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The nc-Batalin-Vilkovisky formalism, stable ribbon graphs
and compactified moduli spaces (B1,2006)

Theorem: stable ribbon graph complex = Feynman transform of the modular
operad of "associative algebras with scalar product" (odd/even d)

algebra over this Feynman transform↔1-to-1 correspondence with solutions
to the nc-BV equation.

solution to nc-BV equation →homology classes in the stable ribbon graph
complex (⇒in H∗(M

comb
g ,n ))

starting from dg-associative ( A∞−) algebra V with scalar
product→summation over ribbon graphs defines solution to the nc-BV
equation on H(V )([B6])

I extend this constructions to algebras without scalar product by setting
V = A⊕ A∨[d ]→summation over directed ribbon graphs ([B1] (odd
d),[B6]).

Let I - an odd derivation acting on associative superalgebra V , dimk V < ∞,
with scalar product, tr([a, ·]) on V0, and let ∃Ĩ , [I , Ĩ ] = 1, →Cohomology
classes in H∗(Mcomb

g ,n )([B2])
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The nc-Batalin-Vilkovisky operator and compactified
moduli spaces (B1,2006)

U -Z/2Z graded vector space/C, l-scalar product on U of degree
d ∈ Z/2Z,

Cλ = ⊕∞
j=0(U [1]

⊗j )Z/jZ

-the symmetric (resp. exterior) powers for odd (resp even) d , of cyclic tensors

nc-BV equation

h̄∆S +
1
2
{S , S} = 0, S = ∑

g≥0,i
h̄2g−1+iSg ,i , Sg ,i ∈ Symmi (Cλ[1+ d ]),

⇔ ∆ exp(S/ h̄) = 0

set of tensors Sg ,i →partition function on stable ribbon graphs: contraction
of ⊗verticesSg ,i with ⊗edges l
Theorem: S satisfies nc-BV equation ⇐⇒this is a closed chain in the stable
ribbon graph complex (⇒in H∗(M

comb
g ,n ))
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Solutions to nc BV equation

Theorem ([B6]). Summation over ribbon graphs→solution to the nc
Batalin-Vilkovisky equation from dg-associative algebras (summation over
trees→A-infinity algebra structure)

Conjecture ([B1]). Counting of holomorphic curves (Σ, ∂Σ, pi )→ (M,

ä Li ,⊕H∗(Li
⋂
Lj )), with Z/2Z-graded local systems, gives solution to

the nc-BV equations.
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Derivations and the cohomology classes

Let I - an odd derivation acting on associative superalgebra V , dimk V < ∞,
with scalar product l , remark: in general I 2 6= 0

let ∃Ĩ , [I , Ĩ ] = 1, and assume that tr([a, ·]) = 0 for any a ∈ V0.
Theorem ([B2],[B3]) This data →Cohomology classes in H∗(Mcomb

g ,n )

Construction: contraction of ⊗vertices trσ,g with ⊗edges l∨(Ĩ ·, ·)
Ĩ is homotopy inverse to the derivation → this defines cohomology class
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let ∃Ĩ , [I , Ĩ ] = 1, and assume that tr([a, ·]) = 0 for any a ∈ V0.
Theorem ([B2],[B3]) This data →Cohomology classes in H∗(Mcomb

g ,n )

Construction: contraction of ⊗vertices trσ,g with ⊗edges l∨(Ĩ ·, ·)
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Strange associative superalgebra with odd trace and
psi-classes.

q(N) = {[X , π] = 0|X ∈ gl(N |N)} ,where π−odd involution, q(N) has odd
trace otr , I = [Ξ, ·], Ξ- odd element Ξ =

(
0 |diag(λ1, . . . , λn)

)
, ( I 2 6= 0

(!))

Theorem ([B2],[B3]) This is the generating function for products of classes
c1(Ti ).

Similarly, with even scalar product and an odd derivation, in particular for
gl(N |N) and I = [Ξ, ·], Ξ ∈ gl(N |N)odd .
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