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SPECTRAL STATISTICS FOR THE DISCRETE ANDERSON

MODEL IN THE LOCALIZED REGIME

FRANÇOIS GERMINET AND FRÉDÉRIC KLOPP

Abstract. We report on recent results on the spectral statistics of the dis-
crete Anderson model in the localized phase obtained in [6]. In particular, we
describe the

• locally uniform Poisson behavior of the rescaled eigenvalues,
• independence of the Poisson processes obtained as such limits at distinct

energies,
• locally uniform Poisson behavior of the joint distributions of the rescaled

energies and rescaled localization centers in a large range of scales.
• the distribution of the rescaled level spacings, locally and globally in

energy,
• the distribution of the rescaled localization centers spacings.

Our results show, in particular, that, for the discrete Anderson Hamiltonian
with smoothly distributed random potential at sufficiently large coupling, the
limit of the level spacing distribution is that of i.i.d. random variables dis-
tributed according to the density of states of the random Hamiltonian.

1. Introduction

On ℓ2(Zd), consider the random Anderson model

Hω = −∆+ Vω

where −∆ is the discrete Laplace operator

(−∆u)n =
∑

|m−n|=1

um for u = (un)n∈Zd ∈ ℓ2(Zd)

and Vω is the random potential

(Vωu)n = ωnun for u = (un)n∈Zd ∈ ℓ2(Zd).

We assume that the random variables (ωn)n∈Zd are independent identically dis-
tributed and that their distribution admits a compactly supported bounded den-
sity, say g.
It is then well known (see e.g. [9]) that

• there exists Σ := [S−, S+] = [−2d, 2d]+supp g ⊂ R such that, for almost
every ω = (ωn)n∈Zd , the spectrum of Hω is equal to Σ;
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• for some S− < s− ≤ s+ < S+, the intervals I− = [S−, s−) and I+ =
(s+, S+] are contained in the region of complete localization for Hω, in
particular, I− ∪ I+ contains only pure point spectrum associated to expo-
nentially decaying eigenfunctions; for the precise meaning of the region of
complete localization, we refer to [1, 9, 5]; if the disorder is sufficiently large
or if the dimension d = 1 then, one can pick I+∪I− = Σ; define I = I+∪I−;

• there exists a bounded density of states, say E 7→ ν(E), such that, for any
continuous function ϕ : R → R, one has

∫

R

ϕ(E)ν(E)dE = E(〈δ0, ϕ(Hω)δ0〉). (1)

Here, and in the sequel, E(·) denotes the expectation with respect to the
random parameters.
Let N be the integrated density of states of Hω i.e. N is the distribution
function of the measure ν(E)dE. The function ν is only defined E almost
everywhere. In the sequel, unless we explicitly say otherwise, when we
speak of ν(E) for some E, we mean that the non decreasing function N is
differentiable at E and that ν(E) is its derivative at E.

We now describe the local level and localization center statistics, the level spacing
statistics and the localization center spacings statistics in I.

2. The local level statistics

For L ∈ N, let Λ = ΛL = [−L,L]d ∩ Z
d ⊂ Z

d be a large box and Hω,Λ be
the operator Hω restricted to Λ with periodic boundary conditions. Let N be the
volume of Λ i.e. N = (2L+ 1)d.

Hω(Λ) is an N×N real symmetric matrix. Let us denote its eigenvalues ordered
increasingly and repeated according to multiplicity by E1(ω,Λ) ≤ E2(ω,Λ) ≤ · · · ≤
EN (ω,Λ).

Let E0 be an energy in I such that ν(E0) > 0. The local level statistics near E0

is the point process defined by

Ξ(ξ, E0, ω,Λ) =

N
∑

j=1

δξj(E0,ω,Λ)(ξ) (2)

where

ξj(E0, ω,Λ) = |Λ| ν(E0) (Ej(ω,Λ)− E0), 1 ≤ j ≤ N. (3)

The main result of [12] reads

Theorem 2.1 ([12]). Let E0 be an energy in I such that ν(E0) > 0. When |Λ| →
+∞, the point process Ξ(E0, ω,Λ) converges weakly to a Poisson process on R with
intensity the Lebesgue measure.

2.1. Uniform Poisson convergence. In [6], we obtain a uniform version of The-
orem 2.1 i.e. a version that holds uniformly over an energy interval of size asymp-
totically infinite compared to |Λ|−1.
Fix 1 > β > d/(d + 2). Let IΛ(E0, β) be the interval centered at E0 of length
2|Λ|−β. Let the number of eigenvalues of Hω(Λ) inside IΛ(E0, β) be equal to
NΛ(ω,E0). For 1 ≤ j ≤ NΛ(ω,E0) − 1, define the renormalized eigenvalues
ξj(ω,Λ) by (3) for Ej ∈ IΛ(E0, β). Hence, for all 1 ≤ j ≤ NΛ(ω,E0) − 1, one
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has ξj(ω,Λ) ∈ |Λ|1−β · [−1, 1].
We then prove

Theorem 2.2 ([6]). Let E0 be an energy in I such that ν(E0) > 0.
Then, there exists δ > 0, such that, for any sequences of intervals I1 = IΛ1 , . . . , Ip =
IΛp in |Λ|1−β · [−1, 1] such that

inf
j 6=k

dist(Ij , Ik) ≥ e−|Λ|δ , (4)

one has, for any sequences of integers k1 = kΛ1 , · · · , kp = kΛp ∈ N
p,

lim
|Λ|→+∞

∣

∣

∣

∣

∣

∣

∣

∣
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#{j; ξj(ω,Λ) ∈ Ip} = kp























− e−|I1|
|I1|

k1

k1!
· · · e−|Ip|

|Ip|
kp

kp!

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Note that, in Theorem 2.2, we don’t require the limits

lim
|Λ|→+∞

e−|I1|
|I1|

k1

k1!
= lim

|Λ|→+∞
e−|IΛ

1 | |I
Λ
1 |

kΛ
1

kΛ1 !
, . . . ,

lim
|Λ|→+∞

e−|Ip| |Ip|
kp

kp!
= lim

|Λ|→+∞
e−|IΛ

p |
|IΛp |

kΛ
p

kΛp !

to exist.
Clearly, Theorem 2.1 is a consequence of the stronger Theorem 2.2. The main
improvement over the statements found in [12] is that the interval over which the
Poisson statistics holds uniformly is much larger. We also note that Theorem 2.2
gives the asymptotics of the level spacing distribution over intervals IΛ of size
|Λ|−d/(d+2) (see section 3.4 and, in particular, Theorem 3.5). It also gives the
asymptotic independence of the local Poisson processes defined at energies EΛ and
E′

Λ such that

|EΛ − E0|+ |E′
Λ − E0| ≤ |Λ|−β and |Λ| · |EΛ − E′

Λ| →
Λ→Zd

+∞

We refer to the next section for more general results on this asymptotic indepen-
dence.
It is natural to wonder what is the largest size of interval in which a result like
Theorem 2.2. We do not know the answer to that question.

2.2. Asymptotic independence of the local processes. Once Theorem 2.1 is
known, it is natural to wonder how the point processes obtained at two distinct
energies relate to each other. We prove the following

Theorem 2.3 ([6, 10]). Assume that the dimension d = 1. Pick E0 ∈ I and E′
0 ∈ I

such that E0 6= E′
0, ν(E0) > 0 and ν(E′

0) > 0.
When |Λ| → +∞, the point processes Ξ(E0, ω,Λ) and Ξ(E′

0, ω,Λ), defined in (2),
converge weakly respectively to two independent Poisson processes on R with inten-
sity the Lebesgue measure. That is, for U+ ⊂ R and U− ⊂ R compact intervals and
{k+, k−} ∈ N× N, one has

P

({

ω;

{

#{j; ξj(E0, ω,Λ) ∈ U+} = k+

#{j; ξj(E
′
0, ω,Λ) ∈ U−} = k−

})

→
Λ→Zd

e−|U+| |U+|
k+

k+!
· e−|U−| |U−|

k−

k−!
.
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So we see that, in the localized regime, in dimension 1, at distinct energies, the local
eigenvalues behave independently from each other. Theorem 2.3 is a consequence
of a decorrelation estimate for distinct energies that is proved in [10]. It is natural
to expect that this decorrelation estimate stays true and, hence, that Theorem 2.3
stays true for arbitrary dimensions. Nevertheless, we are only able to prove

Theorem 2.4 ([6, 10]). Pick E0 ∈ I and E′
0 ∈ I such that |E0 − E′

0| > 2d,
ν(E0) > 0 and ν(E′

0) > 0.
When |Λ| → +∞, the point processes Ξ(E0, ω,Λ) and Ξ(E′

0, ω,Λ), defined in (2),
converge weakly respectively to two independent Poisson processes on R with inten-
sity the Lebesgue measure.

Theorems 2.3 and 2.4 naturally lead to wonder how far the energies E0 and E′
0

need to be from each other with respect to the scaling used to renormalize the
eigenvalues for the asymptotic independence to still hold.
We prove

Theorem 2.5 ([6]). Pick E0 ∈ I such that ν(E0) > 0. Assume moreover that the
density of states ν is continuous at E0.
Consider two sequences of energies, say (EΛ)Λ and (E′

Λ)Λ such that

(1) one has EΛ →
Λ→Zd

E0 and E′
Λ →

Λ→Zd
E0,

(2) one has |Λ| · |EΛ − E′
Λ| →

Λ→Zd
+∞.

Then, the point processes Ξ(EΛ, ω,Λ) and Ξ(E′
Λ, ω,Λ), defined in (2), converge

weakly respectively to two independent Poisson processes on R with intensity the
Lebesgue measure.

A crucial tool in proving Theorem 2.5 are the generalized Minami estimates proved
in [4] that can also be interpreted as local decorrelation estimates. Theorem 2.5
shows that, in the localized regime, eigenvalues that are sufficiently far away from
each other but still close, i.e. that are separated by a distance that is asymptotically
infinite when compared to the mean spacing between the eigenlevels, behave as
independent random variables. There are no interactions except at very short
distances.
Assumption (2) can clearly not be omitted in Theorem 2.5; it suffices to consider
e.g. EΛ = E′

Λ + a|Λ|−1 to see that the two limit random processes are obtained as
a shift from one another.
To complete this section, we note again that, when |E′

Λ − EΛ| = o(|Λ|−d/(d+2)),
Theorem 2.5 is a consequence of Theorem 2.2.

3. Localization center statistics

Recall that E1(ω,Λ) ≤ E2(ω,Λ) ≤ · · · ≤ EN (ω,Λ) denote the eigenvalues of
Hω,Λ ordered increasingly and repeated according to multiplicity.

To Ej(ω,Λ), we associate a normalized eigenvector of Hω,Λ, say ϕj(ω,Λ). The
components of the vector ϕj(ω,Λ) are denoted by (ϕj(ω,Λ; γ))γ∈Λ.
For ϕ ∈ ℓ2(Λ), define the set of localization centers for ϕ as

C(ϕ) = {γ ∈ Λ; ϕ(γ) = max
γ′∈Λ

|ϕ(γ′)|}.

One has
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Lemma 3.1. For any p > 0, there exists Cp > 0 such that, with probability at
least 1 − |Λ|−p, if Ej(ω,Λ) is in the localized regime i.e. if Ej(ω,Λ) ∈ I then the
diameter of C(ϕj(ω,Λ)) is less than Cp log |Λ|.

Hence, in the localized regime, localization centers for an eigenfunction can be at
most as far as C log |Λ| from each other. From now on, a localization center for
a function ϕ will denote any point in the set of localization centers C(ϕ) and let
xj(ω,Λ) be a localization center for ϕj(ω,Λ).

3.1. Uniform Poisson convergence for the joint (energy,center)-distribution.
We now place ourselves in the same setting as in section 2.1. We prove

Theorem 3.1. Assume (W), (M) and (Loc) hold. Let E0 be an energy in I such
that ν(E0) > 0.
Then, there exists δ > 0, such that,

• for any sequences of intervals I1 = IΛ1 , . . . , Ip = IΛp in |Λ|1−β · [−1, 1] satis-
fying (4),

• for any sequences of cubes C1 = CΛ
1 , . . . , Cp = CΛ

p in [−1/2, 1/2]d

one has, for any sequences of integers k1 = kΛ1 , · · · , kp = kΛp ∈ N
p,

lim
|Λ|→+∞
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where xn(ω) = xn(ω,ΛL) is the localization center associated to the eigenvalue
En(ω,ΛL) = E0 + Ldξn(ω,Λ).

This result generalizes the results of [8, 14].

3.2. Covariant scaling joint (energy,center)-distribution. Fix a sequence of
scales ℓ = (ℓΛ)Λ such that

ℓΛ
log |Λ|

→
|Λ|→+∞

+∞ and ℓΛ ≤ |Λ|1/d. (5)

Pick E0 ∈ I so that ν(E0) > 0. Consider the point process

Ξ2
Λ(ξ, x;E0, ℓ) =

N
∑

j=1

δν(E0)(Ej(ω,Λ)−E0)ℓdΛ
(ξ)⊗ δxj(ω)/ℓΛ(x).

The process is valued in R×R
d; actually, if c ℓΛ ≥ |Λ|1/d, it is valued in R×(−c, c)d.

Define

cℓ = lim
|Λ|→+∞

|Λ|1/dℓ−1
Λ ∈ [1,+∞].

We prove

Theorem 3.2 ([6]). The point process Ξ2
Λ(ξ, x;E0, ℓ) converges weakly to a Poisson

process on R× (−cℓ, cℓ)
d with intensity measure the Lebesgue measure.
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In the case ℓΛ = |Λ|1/d, the result of Theorem 3.2 was obtained in [8] (see also [15,
14]). In general, we see that, once the energies and the localization centers are
scaled covariantly, the convergence to a Poisson process is true at any scale that
is essentially larger than the localization width. The scaling is very natural; it is
the one prescribed by the Heisenberg uncertainty principle: the more precision we
require in the energy variable, the less we can afford in the space variable. In this
respect, the energies behave like a homogeneous symbol of degree d. This is quite
different from what one has in the case of the Laplace operator.

3.3. Non-covariant scaling joint (energy,center)-distribution. One can also
study what happens when the energies and localization centers are not scaled co-
variantly. Consider two sequences of scales, say ℓ = (ℓΛ)Λ and ℓ′ = (ℓ′Λ)Λ. Pick
E0 ∈ I so that ν(E0) > 0. Consider the point process

Ξ2
Λ(ξ, x;E0, ℓ, ℓ

′) =

N
∑

j=1

δν(E0)(Ej(ω,Λ)−E0)ℓdΛ
(ξ)⊗ δxj(ω)/ℓ′

Λ
(x).

Then, one proves

Theorem 3.3 ([6]). Assume the sequences of increasing scales ℓ = (ℓΛ)Λ and

ℓ̃ = (ℓ̃Λ)Λ satisfy (5). Assume that

if ℓL = o(L) then
ℓΛL+ℓL

ℓΛL

→
|Λ|→+∞

1 and
ℓ′ΛL+ℓL

ℓ′ΛL

→
|Λ|→+∞

1. (6)

Let J and C be bounded measurable sets respectively in R and (−cℓ̃, cℓ̃)
d ⊂ R

d. One
has

(1) if, for some ρ > 0, one has
ℓ̃Λ
ℓ′Λ

≤ |Λ|−ρ, then ω-almost surely, for Λ

sufficiently large,
∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξdx = 0.

(2) if, for some ρ > 0, one has
ℓ̃Λ
ℓ′Λ

≥ |Λ|ρ, then ω-almost surely,

(

ℓΛ

ℓ̃Λ

)−d ∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξdx →

|Λ|→+∞
|J | · |C|.

Theorem 3.3 proves that the local energy levels and the localization centers become
uniformly distributed in large energy windows if one conditions the localization
centers to a cube of much smaller side-length. On the other hand, for a typical
sample, if one looks for eigenvalues in an energy interval much smaller than the
correctly scaled one with localization centers in a cube, then, asymptotically, there
are none.
Under assumption (5), if one replaces the polynomial growth or decay conditions
on the ratio of scales by the condition that they tend to 0 or ∞, or if one omits
condition (6), the results stays valid except for the fact that the convergence is not
almost sure anymore but simply holds in some Lp norm.
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3.4. The level spacing statistics. Our goal is now to understand the level spac-
ing statistics for eigenvalues near E0 ∈ I. Pick IΛ a compact interval containing
E0 such that its Lebesgue measure |IΛ| stays bounded.
First, let us note that, by the existence of the density of states and also Theorem 2.1,
if ν(E0) > 0, the spacing between eigenvalues of Hω(Λ) near E0 is of size |Λ|−1.
Hence, to study the statistics of level spacings in IΛ, IΛ should contain asymptot-
ically infinitely many energy levels of Hω,Λ. Let us study the number of these levels.

3.4.1. A large deviation principle for the eigenvalue counting function. Define the
random numbers

N(IΛ, ω,Λ) := #{j; Ej(ω,Λ) ∈ IΛ}. (7)

Write IΛ = [aΛ, bΛ]. We show that N(IΛ, ω,Λ) satisfies a large deviation principle

Theorem 3.4 ([6]). Define N(IΛ) = N(bΛ) − N(aΛ) and assume that, for some
ν ∈ (0, 1),

N(IΛ) ≥ |IΛ|
2−ν (8)

There exists δ > 0 and a sequence (εΛ)Λ such that, for εΛ > 0, εΛ → 0 and one has

P
(∣

∣N(IΛ, ω,Λ)−N(IΛ)|Λ|
∣

∣ ≥ εΛN(IΛ)|Λ|
)

≤ e−(N(IΛ)|Λ|)δ/δ. (9)

The large deviation principle (9) is meaningful only if N(IΛ)|Λ| → +∞; as N is
Lipschitz continuous as a consequence of (W), this implies that

|Λ| · |IΛ|→+∞ when |Λ| → +∞.

In this case, if N(IΛ)|Λ| satisfies (8), one has

E(N(IΛ, ω,Λ)) = N(IΛ)|Λ|+ o (N(IΛ)|Λ|) .

So (9) also says

P (|N(IΛ, ω,Λ)− E(N(IΛ, ω,Λ))| ≥ εΛ E(N(IΛ, ω,Λ))) ≤ e−E(N(IΛ,ω,Λ))δ/δ.

Remark 3.1. Notice that the condition (8) allows for IΛ to be centered at a point
E0 where ν(E0) = 0 as long as the rate of vanishing of ν near E0 is not too fast.
Actually, all the results presented in this paper can be extended to this setting i.e.
in Theorems 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, 3.2, 3.3, 3.5, 4.1 and 5.1, one can replace the
assumption ν(E0) > 0 by (8) (see[6]). Of course, for the results to remain valid,
in the definition of the points processes or the empirical distributions, one has to
replace the normalization constant |Λ|ν(E0) by |Λ|N(IΛ)/|IΛ|.

3.4.2. The level spacing statistics near a given energy. Define E to be the set of
energies E such that ν(E) = N ′(E) exists and

lim
|x|+|y|→0

N(E + x)−N(E + y)

x− y
= ν(E).

The requirement on the points in E is somewhat stronger than asking for the simple
existence of ν(E). Nevertheles, one proves that the set E is of full Lebesgue measure.
It clearly contains the continuity points of ν(E).

Fix E0 ∈ E . If IΛ = [aΛ, bΛ] is such that sup
IΛ

|x| →
|Λ|→+∞

0, then

NΛ(E0 + IΛ) = ν(E0)|IΛ||Λ|(1 + o(1)) as |Λ| → +∞.
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Consider the renormalized eigenvalue spacings: for 1 ≤ j ≤ N ,

δEj(ω,Λ) = |Λ| ν(E0)(Ej+1(ω,Λ)− Ej(ω,Λ)) ≥ 0.

Define the empirical distribution of these spacings to be the random numbers, for
x ≥ 0

DLS(x; IΛ, ω,Λ) =
#{j; Ej(ω,Λ) ∈ IΛ, δEj(ω,Λ) ≥ x}

N(IΛ, ω,Λ)
.

We first study the level spacings distributions of the energies inside an interval that
shrink to a point.
We prove

Theorem 3.5 ([6]). Fix E0 ∈ E such that ν(E0) > 0 and pick (IΛ)Λ a sequence of
intervals centered at E0 such that sup

IΛ

|x| →
|Λ|→+∞

0.

Assume that, for some δ > 0, one has

|Λ|1−δ · |IΛ| →
|Λ|→+∞

+∞ and if ℓL = o(L) then
|IΛL+ℓL

|

|IΛL
|

→
L→+∞

1. (10)

Then, with probability 1 , as |Λ| → +∞, DLS(x; IΛ, ω,Λ) converges uniformly to
the distribution x 7→ e−x, that is, with probability 1,

sup
x≥0

∣

∣DLS(x; IΛ, ω,Λ)− e−x
∣

∣ →
|Λ|→+∞

0.

Hence, the rescaled level spacings behave as if the eigenvalues were i.i.d. uniformly
distributed random variables (see [18] or section 7 of [16]). This distribution for
the level spacings is the one predicted by physical heuristics in the localized regime
([7, 11, 13, 17]). It is also in accordance with Theorem 2.1. In [12, 3], the domains
in energy where the statistics could be studied were much smaller than the ones
considered in Theorem 3.5. Indeed, the energy interval was of order |Λ|−1 whereas,
here, it is assumed to tend to 0 but be large when compared to |Λ|−1. In particular,
in [12, 3], the intervals were not large enough to enable the computation of statistics
of levels as not enough levels were involved: the intervals typically contained only
finitely many intervals.

The first condition in (10) ensures that IΛ contains sufficiently many eigenvalues
of Hω(Λ). The second condition in (10) is a regularity condition of the decay of
|IΛ|. If one omits either or both of these two conditions and only assumes that
|Λ| · |IΛ| → +∞, one still gets convergence in probability of DLS(x; IΛ, ω,Λ) to e−x

i.e.

P

(

sup
x≥0

∣

∣DLS(x; IΛ, ω,Λ)− e−x
∣

∣ ≥ ε

)

→
|Λ|→+∞

0.

3.4.3. The level spacing statistics on macroscopic energy intervals. Theorem 3.5
seems optimal as the density of states at E0 enters into the correct rescaling to
obtain a universal result. Hence, the distribution of level spacings on larger intervals
needs to take into account the variations of the density of states on these intervals.
Indeed, on intervals of non vanishing size, we compute the asymptotic distribution
of the level spacings when one omits the local density of states in the spacing and
obtain
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Theorem 3.6 ([6]). Pick J ⊂ I a compact interval such λ 7→ ν(λ) be continuous
on J and N(J) :=

∫

J ν(λ)dλ > 0. Define the renormalized eigenvalue spacings, for
1 ≤ j ≤ N ,

δJEj(ω,Λ) = |Λ|N(J)(Ej+1(ω,Λ)− Ej(ω,Λ)) ≥ 0

and the empirical distribution of these spacing to be the random numbers, for x ≥ 0

DLS′(x; J, ω,Λ) =
#{j; Ej(ω,Λ) ∈ J, δJEj(ω,Λ) ≥ x}

N(J, ω,Λ)
.

Then, as |Λ| → +∞, with probability 1, DLS′(x; J, ω,Λ) converges uniformly to
the distribution x 7→ gν,J(x) where

gν,J(x) =

∫

J

e−νJ (λ)xνJ (λ)dλ where νJ =
1

N(J)
ν. (11)

We see that, in the large volume limit, the rescaled level spacings behave as if
the eigenvalues were i.i.d. random variables distributed according to the density

1
N(J)ν(λ) i.e. to the density of states normalized to be a probability measure on J

(see section 7 of [16]).
In Theorem 3.6, we assumed the density of states to be continuous. This is known
to hold in the large coupling limit if the density of the distribution of the random
variables is sufficiently smooth (see [2]).

4. The localization center spacing statistics

Pick E0 as above. Inside the cube Λ, the number of centers that corresponds to
energies in IΛ is roughly equal to ν(E0)|IΛ|N . Thus, if we assume that the localiza-
tion centers are uniformly distributed as is suggested by Theorems 3.2 and 3.3, the
reference mean spacing between localization centers is of size (|Λ|/(ν(E0)|IΛ||Λ|)

1/d =
(ν(E0)|IΛ|)

−1/d. This motivates the following definition.
Define the empirical distribution of center spacing to be the random number

DCS(s; IΛ, ω,Λ) =

#

{

j; E(ω,Λ) ∈ IΛ,
mini6=j |xj(ω)− xi(ω)|

d
√

ν(E0)|IΛ|
≥ s

}

N(IΛ, ω,Λ)
(12)

where N(IΛ, ω,Λ) is defined in (7).
We prove an analogue of Theorems 3.5, namely

Theorem 4.1 ([6]). Pick E0 ∈ I such that ν(E0) > 0. Assume (H.3) and

|IΛ| = o

(

1

logd |Λ|

)

.

Then, as |Λ| → +∞, in probability, DCS(s; IΛ, ω,Λ) converges uniformly to the

distribution x 7→ e−sd , that is, for any ε > 0,

P

({

ω; sup
s≥0

∣

∣

∣DCS(s; IΛ, ω,Λ)− e−sd
∣

∣

∣ ≥ ε

})

→
ΛրRd

0.

Of course, Theorem 3.6 also has an analogue for localization centers.
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5. Another point of view

In the present section, we want to adopt a different point of view on the spectral
statistics. Instead of discussing the statistics of the eigenvalues of the random
system restricted to some finite box in the large box limit, we will describe the
spectral statistics of the infinite system in the localized phase. Let I be an interval
in the region of complete localization. Then, it is well known ([9, 1, 5]) that, in this
region, the following property holds

(Loc’): there exists γ > 0 such that, with probability 1, if E ∈ I ∩ σ(Hω)
and ϕ is a normalized eigenfunction associated to E then, for x(E) ∈ Z

d, a
maximum of x 7→ ‖ϕ‖x, for some Cω > 0, one has, for x ∈ R

d,

|ϕ(x)| ≤ Cω(1 + |x(E)|2)q/2e−γ|x−x(E)|;

moreover, one has E(Cω) < +∞.

As above x(E) is called a center of localization for the energy E or for the associated
eigenfunction ϕ.
Without restriction on generality, we assume that σ(Hω) ∩ I = I ω-almost surely.
Hence, any sub-interval of I contains infinitely many eigenvalues and to define
statistics, we need a way to enumerate these eigenvalues. To do this, we use the
localization centers; namely, we prove

Proposition 5.1 ([6]). Fix q > 2d. Then, there exists γ > 0 such that, ω-almost
surely, there exists Cω > 1 such that

(1) if x(E) and x′(E) are two centers of localization for E ∈ I then

|x(E) − x′(E)| ≤ γ−2(log〈x(E)〉 + logCω)
1/ξ.

(2) for L ≥ 1, pick IL ⊂ I such that LdN(IL) → +∞ (see Theorem 3.4);
if N(IL, L) denotes the number of eigenvalues of Hω having a center of
localization in ΛL, then

N(IL, L) = N(IL) |ΛL| (1 + o(1)).

Point (1) is proved in [5] (see Corollary 3 and its proof). Points (2) and (3) are
proved in [6].
For L ≥ 1, pick IL ⊂ I such that LdN(IL) → +∞. In view of Proposition 5.1,
we can consider the level spacings for the eigenvalues of Hω having a localization
center in ΛL; indeed, for L large, there are only finitely many such eigenvalues,
let us enumerate them as E1(ω,L) ≤ E2(ω,L) ≤ · · · ≤ EN (ω,L) where we repeat
them according to multiplicity. Consider the renormalized eigenvalue spacings, for
1 ≤ j ≤ N ,

δEj(ω,L) = |ΛL| (Ej+1(ω,L)− Ej(ω,L)) ≥ 0.

Define the empirical distribution of these spacing to be the random numbers, for
x ≥ 0

DLS(x; IL, ω, L) =
#{j; Ej(ω,L) ∈ IL, δEj(ω,L) ≥ x}

N(IL, L)

Then, we prove

Theorem 5.1 ([6]). One has
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• if E0 ∈ E∩IL s.t. ν(E0) > 0 and |IL| → 0 and satisfies (10), then, ω-almost
surely, for x ≥ 0

lim
L→+∞

sup
x≥0

∣

∣

∣
DLS(x; IL, ω, L)− e−ν(E0)x

∣

∣

∣
= 0;

• if, for all L large, IL = J such that ν(J) > 0 and ν is continuous on J
then, ω-almost surely, one has

lim
L→+∞

sup
x≥0

|DLS(x; IL, ω, L)− gν,J (N(J)x)| = 0

where gν,J is defined in (11).

In the first part of Theorem 5.1, if (10) is not satisfied, then the convergence still
holds in probability.
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