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Abstract: Dynamic properties of truly three dimensional-confined InAs/InP quantum dot 

(QD) lasers obtained by molecular beam epitaxy (MBE) growth on a (311)B oriented 

substrate are reported. Relative intensity noise and small signal modulation bandwidth 

experiments evidence maximum relaxation frequency of 3.9 GHz with a clear relaxation 

oscillation peak, indicating less damping than InAs/GaAs QD lasers. The Henry factor 

amounts to ~ 1.8 below threshold and increases to ~ 6 above threshold, which is attributed to 

band filling of the thick wetting layer. 
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 Quantum-dot (QD) based lasers have raised a lot of interest over the last decade 

since the early theoretical predictions of unique properties arising from 3-dimensional 

carrier confinement1. Intense research in the growth of self-assembled QDs in the 

Stranski-Krastanov regime has hence allowed studies of these atomic-like 

nanostructures. Potential applications in fiber telecommunication pushed forward the 

development of long wavelength QD lasers both at 1.3 µm on GaAs substrate and on 

InP substrate for 1.55 µm applications. Indeed, low cost uncooled and isolator-free 

directly modulated lasers are very attractive for local area and metropolitan area 

networks. Subsequently, much effort has been devoted to the development of 

InAs/GaAs QDs with the demonstration of superior performances compared to that of 

QW based lasers. Unprecedented properties like ultra low threshold current2, high 

characteristic temperature3, increased tolerance to optical feedback4 have readily been 

demonstrated. For long-haul applications, lasers emitting at 1.55 µm are desirable as 

the emission wavelength correspond to the lowest attenuation of silica based optical 

fibers and to the amplification band of erbium doped fiber optical amplifiers. However, 

the optical fiber chromatic dispersion induces penalty for data transmission at 1.55 µm. 

One unique theoretical property of QD lasers relates to the near zero Henry factor at 

the gain peak of the laser5. This is a fundamental characteristic as it should open the 

way for chirp-less penalty free high bit rate data transmission. Growth using molecular 

beam epitaxy (MBE) on (100) InP generally leads to elongated dots or so-called 

Quantum Dashes6-8. However, these quasi-1 D nanostructures exhibit a linewidth 

enhancement factor (LEF) which amounts to ~ 4-68,9, similar to that of the best QW 

lasers. More recently, MBE growth10 and metal-organic chemical vapour phase epitaxy 

(MOVPE) 11,12 have allowed the growth of truly three-dimensionally confined QDs on 

InP (100). No investigation of the LEF has ever been reported in this material system. 
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An alternative approach, which relies on MBE growth on a specific InP (311)B 

orientation, has also allowed the formation of QDs  with a high dot density of 1011 cm-2 

13,14. A very low chirp of 0.01 nm was measured but no direct measurement of the 

Henry factor was reported13.  

 In this paper, we report on the microwave frequency properties – relaxation 

frequency and Henry factor- of narrow ridge single mode waveguide Fabry-Perot (FP) 

lasers processed from a 5 InAs/InP (311)B QD layer structure emitting on the ground 

state (GS) at 1.52 µm. In particular, the Henry factor amounts to ~ 1.8 below threshold 

while it increases up to ~ 6 just above threshold, which is attributed to band filling of 

the thick wetting layer. 

The laser heterostructure has been grown by molecular beam epitaxy on a (311)B 

n+-oriented InP substrate. The active region consists of 5 QD layers as described in 

Ref. 15. A modal gain of 16 cm-1 and internal loss of 10 cm-1 have been extracted from 

this layer structure15. 3 µm-wide ridge waveguide (RWG) FP lasers were processed by 

a Cl2-H2 induced coupled plasma etching process16. Benzocyclobutene (BCB) allows 

planarization of electrodes with a small parasitic capacitance compatible with 10 Gb/s 

operation. The investigated lasers have as-cleaved facets. Lasing is observed on the 

QD ground state (GS) at 1.52 µm at room temperature in continuous wave (CW) for 

cavities as short as 1030 µm. When the temperature increases from 20°C to 70°C, the 

threshold current of a  1100 µm-long FP laser increases from 41 mA to 117 mA and 

the slope efficiency decreases from 0.12 to 0.06 W/A per facet (Fig.1.). Output power 

in excess of 22 mW is obtained at room temperature, much higher than earlier 

reports13,14. A characteristic temperature of 49 K is extracted, comparable to that 

observed in InAs/InP QD lasers grown by MOVPE12. This is attributed to non radiative 

Auger recombination that was measured to account for 90% of the total current at 
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room temperature on a similar layer structure17. Emission on the QD ground state in 

CW regime is observed up to 75 °C at 200 mA, indicating the absence of excited state 

(ES) contribution. 

 The LEF was then assessed at room temperature below and above threshold on 

the same device. The Henry factor is defined as - 4π/λ×(δn/δN)/(!δg/δN) and represents 

the variation of the real part of the refractive index change over the differential gain 

when the carrier density changes. The linewidth enhancement factor was primarily 

assessed below threshold. Fig.2. depicts the measured net gain when the current is 

increased from 26 to 41 mA in steps of 3 mA. A net gain of 10 cm-1 is obtained at the 

gain peak of ~ 1522 nm. The Henry factor αH decreases with the current and amounts 

to 1.8 at the gain peak just below threshold (Fig.3). As the differential gain decreases 

near threshold (Fig. 2.), the decrease of the LEF is attributed to an almost vanishing 

refractive index change. The ‘material’ LEF of InAs/InP (311)B QD lasers is smaller 

than that of earlier values of InAs/InP (100) quantum dash (QDash) lasers8,9, which is 

attributed to a smaller differential refractive index. We also performed measurement of 

the differential index and gain within the homogeneous linewidth of the QD 

population. A similar trend and comparable values are observed at 1517 and 1527 nm, 

although the αH at the longer wavelength equals ~ 3.1 due to a lower differential gain. 

 The evaluation of the ‘device’ LEF above threshold is more relevant for 

telecom applications as it corresponds to a regime where sufficient optical power is 

available for data transmission. To determine the LEF, a high frequency current 

modulation technique was applied with a modulation frequency of 7 GHz18. The LEF 

is measured at the gain peak and it amounts to 6.8 at ~ 1522 nm just above threshold. 

A drastic increase of the LEF is indeed evidenced when the laser is biased above 

threshold. This behaviour is attributed to a plasma effect, similar to that invoked in 
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InAs/GaAs QDs19. We believe that above threshold, the dot GS occupation probability 

is saturated19. This results in a significant band filling of the higher energy levels, i.e. 

the wetting layer (high degeneracy states) and the barrier/waveguide, that breaks the 

Gaussian-like symmetry of the gain spectrum. The Henry factor does not noticeably 

change with the bias current as it amounts to 7.7 at 137 mA. This behaviour is 

comparable to what was earlier reported in QDash-in-a-well lasers8. Reduced non 

linear gain compression and the absence of ES emission at high injection current in 

InAs/InP (311)B QD lasers result in a smaller rate of decrease of the differential gain 

with the current density compared to 5-InAs/GaAs QD layer structures18. This explains 

why no divergence of the Henry factor is observed at high injection current, unlike 

InAs/GaAs QD lasers where it was attributed to incomplete gain clamping of the ES at 

the GS threshold gain20. The LEF was also measured on two other longitudinal modes 

at 1517 and 1527 nm (i.e. within the corresponding homogeneous linewidth): similar 

values of the LEF ~ 7 are obtained just above threshold and the LEF does not exhibit 

any significant dependence with the carrier density up to 2.5×ith. The LEF is thus 

constant over 10 nm within the homogeneous broadening of the QD ensemble 

population. Indeed, the high density of final states of the thick wetting layer favours 

the electron transition back to the wetting layer, which adversely affects the LEF. 

 Microwave frequency properties were investigated by means of relative 

intensity noise (RIN) measurements to extract the intrinsic properties of QD lasers. 

Fig. 4 illustrates the evolution of the relaxation frequency versus the normalized 

current. The modulation efficiency equals 0.38 GHz/mA1/2, lower than 0.63 GHz/ 

mA1/2 measured in standard 5 InAs/GaAs QD lasers18. The relaxation frequency fr and 

the -3 dB bandwidth reach a maximum value of 3.8 GHz and 4.8 GHz respectively at a 

137 mA bias current. The evolution of the damping factor against the squared 
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relaxation frequency leads to a K-factor of 0.63 ns, implying a maximum intrinsic 

modulation bandwidth of 14.1 GHz. The gain compression is accountable for the lower 

experimental bandwidth, as evidenced in InAs/GaAs QD lasers21. Stacking more QD 

layers into the active region should result in higher modal gain, allowing laser emission 

from shorter cavities compatible with 10 Gb/s direct modulation. As the K-factor is 

about 2 times lower than that of standard InAs/GaAs QD layer structures21, the carrier 

dynamics in the conduction band of InAs/InP QDs may be governed by a different 

relaxation process. Small signal modulation bandwidth experiments were subsequently 

performed using a lightwave component analyzer. Extraction of the relaxation 

frequency versus the bias current shows nearly identical values to those obtained from 

RIN measurements, demonstrating a modulation efficiency of 0.36 GHz/mA1/2 and a 

maximum fr of 3.7 GHz. Taking into account a photon lifetime of 5.8 ps, a differential 

gain of 7.3×10-15 cm2 is deduced. The evolution of the damping rate versus the current 

also allows the extraction of the non linear gain coefficient which equals 6.4×10-16 cm3, 

lower than that of InAs/GaAs QDs lasers, where strong damping was attributed to 

carrier relaxation from the ES to the GS (so-called phonon relaxation bottleneck20). 

Surprisingly, the peak of the relaxation oscillation is clearly distinguishable in the 

modulation transfer function of the InAs/InP (311)B QD lasers (inset Fig.4). However, 

previous work evidenced suppression of relaxation oscillation peak in InAs/InP (311)B 

QD directly modulated lasers emitting at 1.64 µm13. This was attributed to spectral 

hole burning of isolated dots and we believe that the higher bandgap discontinuity in 

the conduction band (QD potential) was higher than that of our present device. 

Therefore, it is conjectured that no such carrier dynamics exist in InAs/InP (311)B QD 

lasers emitting on the ground state at 1.52 µm as the energy transition between the 
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wetting layer and the QD GS amounts to ~ 100 meV17, compared to ~ 300 meV for 

InAs/GaAs QDs emitting at 1.3 µm.  

In conclusion, we thoroughly investigated the static and dynamic properties of 

InAs/InP (311)B quantum dot lasers emitting on the ground state at 1.52 µm. The 

Henry factor is found to be as low as 1.8 at the gain peak just below threshold and 

increases to about 6.6 above threshold but remains constant with the current. The 

rather high value is attributed to band filling of the thick wetting layer (high 

degeneracy states). The sole emission from the ground state at high current and at a 

high temperature of 75°C as well as a distinct relaxation oscillation peak in the 

frequency modulation response indicate the absence of phonon relaxation bottleneck 

originating from an excited state. 

This work has been supported by the EU EPIXnet Network of Excellence. 
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Figure Captions:  

 

FIG. 1. L-I characteristics of a 1100 µm-long Fabry-Perot laser with as-cleaved facets 

for temperature from 20 to 80°C in CW regime and characteristic temperature (inset). 

 

FIG. 2. Net gain at 20°C in CW regime of a 1100 µm-long Fabry-Perot laser versus 

current below threshold. 

 

FIG. 3. Henry factor below and above threshold of a 1100 µm-long InAs/InP (311)B 

QD Fabry-Perot laser. 

 

FIG. 4. Relaxation frequency measured from the RIN and small signal modulation 

bandwidth experiments versus the normalized current at 20°C (inset: transfer function 

at 50 and 77 mA). 

 










