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Fuzzy Associative Conjuncted Maps Network
Hanlin Goh, Joo-Hwee Lim, Member, IEEE, and Chai Quek, Member, IEEE

Abstract—The fuzzy associative conjuncted maps (FASCOM)
is a fuzzy neural network that associates data of nonlinearly
related inputs and outputs. In the network, each input or output
dimension is represented by a feature map that is partitioned into
fuzzy or crisp sets. These fuzzy sets are then conjuncted to form
antecedents and consequences, which are subsequently associ-
ated to form IF–THEN rules. The associative memory is encoded
through an offline batch mode learning process consisting of three
consecutive phases. The initial unsupervised membership function
initialization phase takes inspiration from the organization of
sensory maps in our brains by allocating membership functions
based on uniform information density. Next, supervised Hebbian
learning encodes synaptic weights between input and output
nodes. Finally, a supervised error reduction phase fine-tunes the
network, which allows for the discovery of the varying levels of
influence of each input dimension across an output feature space
in the encoded memory. In the series of experiments, we show that
each phase in the learning process contributes significantly to the
final accuracy of prediction. Further experiments using both toy
problems and real-world data demonstrate significant superiority
in terms of accuracy of nonlinear estimation when benchmarked
against other prominent architectures and exhibit the network’s
suitability to perform analysis and prediction on real-world appli-
cations, such as traffic density prediction as shown in this paper.

Index Terms—Fuzzy associative conjuncted maps (FASCOM),
fuzzy associative memory, fuzzy neural networks, Hebbian
learning, Iris plant classification, multivariate data analysis,
Nakanishi’s nonlinear estimation tasks, neurofuzzy systems,
supervised learning, traffic density prediction, two-spiral classifi-
cation, unsupervised learning.

I. INTRODUCTION

F UZZY neural networks [1]–[4] are hybrid intelligent
systems that combine the humanlike knowledge represen-

tation and reasoning of fuzzy logic [5], with the adaptation and
learning capabilities of neural networks. As such, they max-
imize the desirable properties of both fuzzy logic and neural
networks, and become powerful tools for learning and infer-
ence. The methods to encode knowledge into fuzzy systems
are common difficulties. These methods include membership
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function determination, fuzzy rule identification, and fuzzy
rule inference. These problems may be alleviated by using
brain-inspired features, such as self-organization. On the other
hand, neural networks are typically black boxes and analysis
of a trained network is difficult. Thus, the integration of fuzzy
logic in neural networks can significantly improve the trans-
parency of the network. It is hoped that while data prediction
remains highly accurate, some form of analysis of the complex
multivariate systems they represent is still possible.

A fuzzy neural network belongs to one of two paradigms: 1)
linguistic fuzzy model (e.g., Mamdani model proposed in [6])
and 2) precise fuzzy model (e.g., Takagi–Sugeno–Kang (TSK)
model proposed in [7]–[9]). In the linguistic model given in (1),
both the antecedent and consequence are fuzzy sets, whereby
for a rule

if is and is then is (1)

where and are the input vector and output
value, respectively, and represent linguistic labels, and

is the number of inputs. In the precise fuzzy model given in
(2) and (3), the antecedent is a fuzzy set and the consequence is
formed by linear equations [10], [11]

if is and is then (2)

(3)

where is the number of rules, and is the strength of .
Linguistic fuzzy models focus on interpretability and lack in ac-
curacy, while precise fuzzy models focus on accuracy and lack
human interpretability [11], [12].

In this paper, we propose the fuzzy associative conjuncted
map (FASCOM) architecture, which is an implementation of a
linguistic fuzzy model that uses associations to learn relation-
ships between input and output fuzzy sets. Its main objective
is to provide a means for highly accurate data prediction, with
some capability of interpretability of the multivariate system
it models. Its design follows a line of work on fuzzy associa-
tive memories, pioneered by [13]. Though aware of its draw-
back in terms of space complexity, FASCOM retains the orig-
inal simple concept of using a fuzzy associative matrix to rep-
resent input–output relationships. Its focus is to improve data
prediction accuracy through the introduction of several new fea-
tures in both data representation and its encoding process. For
example, typical associative networks may result in nonperfect
retrieval, due to crosstalk among nonmutually orthogonal input
patterns. We proposed to alleviate this problem by conjuncting
antecedent and consequence fuzzy sets, as in

if is and is

then is and is (4)
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where is the output vector and is the
number of outputs. In doing so, we intrinsically form represen-
tations of multiple antecedents and consequences within the net-
work.

By learning data obtained from past experience, fuzzy
neural networks can identify fuzzy IF–THEN rules between the
antecedents and consequences of a multivariate system. This
is achieved by means of either unsupervised, supervised, or a
combination of both unsupervised and supervised techniques.

In unsupervised approaches [14]–[17], learning algorithms
that are used to identify fuzzy rules are only dependent on the
natural statistics of the data and are not concerned with the re-
lationships between the input and the outputs. This is followed
by processing involving the application of neural network tech-
niques (e.g., clustering, self-organization) to adjust identified
rules. Due to this reliance on training data, nonrepresentative
data may lead to ill-defined rules and hence producing an inac-
curate system model.

For supervised approaches [18], [19], supervised learning
methods (e.g., backpropagation [20]) are used to identify rules
by mapping inputs to outputs. As such, it is sensitive to the
correlation between input and output data. However, a draw-
back for this approach is that the semantics of the fuzzy neural
network remains opaque, which contradicts the original aim of
combining fuzzy logic with neural networks.

FASCOM is encoded through a learning process consisting of
three phases. The first phase involves an unsupervised initializa-
tion of membership functions that quantizes the input data. The
second phase is a supervised Hebbian learning process that en-
codes synaptic weights between conjuncted fuzzy sets. The third
is a supervised error reduction phase that fine-tunes the partially
encoded network and completes the learning process. The entire
learning process is performed in an offline batch mode manner,
similar to [21] and [22]. This is as opposed to online learning
methods [23], [24] where the models are incrementally updated
with every new training instance, resulting in fuzzy rules that
adaptively evolve with the sequence of training samples. On
the other hand, if new data is provided to FASCOM, the entire
model needs to be retrained.

The proposed architecture also bears similarity to the popular
fuzzy min–max neural networks and its variants [25], [26],
whereby hyperboxes are placed within the feature space. A
learning algorithm then dynamically adjusts the quantity of
these hyperboxes or modify their sizes through and expansion
and contraction process, such that the overlap between classes
is eliminated. However, in many real-world scenarios, data
between classes may not be easily separable. As such, a gradual
assessment of membership between classes is also essential,
so that the classes are not mutually exclusive [27]. This is
also what FASCOM aims to achieve. However, these methods
differ with FASCOM in their manner of deriving fuzzy regions.
While the fuzzy min–max networks use a supervised approach
to assign and adjust fuzzy sets, FASCOM uses the distribution
of the data to initialize the fuzzy regions in an unsupervised
manner. Supervision is only introduced in the later phases of
encoding whereby an associative network is encoded.

Fuzzy IF–THEN rules provide a localized linguistic under-
standing that is dependent on the locations of their membership

functions. But little information can be extracted about the
influences of input dimension on the output. This can be
somewhat achieved using various well-established methods to
analyze and reduce dimensions of a multivariate system, such
as principle component analysis (PCA) [28]. PCA is commonly
used for dimension reduction, but fails to provide a description
of the relationships between the input and output dimensions.
Other dimension reduction methods have also been used in the
fuzzy neural network literature [12], [35], whereby dimension
selection is based on the existence of fuzzy rules identified in
the dimensions. However, while all these methods provide a
general idea of which dimensions are important and which are
not, they do not specify to which portions of the output the
inputs exert their influences on. Interestingly, besides being
able to identify fuzzy rules for data estimation, the encoded
FASCOM network can also provide insights on how the in-
fluence of an input dimension varies across an output feature
space.

The FASCOM architecture introduces the following key fea-
tures, with their benefits explained this paper.

1) The unsupervised learning phase (Section III-A) that ini-
tializes membership functions based on uniform informa-
tion density results in an improvement of the output pre-
cision of nonlinear estimation as compared to one with a
proportional distribution of membership functions in the
feature space. Since feature maps are organized based on
the information distribution of the data in an unsupervised
manner, it is a quick and effective approach for initial-
ization as it only involves a mapping between uniformed
and nonuniformed scales of the feature maps. There is ev-
idence that this sort of neuron organization is extensively
seen in the sensory maps of humans and other organisms
[29]–[34].

2) A supervised error reduction learning phase (Section III-C)
that fine-tunes the network is introduced to effectively en-
hance the accuracy of data prediction. It also presents the
influences of an input dimension on different portions of
an output feature space. Conversely, we can identify the
influences of different inputs on a particular portion of
an output. It raises the level of understanding, in addition
to fuzzy rules, by allowing the user to determine which
factors (or dimensions) are the likely causes of particular
ranges of the output. This is especially beneficial for non-
linear systems whereby the resultant output might be influ-
enced differently across output space. Such analytical in-
formation can be easily extracted from the network because
weights relating an input feature with various portions of
the output space are learned in this phase. Unlike feature
selection methods that discard noninfluential dimensions
based on global statistics, our method is able to retain input
dimensions that have strong influences on small portions of
the output.

3) Input and output conjunctions reduce and possibly remove
crosstalk in nonmutually orthogonal input patterns, as
demonstrated in Sections V-A and V-B. This enables the
representation of multiple antecedents and multiple conse-
quences, as opposed to singular ones. Furthermore, it not
only boosts information representation in an associative
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Fig. 1. Structure of the FASCOM network.

neural network, but also enhances the fuzzy-logical lin-
guistic representation. As such, this feature is in essence a
true amalgamation of neural and fuzzy concepts.

Through the series of benchmark experiments, we also iden-
tified some possible limitations of high complexity in terms of
space usage. Like many neural network models, there is also
a requirement of parameter setting for optimal results. Based
on these factors, we suggest that this architecture is especially
suitable for applications that do not need real-time or online
learning, but rather require fast and accurate prediction, or those
needing descriptive information on relations between input and
dimensions for the multivariate system.

II. FASCOM NETWORK STRUCTURE

The FASCOM architecture is a six-layer neural network as
depicted in Fig. 1. The six layers are, namely, input fuzzifier
(layer 1), single antecedent (layer 2), multiple antecedent (layer
3), multiple consequence (layer 4), single consequence (layer 5),
and output defuzzifier (layer 6). The outputs of each layer are
projected as the inputs of the next layer in a feedforward manner.
Layers 1–3 represent input layers, while layers 4–6 represent
output layers.

The inputs and outputs of the network are rep-
resented as vectors and

, where and denote the
number of input and output linguistic variables, respectively.
While the output vectors are nonfuzzy, the inputs may be either
fuzzy or crisp. Input fuzzification and output defuzzification
are automatically accomplished in layers 1 and 6, respectively.
Table I lists the description and quantity of the nodes and
feature maps in each layer of the network. In biological neural
circuitry, feature maps may be subsequently integrated in
association areas for purposeful action or cognitive function
[36]. Similarly, the inputs of the network are associated with
the outputs in the hybrid associative memory between layers
3 and 4. s in layer 3 are linked to s in layer 4
via a association, with each representing a
fully connected heteroassociative associative network between

and . If every is connected to every
, there will be a total of such associative

networks. In each network, there are
connections, each representing a fuzzy IF–THEN rule

(i.e., if , then ). Memory between and
is stored as synaptic weight . The synaptic weights
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TABLE I
DESCRIPTION AND QUANTITY OF NODES AND FEATURE MAPS IN THE NETWORK

for a association form a correlation matrix
defined in

...
. . .

...
. . .

...

...
. . .

...
. . .

...

(5)

Connections are further weighted by a modulatory weight
that signifies a connection between with .

Modulatory weights between an pair can be
structured as a vector given by

(6)

As a result, a connection between nodes and is
weighted by resultant weight , which is the product of

and , and can be computed by

(7)

or expressed in the following as a correlation matrix

...
. . .

...
. . .

...

...
. . .

...
. . .

...

(8)

Through the processes of conjunction in layers 3 and 4, and
association between the layers, this correlation matrix may end
up being large. This problem of redundancy from population
coding is also observed in biological systems, with only a small
portion of cells in a population coded feature map responding
only to stimulation of a specific region. However, it is undesir-
able in a computational paradigm due to its spatial redundancy.
Similarly to [13], since each element within the association ma-
trix represents a fuzzy rule, this also means that there will be
a large number of fuzzy rules generated. One way to circum-
vent this problem is to extract a ranked list of fuzzy rules based

on their computed resultant weights, thus enabling the identifi-
cation and retention of those rules with higher impact and re-
moving noninfluential fuzzy rules. Other methods to tackle this
problem have also been introduced in [37]–[40].

Layer 5 has a structure similar to layer 2, and consists
of output maps . has output label nodes

, with each node symbolizing an output
linguistic label of an output variable. The total number of
nodes in this layer is . Layer 6 consists of output
linguistic nodes , corresponding to the
size of output vector , with representing the th output
linguistic variable. This layer converts fuzzy outputs from layer
5 to a crisp output.

As a convention, the output of a node or map is denoted as
with subscripts specifying its origin. For example, rep-

resents the output of node and denotes the output
vector of . All outputs from a layer are propagated to the
corresponding inputs at the next layer with unity link-weight
through an existing connection, except for the connections be-
tween layers 3 and 4 where connections are weighted by resul-
tant weight .

A. Layer 1: Input Fuzzifier

nodes in the input fuzzifier layer represent input linguistic
variables such as “width,” “height,” etc. This layer fuzzifies the
input vector using the following into a vector of fuzzy member-
ship functions

(9)

where is the membership function of . If a
fuzzy input is presented to a node in this layer, the node simply
redirects it as the output of the node. This layer first assigns
as the centroid of the membership function with value 1. If no
smoothing is involved, . Two smoothing functions
were identified for our experiments: Gaussian defined by
(10), and Laplacian of Gaussian defined by (11)

(10)

(11)

where is the variance of the function. is used to model
lateral inhibition in the biological neural circuitry [36], [41],
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Fig. 2. Computing the fuzzy subsethood measure from a LoG(�) smoothed
input x .

in which positive signals from the center of a stimuli are sur-
rounded by a ring of negative signals. This is especially useful
for increasing signal discrimination by improving the contrast of
signals. The difference of Gaussian operator is sometimes used
as an approximation for [42].

B. Layer 2: Single Antecedent

sIn layer 2, the node represents the th input label, such
as “low,” “medium,” “high,” etc., corresponding to the th input
linguistic variable and grouped into . This layer receives
fuzzified inputs from layer 1 and computes the fuzzy sub-
sethood measure[43], which is the degree of one fuzzy set be-
longing to another, for each corresponding input label. Using the
minimum T-norm operator for the intersection operation,
the subsethood measure of and can
be approximated using

(12)

where and are positive and nega-
tive components of , respectively, and is the mem-
bership function of input label . The output of is de-
scribed by

(13)

An example of this computation is illustrated in Fig. 2.
Based on the input with ,
is first computed through a smoothing of . A
positive vector is derived from the subsethood measure
computed separately from all five neurons with membership
functions , , , , and , with
only positive values of [i.e., ], while treating
the negative values as 0. For example, this operation
results in .
Similarly, a negative vector is computed as

by ignoring positive
membership values and computing the subsethood measure of
the absolute value of the negative ones . In practical im-
plementation, these two vectors may be computed sequentially
and stored separately. Finally, is subtracted from .

Fig. 3. Example of projecting layer 2 to layer 3.

This essentially combines the two vectors of fuzzy subsethood
measures into a single vector as described in (13). As such, the
computed .

C. Layer 3: Multiple Antecedent

In the multiple antecedent layer, each node represents
either a single antecedent, such as “if height is short,” “if speed is
fast,” etc., or multiple antecedents, such as “if height is short and
weight is light,” “if speed is fast and fuel is low and temperature
is high,” etc. In the example shown in Fig. 3, and
representing single antecedents are copies of and .
In addition, representing a conjunction of labels of the
linguistic variables “height” and “weight” contains four nodes
that represent the four multiple antecedents, namely, “if height
is short and weight is light,” “if height is short and weight is
heavy,” “if height is tall and weight is light,” and “if height is
short and weight is heavy.”

If s are exhaustively conjuncted to form s, the
number of s generated will be , where is the
number of input dimensions. This means that the number of

s grows exponentially with the number of s; as a re-
sult, the number of s generated by exhaustive conjunction
of all s will be significantly larger with every subsequent
dimension introduced. The space complexity for the number of

is , which poses a limitation on high-dimensional
inputs.

To handle data sets with high dimensionality, instead of ex-
haustively conjuncting all combinations of s, the s are
selectively conjuncted into s. One simple way to do this is
to limit the number of preceding s that can be combined into
each . If the threshold for the number of s per
is , the number of s generated will be . For ex-
ample, in a data set with ten input dimensions (i.e., ten s),
the exhaustive conjunction method will produce 1023 s.
However, if the number of preceding s is limited to two, then
the number of s will be 55. This step was introduced in the
experiment described in Section V-D3.
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The output of each node is known as the
firing strength, and results from conjunctions of . Using
the algebraic product T-norm operator, is given by

(14)

where takes on a link weight factor of 1 if there is
a connection between and , and is otherwise 0. Equa-
tion (15) describes the output of as a vector of firing
strengths

(15)

D. Layer 4: Multiple Consequence

A node in layer 4 may represent either a single con-
sequence, for example, “then age is young,” “then driving is
very dangerous,” etc., or multiple consequences, such as “then
age is young and diet is healthy,” “then driving is very dan-
gerous and apply the brake a little,” etc. Multiple consequences
may be especially useful in applications requiring multiple si-
multaneous outputs, or data associations with a one-to-many or
many-to-many relationship.

Because these nodes represent the “then” clause of a fuzzy
IF–THEN rule, when is linked with , a fuzzy IF–THEN

rule is formed between them (i.e., if , then ). This rule
can be abbreviated as . Rules are weighted by
the resultant weights , which are determined through
the learning processes (details will be described later in
Sections III-B and III-C), with rules that have higher weights
being more significant than those with lower weights. During
recall, the output of a node is its activa-
tion level , as shown in (16), and obtained via the process
to be described in Section IV

(16)

E. Layer 5: Single Consequence

In layer 5, represents output labels such as “light,”
“medium,” “heavy” of the corresponding output linguistic vari-
able . Each node is represented by a membership function

similar to the nodes in layer 2. Equation (17) de-
fines a node’s output as the maximum activa-
tion level of consequence nodes connected to it

(17)

where is a link weight factor of 1 when there exists
a connection between nodes and , and is 0 otherwise.

F. Layer 6: Output Defuzzifier

Layer 6 consists of nodes that represent output variables
such as “speed,” “temperature,” etc. The function of this layer
is to convert the fuzzy set outputs of layer 5 into crisp outputs.
Three defuzzification schemes are predominant in the literature

Fig. 4. Learning process (highlighted in gray).

[44], namely, the center of area, center of maxima, and mean of
maxima. A suitable defuzzification scheme , described in
(18), is applied for every

(18)

In the subsequent set of experiments, the center of area defuzzi-
fication scheme defined in (19) was used

(19)

where is the aggregated output mem-
bership function.

III. THREE-PHASE LEARNING PROCESS

Similarly to [45], FASCOM’s three-phase learning process
consists of three phases. The first phase initializes membership
functions for all input and output labels based on uniform infor-
mation density. Next, Hebbian learning computes the synaptic
weights of connections between nodes in layer 3 and those in
layer 4. The connections between the input and output con-
juncted maps are fine-tuned through a supervised error reduc-
tion final phase. As illustrated in Fig. 4, the output layers 4–6
assume the same functional processes as the input layers 1–3,
of fuzzification (Section II-A), subsethood measure computa-
tion (Section II-B), and conjunction formation (Section II-C),
respectively.

To avoid confusion, an alternate symbol is used to repre-
sent the output of a node or a map that has been derived via a
reverse propagation process (i.e., fuzzification for layer 6, sub-
sethood computation for layer 5, and conjunction formation for

layer 4). For example, represents the fuzzified output of

and symbolizes the vector of firing rate of nodes
in .
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A. Unsupervised Membership Function Initialization Phase

A linguistic label is represented by a neuron. In the exper-
imentations, three types of membership functions for these
neurons were identified, namely, discrete, rectangular, and
Gaussian. The first two offer a crisp representation of feature
space, while the third provides a fuzzy representation. We adopt
a three-stage approach for membership function initialization:
1) calculation of centroids, 2) initial allocation of neurons, and
3) equalization for uniform information density.

Cyclic and scalar maps are used to represent the two dif-
ferent natures of fuzzy linguistic variables. Examples of cyclic
variables include the visual submodalities of hue and orienta-
tion. Swindale [46] suggested that cyclic variables may have an
advantage that the maps representing these variables can wrap
around without compromising continuity and edge effects. For
scalar maps containing Gaussian fuzzified neurons, it is neces-
sary to remove edge effects by padding the two ends of the rep-
resented space.

1) Computing Centroids of Membership Functions: The
number of neurons in an input or output map representing
labels of a linguistic variable is first fixed. The lower the
separability between data classes is, the higher requirement for
acuity will be, thus increasing the required to model the data.
A brief discussion on this is presented in Section V-B.

For a neuron with centroid , its membership function is
determined by

for scalar variables

for cyclic variables
(20)

where and are, respectively, the maximum and min-
imum values of represented by the map.

2) Initial Uniform Neuron Allocation: The rectangular func-
tion for a neuron defined in (21) results in a crisp representa-
tion of information, identical to that of the classical set theory

for
otherwise

(21)

where is the center of the membership function for neuron in
linguistic variable , and defines the distance of the rectangular
membership function from its center. The discrete membership
function is a special case of rectangular membership functions,
where membership functions do not overlap. This occurs when

.
Unlike crisp neurons, fuzzy neurons allow for a gradual as-

sessment of membership functions and are biologically similar
to the overlapping nature of receptor fields on the periphery re-
ceptor sheets. In particular, the Gaussian function, defined in
(22), fits the sensitivity curve of the receptive field of a retinal
ganglion cell [47]

(22)

where is the variance of the Gaussian function.
3) Uniform Information Density Equalization: There is a

disproportion in neuron allocation [36] within various sensory

maps in the brain that depends on the usage or sensitivity re-
quirements of a species or an individual. For example, in the
auditory cortex of a bat, the region corresponding to the fre-
quency of its biosonar is especially large [29]. This is also ob-
served in other sensory systems, such as the visual [30], [31]
and somatosensory [32] systems, and adapted through evolu-
tion and individual experiences [33]. It was suggested in [34]
that the disproportion is optimized by uniform cortical informa-
tion density across the map for efficient information transmis-
sion. In FASCOM, membership functions are allocated based
on the varying information density of the training data across
feature space. This disproportion in allocation [Fig. 5(d)] can
be achieved by the following four steps:

1) histogram construction based on data points of training
data [Fig. 5(a)];

2) Gaussian smoothing of histogram [Fig. 5(a)];
3) histogram equalization to modify the scale of the domain

[Fig. 5(b)];
4) using the equalized scale in step 3 to map to the initial

neuron allocation [Fig. 5(c)].
With more neurons allocated to the areas with higher informa-

tion concentration, the output will be more responsive and pre-
cise. A similar concept to handle the sensitivity requirements of
a fuzzy control system was proposed in [48] to allow for a finer
fuzzy control of a truck reversing into a dock, when the truck is
nearer to the dock.

B. Supervised Hebbian Learning Phase

1) Fundamental Hebbian Rule: Modified during learning
by adopting the Hebbian rule [49], the synaptic weight
stores memory between two neurons and . Assuming and

are nodes in an and , respectively, the change in
synaptic weight can be computed using (23) based on

their firing strengths and

if and

otherwise
(23)

where which is the maximum possible absolute
change in synaptic weight defined in (25). Equation (24) then
updates by aggregating it with the current

(24)

2) Modeling Learning Mechanisms: is deter-
mined by the learning mechanisms of synaptic plasticity, forget-
ting, and long-term facilitation [50], from which the following
three concepts governing the behavior of learning were derived.

1) The effects of synaptic plasticity, forgetting, and their re-
sultant combination are approximated as constants through
time.

2) The effect of long-term facilitation is initially high, but
decays as memory strengthens. When memory stabilizes,
the effect of facilitation is insignificant.

3) The initial effect of long-term facilitation is very much
greater than that of the resultant effect of synaptic plas-
ticity and forgetting.
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Fig. 5. Steps to achieve membership function allocation based on information density. (a) Steps 1 and 2: insert and smooth data. (b) Step 3: histogram equalization.
(c) Step 4: mapping of scale. (d) Final membership function allocation.

The amount of facilitation is dependent on the current
strength of memory (i.e., ), whereby the larger
is, the stronger the memory. Since facilitation decreases as
memory strengthens, we describe in (25) the effects of the three
learning mechanisms as a decaying sigmoid function

(25)

where is the initial effect of facilitation, is the resul-
tant time constant component from the effects of synaptic plas-
ticity and forgetting and and define the slope of the sigmoid
function. Typically, . In cases where the training
data is noisy, it is suggested that the value of be lowered.

Keeping and constant, the amount of time required
for memory development is affected by and , such that as
increases or decreases, the memory will take a longer time
to be developed. It is noted however that, if is set too low
or is set too high, the learning process may be undesirable.
Preferably, .

When suitable values are selected for the parameters, the
three learning mechanisms can be effectively modeled using
the sigmoid function shown in Fig. 6. The sigmoid function
governs how the maximum possible absolute change in synaptic
weight is limited by the current absolute synaptic
weight (i.e., strength of memory) between two neurons

and .
This process of modifying synaptic weights is performed for

all training samples, and eventually, depending on the quality of

Fig. 6. Effects of learning mechanisms on learning. (a) Effects of long-term
facilitation. (b) Combined effects of synaptic plasticity and forgetting.

the training data, the learning process will result in some mem-
ories being strong like long-term memory and possibly some
being weak like short-term memory.

C. Supervised Error Reduction Phase

After deriving the synaptic weights in the supervised Heb-
bian learning phase described in Section III-B, the final phase in
the learning process reduces output error and fine-tunes the net-
work. This phase discovers the influence of an input conjuncted
map on a consequence node and stores it as mod-
ulatory weight . As shown in Fig. 7, modu-
latory weights form asymmetrical connections between
input and output conjuncted maps such that influence of
may differ in magnitude for different portions and output con-
juncted map . The value of refers to the amount
of influence on and their meanings are listed in Table II.
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Fig. 7. Modulatory weights form an asymmetrical (ICM toC ) relation-
ship between input and output conjuncted maps.

TABLE II
MEANING OF VALUES OF MODULATORY WEIGHTS

The flowchart illustrated in Fig. 8 explains the supervised
error reduction algorithm, while Table III lists the symbols used
in this section.

The algorithm first initializes modulatory weights to 1.0 using
(26). For every training input–output pair , the temporary mod-
ulatory weights are assigned by (27). Memory is then recalled
using the recalling process explained in Section IV. An initial
error for each output node is then computed via (28). Next,
using only one input conjuncted map in each iteration,
memory is again recalled. A new error for each node is then
computed using (29). With this, we apply (30) to derive the
change in error with respect to the initial error. Using this in-
formation, the temporary modulatory weights for the training
instance are modified using (31). After processing all s
for all training samples, the modulatory weights are updated
with (32). This entire process is then repeated until a terminating
condition is met

(26)

(27)

(28)

(29)

(30)

Fig. 8. Supervised error reduction algorithm.

(31)

(32)

The modulatory weights are updated using a mod-
ulatory factor defined in (33) based on three factors: 1)
the change in squared error, 2) the number of preceding

, and 3) the current epoch count with respect to the max-
imum number of epochs. The change in modulation decreases
with time and is more sensitive for s with fewer preceding

. The effects of the change in squared error on the modula-
tory weights are as follows.

1) Squared-error increases ( ) imply that
plays an insignificant role, and is reduced.

2) Squared-error decreases ( ) imply that
influences the output, and is strengthened.

3) Otherwise, is not modified

(33)
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TABLE III
LIST OF SYMBOLS USED IN SUPERVISED ERROR REDUCTION PHASE

where is a parameter representing the initial av-
erage learning rate, is a variable affected by the number
of preceding defined in (34), and is the epoch factor
defined in (35)

if
otherwise (34)

where , and
represents a link weight factor of 1 when a

connection exists between and , and 0 other-
wise

(35)

where and are the current and maximum number of
epochs, respectively.

The two terminating conditions for the algorithm are as
follows:

1) maximum number of epochs reached (i.e., );
2) when the total change in error reaches zero or falls below

a low threshold (i.e., ).

IV. RECALLING PROCESS

In the recalling process shown in Fig. 9, an input is first pre-
sented to layer 1 of an encoded network. The network will prop-
agate this input to obtain the firing rates for nodes in layer 3 (see
Sections II-A–II-C). Memory recall from the hybrid associative
memory is then performed and the activation levels for nodes
in layer 4 are obtained. Finally, based on output functions, the
estimated output is produced at layer 6 (see Sections II-D–II-F).
This section focuses on the local processes of each neuron in the
memory recall stage.

Fig. 9. Recalling process (highlighted in gray).

Assuming neuron is an node in layer 3 and neuron is
a node in layer 4. Neuron transmits a signal based on its
firing strength defined by

for
otherwise

(36)

where is the output of , is a propagation
factor to control network stability, and and

are predefined positive and negative thresholds.
Neuron then receives these output signals and updates its

activation level based on

(37)

where is the resultant weight between and , and is the
number of nodes connected to .
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Fig. 10. Encoding transformation for the XOR problem.

V. EXPERIMENTS AND MULTIVARIATE ANALYSIS

Seven experiments were conducted to perform multivariate
analysis and evaluate the performance of nonlinear estimation.
The experiments performed were: 1) the exclusive-OR (XOR)
problem, 2) the two-spiral problem, 3) iris plant classification,
4) Nakanishi’s nonlinear estimation tasks (three experiments),
and 5) highway traffic density prediction and analysis.

A. The Exclusive-OR Problem

The exclusive-OR (XOR) problem is a simple nonlinear classi-
fication problem with nonmutually orthogonal inputs. This ex-
periment’s objective is to observe the behavior of the supervised
error reduction phase (Section III-C).

The initial network shown in Fig. 10(a) was designed with
two s, each partitioned using two Gaussian membership
functions, and an with discrete partitioning using two
rectangular membership functions. The supervised Hebbian
learning phase and the supervised error-reduction phase were
then performed. Based on the modulatory weights between
the three input conjuncted maps and consequence node
as shown in Fig. 11, the modulatory weights stabilized at

for after six epochs, implying that only
, representing conjunctions of and , influenced

the output. and do not influence the output. An
identical behavior was observed between and s.
After learning, the network discarded and .

In the encoded network shown in Fig. 10(b), four connections
remain between and . These four connections
represent four equally weighted fuzzy rules corresponding to
the expected behavior of XOR logic as follows:

1) if is “low” and is “low,” then is “low”;
2) if is “low” and is “high,” then is “high”;
3) if is “high” and is “low,” then is “high”;
4) if is “high” and is “high,” then is “low.”

Fig. 11. Changes in modulatory weights between input conjuncted maps and
consequence node C .

Fig. 12. Output surface showing correct XOR classification.

The XOR problem was correctly classified (Fig. 12) mainly
due the existence of conjunctions formed in . Without

, the classification output obtained for all input combi-
nations would be ambiguous (i.e., ). This shows the
importance of layer 3 for removing crosstalk in nonmutually
orthogonal input patterns.

B. The Two-Spiral Problem

The classical two-spiral problem [51] is another classical
nonlinear classification problem that involves the nonlinear
classification of two intertwined spirals, each being labeled as
a separate class. As shown in Fig. 13, the training set consists
of 194 points (97 per class) and test set has 770 points (385 per
class). These sample points are mathematically defined in

Spiral 1: Spiral 2: (38)
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Fig. 13. Two-spiral problem.

Fig. 14. Output surface depicting correct classification of the two spirals.

where , and
for the training set or
for the test set.

A configuration similar to that of the XOR problem (described
in Section V-A) was used. However, as opposed to the XOR data,
the data for the two-spiral problem requires higher acuity to
model due to lower class separability. The number of Gaussian
membership functions needed would thus be bigger for this data
set.

It was determined empirically that the most suitable numbers
of Gaussian membership functions were 12 and 16 for input
maps and , which fuzzify the inputs and , re-
spectively. After encoding, the modulatory weights were dis-
covered to be for and . Thus, similarly
to the XOR experiment, the output was only dependent on the
conjunction of inputs. Before the encoding process, there were
660 connections between layers 3 and 4 in the net-
work. After training, 137 positively weighted fuzzy IF–THEN

rules were retained. This dramatic increase in the number of
rules discovered, as compared to the four discovered for the XOR

experiment, was due to the differences in the differences in sep-
arability of the data.

FASCOM was able to classify the two spirals across the 2-D
space (Fig. 14) and is comparable to the other state-of-the-art
architectures benchmarked against in Table IV.

C. Iris Plant Classification

The classification of iris plant uses a popular data set [52]
consisting of four input attributes (sepal width and length, and
petal width and length) measured off iris plants to determine
their subspecies (Iris setosa, Iris versicolor, and Iris virginica).
The data set consists of 150 samples, with 50 samples per iris
subspecies. More detailed properties and analysis of this data
set were recently described in [53].

TABLE IV
BENCHMARKING RESULTS FOR THE TWO-SPIRAL PROBLEM

TABLE V
IRIS PLANT CLASSIFICATION RESULTS

The FASCOM network was initialized with the four input
maps ( to ) representing sepal width, sepal length,
petal width, and petal length, respectively. They contain four,
four, eleven, and eleven Gaussian membership functions, re-
spectively. The output map was partitioned into three
discrete sets, with each set representing an iris plant subspecies
(setosa, versicolor, and virginica).

In our experiments, we initialized the data set into two dif-
ferent configurations. Configuration A used 100 randomly se-
lected samples for training and the other 50 for testing. Config-
uration B consisted of 50 randomly selected training samples,
while the remaining 100 samples formed the testing set. Six dif-
ferent prediction runs were performed on different randomized
instances for the two configurations, with the classification re-
sults averaged across all six runs and presented in Table V. As
concluded from the results listed in Table V, FASCOM managed
to outperform all other benchmarked architectures for both con-
figurations of this classification experiment.

The total number of antecedent-consequent connections
formed by the network was 5808. Subse-

quently, after training and pruning off the negatively and
zero-weighted connections, the number of resultant fuzzy
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TABLE VI
BENCHMARKING RESULTS ON NONLINEAR ESTIMATION FOR THE NAKANISHI ESTIMATION TASKS

IF–THEN rules obtained was 257.83 when averaged across the
six runs.

D. Nakanishi’s Nonlinear Estimation Tasks

In the previous two experiments (Sections V-A and V-B), the
data contain no noise because our objective was to observe the
behavior and outcome of learning. However, noise is present in
the next three experiments that use the Nakanishi data set [35].
The data set consists of three examples of real-world nonlinear
estimation tasks, namely: 1) a nonlinear system, 2) the human
operation of a chemical plant, and 3) the daily stock price data
of a stock in a stock market.

The objectives of these experiments is to perform multivariate
analysis, comparing the similarity and differences of this anal-
ysis with other existing methods, as well as to benchmark data
estimation on noisy data against other state-of-the-art architec-
tures. Two measures were used for evaluation of data estimation,
namely, the mean squared error (MSE) and the Pearson product-
moment correlation coefficient (R). The nonlinear estimation re-
sults were evaluated and compared against results obtained from
Hebb-RR [61], SVM [21], RSPOP-CRI [12], DENFIS [24],
POP-CRI [62], ANFIS [22], [63], Mamdani [6], [64], EFuNN
[23], Turksen [65], and Sugeno (P-G)[9]. As shown in Table VI,
FASCOM obtained the best results for all three nonlinear esti-
mation tasks.

For the three tasks, the number of fuzzy IF–THEN rules discov-
ered after retaining only the positive connections
were 149, 161, and 678, respectively.

1) Task A: A Nonlinear System: The aim of this task is to
model a nonlinear system given by

(39)

Here, four input dimensions are used to predict the value of the
1-D output.

The supervised error reduction phase discovered the influ-
ence of individual input conjuncted maps on the output

, across output space. As an example, the varying influence

Fig. 15. Two examples showing the varying influence of an input across the
output space.

Fig. 16. Mean influence of each input computed across the output space.

of two input conjuncted maps representing and
across output space is shown in Fig. 15. It can be ob-

served that significantly influenced the output across
the entire output feature space, especially for outputs of around
2.0, 2.5, and 4.75. On the other hand, only influences
the low outputs or below 1.5 and its effects are reduced for the
other portions of output space.

For a more generalized description, the mean of the influences
is computed across the output feature space and illustrated in
Fig. 16. s representing , ,

, and were generally enhanced across the
output space. On the other hand, it is clear that those s
representing , , and exerted no influence on the
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Fig. 17. Output estimation for task B has high precision.

outcome of and could be discarded. The effects of all other
s were reduced.

This generalized outcome is similar to the feature selection
method in [35], which discarded the inputs and , as well
as that of [12], which discarded input and partially discarded
input . However, FASCOM was more specific and descriptive
in that it was able to provide information of how the influences
of inputs and conjunctions of inputs vary across output space.
From another perspective, FASCOM identifies the significance
of various inputs for a particular portion of the output space.

2) Task B: Human Operation of a Chemical Plant: This
task involves the human operation of a chemical plant, whereby
there are five input dimensions representing monomer concen-
tration , charge of monomer concentration , monomer
flow rate , and local temperatures inside the plant ,
as well as one output dimension representing the set point for
monomer flow rate .

The supervised error reduction phase identified influences of
each input conjuncted map across the output space, from
which the s representing , , , , ,

, and were deemed noninfluential to output
prediction and were discarded. As a comparison, the feature se-
lection method in [35] discarded inputs , , and , and [12]
discarded inputs , , and . The that was most en-
hanced had a modulatory weight of 3.361, and represented the
conjuncted input . From this, we deduce that the set point
for monomer flow rate depends mainly on the combination
of monomer flow rate and monomer concentration
(i.e., ).

Additionally, as seen from Table VI, FASCOM significantly
outperformed all other architectures for this nonlinear estima-
tion task, with a reduction of MSE by 66.3% over the state-of-
the-art. The precision of FASCOM’s output estimation is dis-
played in Fig. 17.

3) Task C: Daily Stock Price Data of a Stock in a Stock
Market: In this task, ten inputs are used to predict the price of
a stock . The inputs represent the past and present moving av-
erages over a middle period , past and present separa-
tion ratios with respect to moving average over a middle period

, present change of moving over a short period , past
and present changes of price , past and present separa-
tion ratios with respect to moving average over a short period

, and present change of moving average over a long
period .

As mentioned in Section II-C, high-dimensionality data in-
duces high spatial complexity. Exhaustive conjunction on this

Fig. 18. Comparison between the three different experimental setups for the
three Nakanishi estimation tasks.

data set with ten input dimensions would result in 1023 s.
This increases training time to impractical levels. To handle
this problem, a selective approach was performed to reduce the
number of s generated by limiting the number of pre-
ceding s that would combine to form each to two. This
results in only 55 ICMs generated and greatly reduces both the
spatial resources required and the training time back to practical
levels.

For this task, the supervised error reduction phase discovered
that inputs corresponding to , , , , , , and had
extremely low influences and their effects were significantly re-
duced. s representing and were discovered
to be the most influential ones. This means that the present sepa-
ration ratio with respect to moving average over a middle period

, present separation ratio with respect to moving average
over a short period , and present change of price are
the main indicators for predicting daily stock prices. As a com-
parison, Nakanishi et al. [35] discarded inputs , , , , ,

, and , and [12] discarded , , , , and , and par-
tially discarded , , , and . Interestingly, although there
are some differences in the outcome, was not discarded for
all three methods. This means that all three methods considered

to be of importance for output prediction.
We further found that when comparing the past and present

values of the same indicators, (i.e., , , ,
), with the exception of the moving average over a middle

period indicator , the present indicators generally have
greater impact as compared to the past ones.

The good prediction results for this task (Table VI) suggest
that similarly to [66] and [67], FASCOM can be used to per-
form prediction of the stock market. In addition, because of
the natural cause-and-effect interpretation of associations and
the descriptive nature of input–output dimension relationships,
FASCOM may be suitable for understanding the dynamics of a
stock market.

4) Justification of Learning Phases: Besides multivariate
analysis and nonlinear estimation, the three Nakanishi non-
linear estimation tasks were also used to analyze the effects of
three different experimental setups of the learning process:

1) using all three phases in the learning process;
2) omitting unsupervised membership function initialization

(phase 1);
3) omitting supervised error reduction (phase 3).
For each nonlinear estimation task, the resultant MSE pro-

duced by each of the three initializations was computed and nor-
malized with respect to the highest MSE produced. As observed
from Fig. 18, for all three tasks, the comparison between the
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Fig. 19. Photograph of site 29 where the traffic data was collected.

three different experimental setups shows that the inclusion of
both phases 1 and 3 produced an MSE that is significantly lower
than when either one is omitted. This shows that both phases
1 and 3 are crucial in reducing the MSE of the output estima-
tion and justifies the existence of both phases within the learning
process.

E. Highway Traffic Density Prediction and Analysis

The raw traffic data [68] were collected at site 29 located
at Exit 5 along the east bound direction of the Pan Island Ex-
pressway (PIE) in Singapore, using loop detectors embedded
beneath the road surface (Fig. 19). Data spanning a period of
six days from September 5 to 10, 1996, for three straight lanes,
were considered for this experiment. The purpose of this exper-
iment is to model the traffic flow trend at the site, and subse-
quently produce predictions of the traffic density of each lane at
time , where 5, 15, 30, 45, 60 min. From this, we can
analyze the performance of data prediction and perform multi-
variate analysis on real-world noisy data.

The data set has four input dimensions, with one representing
the normalized time, and three others representing the traffic
density of each of the three lanes.

The raw data records the traffic density at 1372 instants with
intervals of 5 min between successive instants. After processing
the data for forward projections of 5, 15, 30, 45, 60 min,
there are 1371, 1369, 1366, 1363, and 1360 paired samples for
each set. To evaluate the performance of predicted traffic den-
sity, three cross-validation groups (CV1, CV2, and CV3) of
training and test sets were formed. Each cross-validation group
has 550 training samples each, and 821, 819, 816, 813, and 810
test samples, respectively.

The MSE was computed and averaged across all prediction
runs, resulting in “Avg MSE.” Also, the “Var” indicator re-
flecting the consistency of predictions over different time inter-
vals across the three lanes was computed as the change in the
mean of Pearson product-moment correlation coefficient from

5 min to 60 min expressed as a percentage of the
former. This was then averaged across all three lanes to produce
“Avg Var.” From the example in Fig. 20, we observe that the
prediction accuracy decreases as the time interval increases.

Fig. 20. Traffic density prediction of lane 1 using CV1. (a) Prediction at � = 5
min. (b) Prediction at � = 15 min. (c) Prediction at � = 30 min. (d) Prediction
at � = 45 min. (e) Prediction at � = 60 min.

The results of traffic density prediction were compared
to Hebb-RR [61], SVM [21], RSPOP [12], POP-CRI [62],
DENFIS [24], GeSoFNN [55], and EFuNN [23]. FASCOM
significantly outperformed all other architectures based on
the results shown in Fig. 21, with the lowest “Avg MSE”
(0.098) relative to “Avg Var” (19.0%) as compared to other
architectures. The results indicate that the output prediction by
FASCOM is both highly accurate and consistent over different
time intervals. This is desirable.

By analyzing the influence of the input conjuncted maps
across the output, it could be deduced that the prediction of
traffic densities for a particular lane is mostly dependent on
normalized time combined with the current density of that lane,
as well as normalized time combined with the density of an ad-
jacent lane. The influence of the density of lanes decreases with
distance. Interestingly, the above factors are more distinctive
for outputs predicting high traffic density.
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Fig. 21. FASCOM outperforms other benchmarked architectures for highway
traffic density prediction.

However, performance comes with a price. On the average,
FASCOM extracted 42.3 fuzzy IF–THEN rules from the data.
The average number of rules the other architecture extracted
was: 8.1 by Hebb-RR, 14.4 by RSPOP, 40.0 by POP-CRI, 9.7
by DENFIS, 50.0 by GeSoFNN, and 234.5 by EFunN. It should
also be noted that FASCOM is spatially more complex than
most of the other architectures because of the deliberate use
of exhaustive conjunctions and associations for information
representation and input–output relation. Finally, FASCOM’s
learning phase can only be performed in an offline batch mode
manner, while some other methods, such as EFuNN [23] and
DENFIS [24], can perform learning in an online and incre-
mental manner. These methods have the added advantage of
being able to update its model and evolve the fuzzy rules with
every new training instance. However, offline methods remain
suitable for many real-world scenarios.

VI. CONCLUSION

This paper proposed the FASCOM network. It is encoded
through a offline batch mode learning process consisting of three
phases—one unsupervised phase followed by two supervised
phases. Based on biologically inspired uniform information
density, the unsupervised initialization of membership func-
tions in the first phase led to more efficient representation and
transmission of information. The supervised phase of Hebbian
learning was responsible for identifying weights for fuzzy rules.
The third supervised phase of error reduction not only helped
fine-tune the network, but also it provided insights of how
input dimensions influenced the various portions of the output.
In layers 3 and 4, the representation of multiple antecedents
and consequences resulted in the reduction in crosstalk for
nonmutually orthogonal input patterns.

Experiments performed demonstrated that the above tech-
nical innovations led to significant improvement in the results in
terms of accuracy of nonlinear estimation, despite the problem
of high space complexity. The positive experimental results on
real-world data (Sections V-D and V-E) lead us to believe that
FASCOM could be applied to a wide variety of real-world prob-
lems for either classification (e.g., medical prognosis), regres-
sion (e.g., time-series forecasting), or multivariate analysis (e.g.,

financial data analysis). Future work would also involve ad-
dressing limitation of the high space complexity experienced in
layer 3 and layer 4.
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