator of Φ.

First we study some topological aspects of the dynamics of Φ#.

Theorem 1.1. — The map Φ# : P(S1) → P(S1) is topologicaly tran-
sitive and has infinite topological entropy.

This is restated below as Theorems 2.4 and 3.1; here, following [KH95]
we say that a map is topologically transitive if it has a dense orbit.

Then we study the first-order dynamics of Φ# near the uniform mea-
sure λ.

Theorem 1.2. — The Gâteaux derivative of Φ# at λ exists (in a sense
to be precised) and is twice the Perron-Frobenius operator of Φ acting on
a suitable L2-like function space. Its spectrum is the disc of radius 2.

In particular, Φ# is very far from being hyperbolic. This result is
detailled as Theorem 4.1 and Proposition 4.4 below. We shall also see
that Φ# is not Fréchet differentiable.

Let us explain briefly the role of optimal transport in these results. We
use the quadratic cost, which gives birth to the so-called L2 Wasserstein
metric. Since the circle is compact, it metrizes the weak topology. We
first use it to quantify and control approximations in the proof of topo-
logical transitivity; at this point, optimal transportation is convenient
but far from necessary though. Second, the very definition of topological
entropy needs such a metric. Another, much more specific feature of this
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metric is that it can be used to give some sort of infinite-dimensional
manifold structure to P(S1). We use the point of view developped by
Gigli in [Gig09a]. Lemma 4.2 illustrated by figure 3 is the key tool in
computing the derivative and seems interesting by itself.

Note that one can also rely on absolutely continuous curves to de-
fine the almost everywhere differentiability of maps, see in particular
[Gig09b] where this method is applied to the exponential map. Other
previous uses of variants of this manifold structure include the definition
of gradient flows, as in the pioneering [Ott01] and in [AGS08], and of
curvature, as in [Lot08].

1.1.2. General expanding circle maps. — The first generalization of this
problem is to consider the action on measures of expanding circle maps.
It is easily noticed that the proofs of topological conjugacy and topolog-
ical entropy extends to the higher degree model maps x 7→ d x(mod1).
In fact, we restrict to d = 2 only to simplify notations. Since expanding
circle maps are topologically conjugate to one of these models, Theorem
1.1 extends to all of them without any extra work. Theorem 1.2, how-
ever, implies the differential as well as the metric structure of the circle.
In the last section of the paper, given a general C2 expanding map ϕ,
we compute the derivative of ϕ# at its unique absolutely continuous in-
variant measure (Theorem 5.1). Instead of writting down the expression
here, let us simply state the following.

Theorem 1.3. — If ϕ is a C2 expanding circle map, it has a Gâteaux
derivative at its unique invariant absolutely continuous measure, whose
adjoint operator (in a suitable L2-like function space) is u 7→ ϕ′ u ◦ ϕ.

In particular this derivative is a multiple of the Perron-Frobenius op-
erator only when ϕ′ is constant, that is when ϕ is a model map.

1.1.3. Prospects. — The next natural question, not adressed at all here,
concerns the dynamical properties of the action on meausres of higher
dimensional hyperbolic dynamical systems like Anosov maps or flows, or
of discontinuous systems like interval exchange maps.

Note that it has been proposed to study the dynamics of a map acting
on measures using a different topology than the weak one in [Sli08]. The
proposed topology is that induced by the L∞ Wasserstein metric as in-
troduced in [CDPJ08]. Since this metric dominates the L2 Wasserstein
metric, the topological entropy of Φ# is also infinite in this setting. Since
the L∞ Wasserstein metric is not separable, Φ# has no dense orbit with



4 BENOÎT KLOECKNER

respect to this topology, but the proof of Theorem 2.4 shows that it sat-
isfies the following form of topological transitivity: given any two points,
there is an orbit that passes arbitrarily near both these points. Note
that this is equivalent to topological transitivity for separable metrizable
spaces that are moreover locally compact (see [KH95] Lemma 1.4.2) or
complete (see [Sil92]).

1.2. Results of the second part. — The dynamical goal of the sec-
ond part is to prove the following.

Theorem 1.4. — Assume X is compact and ϕ : X → X is a continu-
ous map with positive topological entropy. Then the action of ϕ# on the
set of probability measures on X, endowed with the weak topology, has
infinite topological entropy.

It shall be very easily deduced from a detailled version (Theorem 5.3)
of the following geometric result, which involves the Lp Wasserstein space
Wp(X) with arbitrary exponent.

Theorem 1.5. — Let X be any metric space, p ∈ [1,∞) and n be
any positive integer. Then there is a bi-Lipschitz embedding of Xn into
Wp(X).

This echoes other embedding or non-embedding theorems into Wasser-
stein spaces. For example, it is a simple matter to prove that as soon
as X contains a complete geodesic, then one can isometrically embed
Euclidean balls of arbitrary radius and dimension into W2(X). Under
the same assumption, it is also possible to construct bi-Lipschitz embed-
dings of Euclidean spaces of arbitrary dimension, see [Klo10]. However,
if X is a globally CAT(−1) space, then it is not possible to embed R2

isometrically in W2(X) [BK10].

1.3. Recalls and notations. — The most convenient point of view
here is to construct the circle as the quotient R/Z. We shall often and
without notice write a real number x ∈ [0, 1) to mean its image by the
canonical projection. We proceed similarly for intervals of length less
than 1. Sometimes, it shall be more convenient to use the fundamental
domain [−1/2, 1/2); we shall make this choice explicitly when needed.

Recall that the push-forward of a measure is defined by Φ#µ(A) =
µ(Φ−1A) for all Borelian set A.
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For a detailled introduction on optimal transport, the interested reader
can for example consult [Vil03]. Let us give an overview of the properties
we shall need. Given an exponent p ∈ [1,∞), if (X, d) is a general metric
space, assumed to be polish (complete separable) to avoid mesurability
issues and endowed with its Borel σ-algebra, its Lp Wasserstein space
is the set Wp(X) of probability measures µ on X whose p-th moment is
finite:

∫

d(x0, x)
p µ(dx) for some, hence all x0 ∈ X

endowed with the following metric: given µ, ν ∈ Wp(X) one sets

d(µ, ν) = dp(µ, ν) =

(

inf
Π

∫

X×X

d(x, y)pΠ(dxdy)

)1/p

where the infimum is over all probability measures Π on X × X that
projects to µ on the first factor and to ν on the second one. Such a mea-
sure is called a transport plan between µ and ν, and is said to be optimal
when it achieves the infimum. In this setting, an optimal transport plan
always exist. Note that when X is compact, the set Wp(X) is equal to
the set P(X) of all probability measures on X .

The name “transport plan” is suggestive: it is a way to describe what
amount of mass is transported from one region to another. We shall often
use this point of view, for example by writing that “Π moves a mass at
least m from A to B” instead of writing that Π(A×B) > m.

The function d is a metric, called the (Lp) Wasserstein metric, and
when X is compact it induces the weak topology. Being defined by
an infimum, it is usually easy to bound from above, which makes it
particularly suitable to prove the topological transitivity. Kantorovich
duality can be used to give lower bounds, but here we shall rely on more
direct methods since we do not need a very high precision.

Note that the above makes sense also for measure having the same
finite mass different than 1. This shall be useful to construct transport
plan by parts.

We shall give some details on the differentiable structure on P(S1) in
Section 4.
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PART I

EXPANDING CIRCLE MAPS

In this first part, we prove Theorems 1.1, 4.1 and 1.3. The emphasis is
on the model map Φ, but the end of the part is devoted to more general
expanding circle maps.

2. Topological transitivity

In the proof of the topological transitivity of Φ#, the fixed point δ0
(the Dirac mass at 0) is used as a reference point. The proof goes roughly
as follows (see figure 1). First, we prove that near every measure lies a
measure mapped to δ0 by some iterate of Φ#. This measure is obtained
by a dyadic discretization. Then we prove that every measure has an
iterated antecedent close to δ0. The last intermediate step is to prove
that if ν is close to δ0 = Φk

#µ, then ν = Φk
#µ

′ for some measure µ′ very

close to µ. Finally, the separability and completeness of P(S1) lead to
the conclusion.

0

Figure 1. To construct a measure close to a given measure
(upper left) and having an iterate close to another (lower right),
one dyadically discretizes the first one (upper right, Lemma
2.1), then replace the Dirac masses with copies of a concen-
trated version of the second one (lower left, zoomed in, Lemmas
2.2 and 2.3).
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Lemma 2.1. — Let µ ∈ P(S1) and ε > 0. There is a measure µ′ and
an integer k such that d(µ, µ′) < ε and Φk

#µ
′ = δ0.

Proof. — Let k be such that 2−k−1 < ε, and let µ′ be the measure sup-
ported on the points i2−k, 0 6 i < 2k and whose mass at point i2−k

is
µ([(i− 1/2)2−k, (i+ 1/2)2−k)).

There is an obvious coupling between µ and µ′, where every bit of mass
is moved by at most 2−k−1. Therefore, d(µ, µ′) < ε. Moreover, since
Φ(i2−k) = 0, we have Φk

#µ
′ = δ0.

Lemma 2.2. — Let µ ∈ P(S1) and ε > 0. There is a measure ν and
an integer k such that d(ν, δ0) < ε and Φk

#ν = µ.

Proof. — Let k be such that 2−k−1 < ε. Denote by Φ−1 the discontinuous
right inverse to Φ defined by Φ−1(x) = x/2 for x ∈ [−1/2, 1/2). Then
ν = Φ−k

# µ is a Φk-antecedent of µ and is supported on [2−k−1, 2−k−1), so
that d(ν, δ0) < ε.

Lemma 2.3. — Let µ ∈ P(S1) such that for some integer k, one has
Φk

#(µ) = δ0. Then for all ν ∈ P(S1), there is a µ′ ∈ P(S1) such that

Φk
#µ

′ = ν and d(µ, µ′) 6 2−kd(δ0, ν).

Proof. — Let ν ′ = Φ−k
# ν as defined above, and let µ′ = µ ∗ ν ′ where ∗

denotes the convolution of measures: µ′(A) =
∫

S1
ν ′(A− x)µ(dx), where

A− x is the translation by −x of the Borelian set A.
From a transport plan Π between measures α and β, it is easy to

construct a transport plan Π′ between µ ∗α and µ ∗ β that has the same
cost: simply take Π′(A× B) =

∫

S1
Π(A− x,B − x)µ(dx).

It follows that d(µ, µ′) 6 d(δ0, ν
′) = 2−kd(δ0, ν). Moreover one has

(Φk
#µ) ∗ (Φk

#α)(A) =

∫

S1

α
(

Φ−k(A− x)
)

Φk
#µ(dx)

=

∫

S1

α
(

Φ−k(A− Φk(x))
)

µ(dx)

=

∫

S1

α
(

Φ−k(A)− x
)

µ(dx)

= Φk
#(µ ∗ α)(A)

so that, in particular, Φk
#(µ

′) = δ0 ∗ ν = ν.
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Theorem 2.4. — The map Φ# acts topologically transitively on P(S1).

Proof. — The space P(S1) is complete and separable since S1 is so (see
e.g. [Vil03]). Therefore, it is sufficient to prove that given any two open
sets U, V ∈ P(S1), there is a positive integer n such that Φn

#(U)∩V 6= ∅

(see [Sil92]).
Choose µ ∈ U and ν ∈ V and let ε > 0 be a number such that

B(µ, ε) ⊂ U .
By Lemma 2.1, there is a measure µ0 and a number k such that

d(µ0, µ) < ε/2 and Φk
#µ0 = δ0. By Lemma 2.2, there is a measure

ν0 and a number l such that d(ν0, δ0) < 2k−1ε and Φl
#ν0 = ν. By Lemma

2.3, there is a measure µ1 = µ0 ∗ ν0 such that d(µ1, µ0) < ε/2 and
Φk

#µ1 = ν0. In particular, we get that d(µ1, µ) < ε and Φk+l
# µ1 = ν, so

that ν ∈ Φk+l
# (U) ∩ V .

3. Topological entropy

In this section we consider the topological entropy of Φ#. Let us briefly
recall a definition (for more details, [KH95] is an extensive reference).
Given a map f : X → X acting on a metric space, for any n ∈ N one
defines a new metric on X by

dn(x, y) := max{d(fk(x), fk(y)); 0 6 k 6 n}.
Given ε > 0, one says that a subset S ofX is (n, ε)-separated if dn(x, y) >
ε whenever x 6= y ∈ S. Denoting by N(f, ε, n) the maximal size of a
(n, ε)-separated set, the topological entropy of f is defined as

h(f) := lim
ε→0

lim sup
n→+∞

1

n
logN(f, ε, n).

Note that this limit exists since lim supn→+∞
1
n
logN(f, ε, n) is nonin-

creasing in ε. The adjective “topological” is relevant since h(f) does not
depend upon the distance on X , but only on the topology it defines.

The topological entropy is in some sense a global measure of the de-
pendance on initial condition of the considered dynamical system.

The map Φ is a classical example, whose topological entropy is log 2.

Theorem 3.1. — The topological entropy of Φ# is infinite.

This result is not surprising since the Wasserstein space can in some
ways be seen as an infinite product of the original space, and Φ# as the
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diagonal action of Φ on this product. This point of view is developped
in the second part, whose content is more geometric, and where a large
generalization of Theorem 3.1 is proved. We nevertheless provide here a
simpler and more direct proof in the particular case of Φ#.

Proof. — To construct a large (n, ε)-separated set, we proceed as follows:
we start with the point δ0, and choose a ε-separated set of its inverse
images. Then we inductively choose ε-separated sets of inverse images
of each elements of the set previously defined. Doing this, we need not
control the distance between inverse images of two different elements.

Let k > 1 be an integer (ε will be exponential in −k). Let Ak be the set
all µ ∈ P(S1) such that µ((1−2−k, 1)) = 0 and µ([0, 1/2]) > 1/2. These
conditions are designed to bound from below the distances between the
antecedents to be constructed: a given amount of mass (second condition)
will have to travel a given distance (first condition).

An element µ ∈ Ak decomposes as µ = µh + µt where µh is supported
on [0, 1−2−k+1] and µt is supported on (1−2−k+1, 1−2−k). Let e0 and e1
be the right inverses to Φ defined onto [0, 1/2) and [1/2, 1) respectively.
For all integer ℓ between 2k−1 and 2k, define

µℓ = (e0)#(ℓ2
−kµh + µt) + (e1)#((1− ℓ2−k)µh)

(see figure 2). It is a probability measure on S1, lies in Ak and Φ#µℓ = µ.
Moreover, if ℓ′ 6= ℓ then any transport plan from µℓ to µℓ′ has to move
a mass at least 2−k−1 by a distance at least 2−k. Therefore, d(µℓ, µℓ′) >
2−3k/2−1/2.

Let ε = 2−3k/2−1/2 and define Sn inductively as follows. First, S0 =
{δ0}. Given Sn ⊂ Ak, Sn+1 is the set of all µℓ constructed above, where
µ runs through Sn.

By construction, Sn has n2k−1

= n2−4/3ε−2/3
elements. Let µ, ν be two

distinct elements of Sn and m be the greatest index such that Φm
#µ 6=

Φm
#ν. Since Φn

#µ = δ0 = Φn
#ν, m exists and is at most n − 1. The

measures µ′ = Φm
#µ and ν ′ = Φm

#ν both lie in Sn−m and have the same
image. Therefore, they are ε-separated. This shows that Sn is (n, ε)-
separated.

It follows that 1
n
logN(Φ#, ε, n) > 2−4/3ε−2/3, which goes to +∞ when

ε → 0.
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2−k

µh µt

µℓ (large ℓ)

µℓ (minimal ℓ)

Figure 2. Construction of separated antecedents of a given measure.

4. First-order dynamics near the uniform measure

In this section we recall without proofs the “differential structure”
induced on P(S1) by the Wasserstein metric, following the point of view
of [Gig09a], and we show that Φ# is (weakly) differentiable at the point
λ. Its differential map DλΦ# is an explicit, simple endomorphism of a
Hilbert space, and we shall give a brief study of its spectrum.

Note that considering the Wasserstein space of a Riemannian mani-
fold as an infinite-dimensionnal Riemannian manifold dates back to Otto
[Ott01]. However, in many ways it stayed a formal view until the work
of Gigli.

4.1. The first-order differential structure on measures. — This
subsection contains no novelty, but only recalls the aforementionned work
of Gigli in the particular case of the circle. Note that as is customary in
these topics, by a geodesic we mean a non-constant globally minimizing
geodesic segment or line, parametrized proportionnaly to arc length.

Given µ ∈ P(S1), there are several equivalent ways to define its tan-
gent space Tµ. In fact, Tµ has a vectorial structure only when µ is atom-
less; otherwise it is only a tangent cone. Note that the atomless condition
has to be replaced by a more intricate one in higher dimension.



OPTIMAL TRANSPORTATION AND DYNAMICS 11

The most Riemannian way to construct Tµ is to use the exponential
map. Let L2(µ) be the set of probability measures on the tangent bundle
TS1 that are mapped to µ by the canonical projection. Given ξ, ζ ∈
L2(µ), one defines

d(ξ, ζ) =

(

inf
Π

∫

TS1×TS1

d(x, y)2Π(dxdy)

)1/2

where d is any metric whose restriction to the fibers is the riemannian
distance (here the fibers are isometric to R), and the infimum is over
transport plans Π that are mapped to the identity (Id × Id)#µ by the
canonical projection on S1 × S1. This means that we allow only to move
the mass along the fibers. Equivalently, one can desintegrate ξ and ζ
along µ, writing ξ =

∫

ξx µ(dx) and ζ =
∫

ζx µ(dx), with (ξx)x∈S1 and
(ζx)x∈S1 two families of probability measures on TxS

1 ≃ R uniquely de-
fined up to a set of measure zero. Then one gets

d(ξ, ζ)2 =

∫

S1

d(ξx, ζx)
2µ(dx)

where one integrates the squared Wasserstein metric (with respect to the
Riemannian metric, that is | · |).

There is a natural cone structure on L2(µ), extending the scalar mul-
tiplication on the tangent bundle: letting Dr be the dilation of ratio r
on TS1, one defines r · ξ := (Dr)#ξ.

The exponential map exp : TS1 → S1 now gives a map exp# : L2(µ) →
P(S1). The point is that not for all ξ ∈ L2(µ), is there a ε > 0 such
that t 7→ exp#(t · ξ) defines a geodesic of P(S1) on [0, ε). Consider for
example µ = λ, and ξ be defined by ξx ≡ 1. Then exp#(t · ξ) = λ for
all t: one rotates all the mass while letting it in place would be more
efficient.

The first definition is that Tµ is the closure in L2(µ) of the subset of
all ξ such that exp#(t · ξ) defines a geodesic for small enough t.

Let us now give another definition, assuming µ has no atom. Given
a smooth function f : S1 → R, its gradient ∇f : S1 → TS1 can be
used to push µ to an element ξf = (∇f)#µ of L2(µ). This element has
the property that exp#(t · ξ) = (Id + tξf)#µ defines a geodesic for small
enough t (the time bound depending on the maximum of |∇f |). Now,
the closure in L2(µ) of the image of the map f 7→ ξf is equal to Tµ.

In particular, this means that as soon as µ is atomless, the disintegra-
tion (ξx)x of an element of Tµ writes ξx = δv(x) for some function v and
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µ-almost all x. Moreover, v must have mean zero (with respect to the
uniform measure λ, since this condition is inherited from the fact that
v = ∇f for ξ in a dense set). We get that Tµ can be identified with
the set L2

0(µ) of functions v : S1 → R that are square-integrable and of
mean zero with respect to λ. When µ is the uniform measure, we write
L2
0 instead of L2

0(λ).
For simplicity, given v ≃ ξ ∈ L2

0(µ) ≃ Tµ we shall denote exp#(t · ξ)
by µ+ tv.

Let us end this subsection with a remark. One could consider simpler
to just take the smooth functions of S1 as coordinates to define a smooth
structure on P(S1). First, it is important to understand that optimal
transportation is about pushing mass, not (directly) about recording the
variation of density at each point (and to describe the variation of density
under a transport plan shall need some work in the sequel). Second, if
one considered smooth function as coordinates, then a path of the form
γt = tδx + (1 − t)δy should be considered smooth since

∫

f(u)γt(du)
would depend smoothly on t for all smooth f . However, the Wasserstein
distance between γt and γs as the order of

√

|t− s|, so that γt is not
rectifiable (it has infinite length)! The least to expect from smooth paths
is to be rectifiable, so that the point of view “functions as coordinates”
has to be dismissed.

4.2. Differentiability of Φ#. — We now turn to the main result of
this section.

Theorem 4.1. — Let L : L2
0 → L2

0 be the linear operator defined by
L v(x) = v(x/2) + v((x+1)/2). Then L is the derivative of Φ# at λ in
the following sense: for all v ∈ L2

0 ≃ Tλ, one has

d(Φ#(λ+ tv), λ+ tL (v)) = o(t).

First, we recognize in L twice the Perron-Frobenius operator of Φ,
that is the adjoint of the map u 7→ u◦Φ, acting on the space L2

0. Second,
we only get a Gâteaux derivative, when one would prefer a Fréchet one,
that is a formula of the kind

d(Φ#(λ+ v), λ+ L (v)) = o(|v|).
However, we shall see that such a uniform bound does not hold, at least
not in L2 norm (which is the natural norm here). This shall be discussed
later on.

The main point to prove in the above theorem is the following estimate.
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Lemma 4.2. — Given vector fields v1, . . . , vn ∈ L2 and positive num-
bers α1, . . . , αn adding up to 1, one has

d

(

λ+ t
∑

i

αivi ,
∑

i

αi(λ+ tvi)

)

= o(t).

Proof. — We prove the case n = 2 since the general case can then be
deduced by a straightforward induction. Let ε be any positive number.
Let v̄1 and v̄2 be piecewise constant functions that approximate v1 and
v2 in L2 norm: |vi− v̄i|2 6 ε. Then ((Id+vi)× (Id+ v̄i))#λ is a transport
plan from λ+ vi to λ + v̄i, whose cost is precisely |vi − v̄i|22. This shows
that d(λ+ vi, λ+ v̄i) 6 ε. We can moreover assume that v̄i are constant
on each interval of the form [i/k, (i+ 1)/k) for some fixed k (depending
only upon v1 and v2).

To see what happens on such an interval I, temporarily denoting by
v1 and v2 the values taken by the functions v̄i on I, let us construct for t
small enough an economic transport plan from (Id + t(α1v1 +α2v2))#λ|I
to α1(Id + tv1)#λ|I + α2(Id + tv2)#λ|I . Assuming that t is small enough
to ensure that the intervals (Id + tv1)(I) and (Id + tv2)(I) meet, one
can simply let the common mass in place and move at each side a mass
α1α2|v1 − v2|t by a distance at most |v1 − v2|t (see figure 3; this is not
optimal but sufficient for our purpose). This transport plan has a cost
t3α1α2|v1 − v2|3.

By adding one such plan for each interval [i/k, (i + 1)/k), we get a
transport plan from (Id + t(α1v̄1 +α2v̄2))#λ to α1(Id + tv̄1)#λ+α2(Id+
tv̄2)#λ whose cost is ct3 where c = α1α2

∫

|v̄1 − v̄2|3. Note that even if
the vi are only L2, v̄i are bounded. Now we have

d (λ+ t(α1v̄1 + α2v̄2), α1(λ+ tv̄1) + α2(λ+ tv̄2)) 6
√
ct

3

2

so that, for t small enough,

d (λ+ t(α1v̄1 + α2v̄2), α1(λ+ tv̄1) + α2(λ+ tv̄2)) 6 εt

By triangular inequality, it follows that

d (λ+ t(α1v1 + α2v2), α1(λ+ tv1) + α2(λ+ tv2)) 6 3εt.

Proof of Theorem 4.1. — Remark that

Φ#(λ+ tv) =
1

2
(λ+ 2tv(·/2)) + 1

2
(λ+ 2tv((·+ 1)/2))
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(Id + t(α1v1 + α2v2))#λ|I

λ|I

tv1

tv2

t(α1v1 + α2v2)

t|v1 − v2|

α1(Id + tv1)#λ|I + α2(Id + tv2)#λ|I

Figure 3. The cost of this transport plan has the order of
magnitude t3

and apply the preceding lemma.

Let us prove that we cannot hope for the Fréchet differentiability of
Φ#.

Proposition 4.3. — For all positive ε, there is a map v ∈ L2
0 that

satisfies the following:

1. |v|2 6 ε,
2. L v = 0 so that λ+ L v = λ, and
3. d (Φ#(λ+ v), λ) > cε

for some constant c independent of ε and v.

Proof. — Let k be a positive integer, to be precised later on. Let v be the
piecewise affine map defined as follows (see figure 4): v(x) = 1/(4k)− y
when x = i/(2k) + y with y ∈ [0, 1/(2k)) and 0 6 i < k an integer,
and v(x) = −1/(4k) + y when x = i/(2k) + y with y ∈ [0, 1/(2k)) and

k 6 i < 2k. We have |v|22 = (4k)−2/3 so that taking k >
√
3
4
ε−1 ensures

point 1. Moreover, 2 is straightforward, and have left to prove that k
chosen with the order of ε−1 gives 3.

On any small enough interval I, if w is an affine function of slope −1
with a zero at the center of I, then λ|I +w is a Dirac mass at the center
of I (each element of mass is moved to the center). If w has slope 1, then
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the mass moves in the other direction, and λ|I + w is uniform of density
1/2 on the interval I ′ having the same center than I and twice as long.
By combining these two observations, one deduces that

µ := Φ#(λ+ v) = 1/2λ+
k
∑

i=1

1

2k
δ i−1/2

k

.

Figure 4. The case k = 4. Up: the graph of v; middle: λ+ v;
down: Φ#(λ+ v).

Each interval of the form Ii = [(i− 5/8)/k, (i− 3/8)/k) is given by λ
a mass 1/(4k). The discrete part of µ consists in a Dirac mass of weight
1/(2k) at the center of each Ii. Any transport plan from µ to λ must
therefore move a mass at least 1/(4k) from each of these Dirac masses to
the outside of Ik, so that a total mass at least 1/4 has to move a distance
at least 1/(8k). From this it follows that d(λ, µ) > 1/(16k). When k
is chosen with the order of ε−1, this distance has at least the order of
ε, as required. More precisely, the constant c is (up to rounding up)
(4
√
3)−1.

4.3. Spectral study of L . — Let us compute the spectrum of L =
Dλ(Φ#). The following proposition is very elementary and probably not
new, but we produce a proof for the sake of completeness.

Proposition 4.4. — A number α is an eigenvalue of L if and only if
|α| < 2. Moreover, each eigenvalue has an infinite-dimensional eigen-
space. Last, the spectrum of L is the closed disc of radius 2.

In particular, it is to be noted that λ is not an hyperbolic fixed point
of Φ#.
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The proof of Proposition 4.4 consist simply in using Fourier series
to show that (up to a multiplicative constant) L is conjugated to a
countable product of the shift on ℓ2(N).

Proof. — Let ck denote the function x 7→ cos(2πkx) defined on the circle,
and sk : x 7→ sin(2πkx). Then it is readily checked that L ck = L sk = 0
when k is odd, and L ck = 2ck/2, L sk = 2sk/2 when k is even.

Let σ be the shift of the Hilbert space ℓ2 = ℓ2(N) of N-indexed square
integrable sequences: if x = (x0, x1, x2, . . .) then σx = (x1, x2, x3, . . .).
Let σN be the direct product of σ, acting on (ℓ2)N. Then the map

Ψ : (ℓ2)N → L2
0

X = (x0, x1, x2, . . .) 7→
∑

i,j∈N
x2i
j c(2i+1)2j + x2i+1

j s(2i+1)2j

is an isomorphism (and even an isometry) that intertwins σN and 1
2
L .

The spectral study of L therefore reduces to that of σ.
A non-zero eigenvector of σ, associated to an eigenvalue α, must have

the form (x, αx, α2x, . . .) with x 6= 0. Such a sequence is square integrable
if and only if |α| < 1. Moreover the operator norm of σ is 1, so that its
complex spectrum is a subset of the closed unit disc. Since the spectrum
is closed, and contains the set of eigenvalues, it is equal to the closed unit
disc.

4.4. Discussion on the non-Fréchet differentiability and the non-

hyperbolicity. — The counter-example to the Fréchet differentiability
of Φ# at λ has high total variation, and it is likely that using a norm
that controls variations (e.g. a Sobolev norm) on (a subspace of) Tλ shall
provide a uniform error bound.

Moreover, up to multiplication by 2 the derivative L is the Perron-
Frobenius operator of Φ, and such operators have far more subtle spectral
properties when defined over Sobolev spaces.

For these two reasons, it seems that one could search for a modification
of optimal transport that would give a manifold structure to P(S1), in
such a way that Tλ identifies with a Sobolev space. A way to achieve
this could be to penalize not only the distance by which a transport plan
moves mass, but also the distorsion, that is the variation of the pairwise
distances of the elements of mass. This should impose more regularity
to optimal transport plans.
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5. First-order dynamics for general expanding maps

In this last section, we consider a general map ϕ : S1 → S1, assumed
to be C2 and expanding, i.e. |ϕ′| > 1. Such a map is a self-covering, and
has a unique absolutely continuous invariant measure (see e.g. [KH95])
which has a positive and C1 density [Krz77], denoted by ρ. The measure
itself is denoted by ρλ. Note that as sets, L2(ρλ) = L2, although they
differ as Hilbert spaces. All integrals where the variable is implicit are
with respect to the Lebesgue measure λ.

The result is as follows.

Theorem 5.1. — The map ϕ# has a Gâteaux derivative at ρλ, which
–remembering Tρλ ≃ L2

0(ρλ)– is given by

K : L2
0(ρλ) → L2

0(ρλ)

v 7→
∑

y∈ϕ−1(x)

ρ(y)

ρ(x)
v(y)−

∫

vϕ′ ρ
ρ◦ϕ

ρ
∫

1/ρ

The adjoint operator of K in L2
0(ρλ) is given by

K
∗u = ϕ′ u ◦ ϕ.

The end of the section is devoted to the proof of this result.
First, as in the case of Φ#, Lemma 4.2 shows that for v ∈ L2

0(ρλ),

(1) d
(

ϕ#(ρλ+ tv), ρλ+ tK̃ v
)

= o(t)

where

K̃ v(x) =
∑

y∈ϕ−1(x)

ρ(y)

ρ(x)
v(y)

is the first term in the expression of K . In words, each of the inverse
image of x gives a contribution to the local displacement of mass that is
proportional to v(y) and to ρ(y).

This seems very similar to the case of Φ#, except that K̃ need not
map L2

0(ρλ) to itself! Let us stress, once again, that the condition that
v ∈ L2

0(ρλ) has mean zero is to be understood with respect to the uniform
measure λ, since it translates the metric property of being (close to) the
gradient of a smooth function. This does not prevent Equation (1) to

make sense, but shows that K̃ v cannot be considered as the directional
derivative of ϕ# since it does not belong to Tρλ = L2

0(ρλ). In fact, we
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shall see that there is another vector field, that lies in L2
0(ρλ) and gives

the same pushed measure (at least at order 1).

Proposition 5.2. — Given w̃ ∈ L2(ρλ) and assuming that w̃ is C1,
there is a C1 vector field w ∈ L2

0(ρλ) such that d(ρλ+tw̃, ρλ+tw) = o(t).
Moreover, w is given by

w = w̃ +

∫

w̃

ρ
∫

1/ρ
.

Proof. — To find the suitable w, let us compute the density ρ̃t of ρλ+tw̃.
Note that only for small t is this an absolutely continuous measure, as
shown by the example in figure 4. Let t be small enough so that Id + tw̃
is a diffeomorphism (a sufficient condition is that |tw̃′| < 1). Then for all
continuous function f , one has

∫

f(x)(ρλ+ tw̃)(dx) =

∫

f(x)(Id + tw̃)#(ρλ)(dx)

=

∫

f(x+ tw̃(x))ρ(x)dx

=

∫

f(y)
ρ

1 + tw̃′ ◦ (Id + tw̃)−1(y)dy

by a change of variable. It follows that

ρ̃t =
ρ

1 + tw̃′ ◦ (Id + tw̃)−1.

Up to a o(t) term (which, as all other remainder terms that follows,
depends upon ρ, w, possibly 1/ρ and their derivative, all of which are
bounded data of our problem), this is equal to

ηt =
ρ

1 + tw̃′ ◦ (Id− tw̃)

so that
d

dt

∣

∣

∣

∣

t=0

ρ̃t(x) = −w̃(x)ρ′(x)− w̃′(x)ρ(x).

There exists exactly one vector field w that is C1, has mean zero, and
such that (ρw)′ = (ρw̃)′: it is given by the claimed formula.

Now we have to prove that if two vector fields induce the same first
order perturbation on ρ, then the distance between the pushed measure
is small. To this end, we shall construct a deterministic transport plan
with small cost.
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Given a probability measure with continuous positive density η, the
map x 7→

∫ x

0
η(u)du defines a diffeomorphism of the circle, that maps

ηλ to λ. Call T̃t the map obtained for η = ρ̃t and Tt that given by
η = ρt. Then the map Ut = T−1

t ◦ T̃t is a diffeomorphism that sends
ρ̃tλ to ρtλ. Moreover, Ut(x) is the first (and only) y ∈ [0, 1) such that
∫ y

0
ρt(u)du =

∫ x

0
ρ̃t(u)du. But since ρt and ρ̃t have the same t-derivative

at 0, we get that the number εt := |ρt− ρ̃t|∞ is an o(t). This implies that
|Ut(x)−x| 6 εt/min(ρ̃t) for all x. Integrating, it comes that d(ρ̃tλ, ρtλ) =
o(t). In other words, d(ρλ+ tw̃, ρλ+ tw) = o(t).

Note that we did not bother to prove the unicity of w: Gigli’s con-
struction shows that the first order perturbation of the measure (with
respect to the L2 Wasserstein metric) characterizes a tangent vector in
Tµ, see Theorem 5.5 in [Gig09a]. This is one of the convincing features
of the framework of Gigli: it gives a way to select one vector field among
a set of vector fields that give curves of measures tangent one to each
other.

Now if one considers the “centering” operator C : L2(ρλ) → L2
0(ρλ)

defined by

C v = v −
∫

v

ρ
∫

1/ρ
,

the derivative of ϕ# at ρλ is given by the composition C K̃ . Indeed, the
previous proposition shows this for a C1 argument, but C1 vector fields
are dense in L2

0(ρλ) and the involved operators are continuous.
To get the expression of K given in Theorem 5.1, one only need a

change of variable: denoting by ϕ−1
i (i = 1, 2, . . . , d) the right inverses to

ϕ that are onto intervals [a1 = 0, a2), [a2, a3), . . . , [ad, ad+1 = 1) one has

∫

K̃ v =
∑

i

∫

ρ ◦ ϕ−1
i

ρ
v ◦ ϕ−1

i

=
∑

i

∫ ai+1

ai

ρ

ρ ◦ ϕvϕ
′

=

∫

vϕ′ ρ

ρ ◦ ϕ.

The computation of the adjoint is a similar change of variable that we
omit. Note that the adjoint of the extension to L2(ρλ) of K (with the
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same expression) is

u 7→ ϕ′ u ◦ ϕ− ϕ′ ∫ u

ρ ◦ ϕ
∫

1/ρ

and the second term vanishes in L2
0(ρλ). The first term is also the adjoint

in L2(ρλ) of K̃ , and this adjoint preserves L2
0(ρλ). In other words, K

is the adjoint in L2
0(ρλ) of the adjoint in L2(ρλ) of K̃ .

An interesting feature of the expression of K ∗ is that it does not
involve the invariant measure. It could therefore be useful to study the
spectrum of K .

PART II

EMBEDDING POWERS OF A SPACE IN ITS

WASSERSTEIN SPACE

In this part we prove and discuss the following.

Theorem 5.3. — Let X be any metric space, p ∈ [1,∞) and n be
any positive integer. Then there is a bi-Lipschitz embedding of Xn into
Wp(X).

More precisely, if we endow Xn with the metric given by

d
(

x̄ = (x1, . . . , xn) , ȳ = (y1, . . . , yn)
)

=

(

n
∑

i=1

d(xi, yi)
p

)1/p

.

then there exist a map f : Xn → Wp(X) such that

1

n(2n − 1)1/p
d(x̄, ȳ) 6 d(f(x̄), f(ȳ)) 6

(

2n−1

2n − 1

)1/p

d(x̄, ȳ).

for all x̄, ȳ ∈ Xn and that intertwins induced dynamical systems in the
following sense: for all continuous map ϕ : X → X, its diagonal action
ϕn : Xn → Xn and the push-forward ϕ# : Wp(X) → Wp(X) satisfy
f ◦ ϕn = ϕ# ◦ f .
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6. A dynamical consequence

Let us first deduce from Theorem 5.3 the dynamical result claimed in
the introduction: if X is compact and ϕ : X → X is a continuous map
with positive topological entropy, then the action of ϕ# on P(X) has
infinite topological entropy.

Proof of Theorem 1.4. — By compacity, Wp(X) is the set of all prob-
ability measures on X and the Wassertein distance metrizes the weak
topology. Fix some positive integer n. The map f : Xn → Wp(x) given
by the theorem is a homeomorphism on its image that conjugates ϕn

and (ϕ#)|f(Xn). It follows, denoting topological entropy by h that (see
[KH95] Proposition 3.1.7):

h(ϕ#) > h((ϕ#)|f(Xn)) = h(ϕn) = nh(ϕ)

for all n, so that h(ϕ#) = ∞.

7. Proof of the main result

Let us now prove Theorem 5.3. The first power of X embeds iso-
metrically by x → δx where δx is the Dirac mass at a point. The key
of the proof lies in the way of encoding a tuple by a measure, without
adding any extra symmetry: one should be able to distinct f(a, b, . . .)
from f(b, a, . . .). The idea is to attribute masses to the different elements
of the tuple, that are not only different but also cannot be combined to
the same amount by adding some of them.

Define

f : Xn → Wp(X)

x̄ = (x1, . . . , xn) 7→ α
n
∑

i=1

2−iδxi

where α = 1/(1− 2−n) is a normalizing constant.

Step 0: d(f(x̄), f(ȳ)) is bounded from above and intertwins dynamical
systems.— There is an obvious transport plan from an image f(x̄) to
another f(ȳ), given by α

∑

i 2
−iδxi

⊗ δyi . Its cost is

α
∑

i

2−id(xi, yi)
p
6 α/2

∑

i

d(xi, yi)
p
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so that d(f(x̄), f(ȳ)) 6 (α/2)1/pd(x̄, ȳ). The intertwining property is
obvious from the construction of f , since ϕ#(δx) = δϕ(x).

The point is now to bound d(f(x̄), f(ȳ)) from below. Let i0 be an index
that maximizes d(xi, yi). Then d(x̄, ȳ) 6 n1/pd(xi0 , yi0) and we only need
to bound d(f(x̄), f(ȳ)) in terms of d(xi0 , yi0). For this we shall show that
an optimal transport plan must send, possibly “in several steps”, some
mass from xi0 to yi0. Assume from now on that d(xi0 , yi0) > 0, since
otherwise x̄ = ȳ.

Step 1: a transport plan defines an oriented graph. — Let Π be an
optimal transport plan from f(x̄) to f(ȳ). Since the source and target
are discrete measures, Π must be discrete too:

Π =
∑

x,y∈V
αmxyδx ⊗ δy

where V is the set of all xi’s and yi’s, and mxy are non-negative coef-
ficients. One gets an oriented graph without loops by letting an edge
x → y as soon as mxy > 0.

Step 2: Π can be chosen so as to define a forest.— First, the optimality of
Π implies that the graph defined above contains no oriented cycle. If there
where points v1, v2, . . . , vk in V such that vk = v1 and mi := mvivi+1

> 0
for all i < k, then by soustracting the minimal value of mi to each of
them one would get an new transport plan from f(x̄) to f(ȳ), cheaper
than Π.

Now, there can be non-oriented cycles. Let us show that given such a
cycle, it is possible to modify Π into a new transport plan, having the
same cost, so that the corresponding graph is that of Π with one edge of
the cycle removed. Inductively, it will then possible to chose an optimal
transport plan whose graph is a forest.

A non-oriented cycle is determined by two sets of vertices v1, . . . , vk
and w1, . . . , wk and two sets of oriented paths Pi : vi → wi, Qi : vi → wi+1

where wk+1 := w1, see Figure 5.
A path P is described by a tuple of edges P = (e1, . . . , el), the endpoint

e+i of ei being equal to the starting point e−i+1 of ei+1. The cost of P is the

cost of a unit mass travelling along P , that is c(P ) =
∑l

i=1 d(e
−
i , e

+
i )

p.
The flow of P according to Π is the amount of mass travelling along P ,
that is φ(P ) = mini me−i e+i

. Taking a minimal non-oriented cycle, we can

assume that no two paths among all Pi’s and Qi’s share an edge.
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P1

Q1

P2
Q2

P3

Q3

v1

v3

v2

w2

w1

w3

Figure 5. A non-oriented cycle: vi’s and wi’s are the vertices
where the edges change orientation.

One can construct a new tansport plan from f(x̄) to f(ȳ) by adding a
small ε to all mxy’s labelling an edge of a Pi, and soustracting the same
ε to all mxy’s labelling an edge of a Qi. This operation adds ε to φ(Pi)
and −ε to φ(Qi), thus it adds ε

∑

i c(Pi)− c(Qi) to the cost of Π.
Since Π is optimal, one cannot reduce its cost by this operation. This

implies that
∑

i c(Pi) − c(Qi) = 0. By operating as above with ε equal
to plus or minus the minimal value of all mxy labelling a Pi or a Qi, one
designs a new optimal transport plan whose graph has the chosen cycle
broken.

We therefore assume from now on that the graph of Π has no cycle,
i.e. is a forest.

Step 3: Π moves mass by an amount bounded from below.— Let us
prove, by induction on the number of edges, that the mxy’s are integer
multiples of 2−n. We start with (V,E) being the graph defined by Π,
with each vertex labelled by the couple (m0(v), m1(v)) where

m0(v) =
∑

i|xi=v

2−i m1(v) =
∑

i|yi=v

2−i
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are, up to the constant α, the initial and final mass at v, and edges
labelled by the mxy. During the induction, we consider modifications of
this graph that are not directly related to a transport plan from f(x̄)
to f(ȳ) anymore, but that still satisfy the mass preservation condition
∑

x mxv −
∑

y mvy = m1(v)−m0(v). Also, during the whole process the

m0(v) and m1(v) shall be integer multiples of 2−n

The graph (V,E) is a forest. The base case is when it has no edge, in
which case all edge labels satisfy our condition by emptyness. Otherwise,
the graph has a leaf, that is a vertex v0 that is incident to precisely one
edge e0. Assume for example that v0 = e−0 (the other case is treated
similarly). Then the label of e0 is an integer multiple of 2−n, since it is
equal to m0(v0)−m1(v0). Now consider the graph obtained from (V,E)
by deleting v0 and e0, and soustracting the label of e0 from m1(e

+
0 ). This

graphs still satisfies the mass preservation condition and the labels of
vertices still are integer multiples of 2−n. Moreover the labels of edges
are unchanged.

By inductively prunning the leafs of (V,E), we can therefore conclude
that the mxy’s all are integer multiples of 2−n.

Step 4: some mass has to travel from xi0 to yi0.— Now is the time to
use the way we designed f . Write all 2nmxy in binary, and consider the
set E ′ of all edges such that this expansion contains the term 2n−i0. The
only vertex such that 2nm0(v) contains 2n−i0 in its binary expansion is
xi0 , and the only one such that 2nm1(v) does is yi0. It follows by the
preservation of mass condition that the graph (V,E ′) has even degree at
each vertex, except xi0 and yi0 . But a classical, simple result of graph
theory asserts that the number of odd-degree vertices of a graph must be
even. Applying this to the connected components of (V,E ′), we get that
xi0 and yi0 must be in the same component.

Thus, E ′ must contain a (possibly non-oriented) path P0 between xi0

and yi0. Each endpoint of each edge in this path has to be some yi, so
that the path has length at most n. It follows by a convexity argument
that c(P0) (defined as for an oriented path) is at least n(d(xi0 , yi0)/n)

p.
In particular, the cost of Π is at least α2−nd(xi0 , yi0)

p/np−1 and

d(f(x̄), f(ȳ)) >
α1/p2−n/p

n1−1/p
d(xi0 , yi0) >

1

n(2n − 1)1/p
d(x̄, ȳ)

which ends the proof.
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8. Discussion of the embedding constants

One can wonder if the constants in Theorem 5.3 are optimal. The
simplest possible example shows that they are off by at most a polynomial
factor.

Proposition 8.1. — Let X = {0, 1} where the two elements are at dis-
tance 1 and consider a map f : Xn → Wp(X) such that

md(x̄, ȳ) 6 d(f(x̄), f(ȳ)) 6 M d(x̄, ȳ)

for all x̄, ȳ ∈ Xn and some positive constants m,M . Then

M

m
>

(

2n − 1

n

)1/p

.

Moreover there is a map whose constants satisfy M/m 6 (2n − 1)1/p.

Proof. — By homogeneity, it is sufficient to consider p = 1, in which
case Xn is the n-dimensional discrete hypercube endowed with the com-
binatorial metric: two elements are at a distance equal to the number of
bits by which they differ. Moreover W1(X) identifies with the segment
[0, 1] endowed with the usual metric | · |: a number t corresponds to the
measure tδ0 + (1− t)δ1.

The diameter of Xn is n, so that the diameter of f(Xn) is at most
Mn. Since f(Xn) has 2n elements, by the pigeon-hole principle at least
two of them are at distance at most (2n − 1)−1Mn. Since the distance
between their inverse images is at least 1, we get m 6 (2n − 1)−1Mn so
that M/m > (2n − 1)/n.

To get a map f with M/m = (2n − 1), it suffices to use a gray code:
it is an enumeration x1, x2, . . . , x2n of the elements of Xn, such that
to consequent elements are adjacent (see [Ham80]). Letting f(xi) :=
(i− 1)/(2n − 1) we get a map with M 6 1 and m = (2n − 1)−1.

Note that one could improve the lower bound on M/m by a factor
asymptotically of the order of 21/p by using the fact that every element
in Xn has a opposite, that is an element at distance n from it.

Let us end with two open questions: are there some spaces for which
the bounds can be significantly improved? What are the optimal bounds
in the case of R?
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