A-infinity GL(N)-equivariant matrix integrals-II. The nc-BV differential, (stable) ribbon graphs and compacti fied moduli spaces.

Serguei Barannikov

- To cite this version:

Serguei Barannikov. A-infinity GL(N)-equivariant matrix integrals-II. The nc-BV differential, (stable) ribbon graphs and compacti fied moduli spaces.. This is the second part of the series of three lectures which I gave at "D-branes, Effective Actions and Homological Mirror Symmetry" conference, Jun 2010, Vienna, Austria. hal-00494330

HAL Id: hal-00494330

https://hal.science/hal-00494330

Submitted on 7 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Author manuscript, published in "D-branes, Effective Actions and Homological Mirror Symmetry, Vienna : Austria (2010)"

A-infinity $G L(N)$-equivariant matrix integrals-II. The nc-BV differential, (stable) ribbon graphs and compactified moduli spaces.

Serguei Barannikov

IMJ, CNRS
22/06/2010

The nc-Batalin-Vilkovisky formalism, stable ribbon graphs and compactified moduli spaces $(\mathrm{B} 1,2006)$

Theorem: stable ribbon graph complex $=$ Feynman transform of the modular operad of "associative algebras with scalar product" (odd/even d)

The nc-Batalin-Vilkovisky formalism, stable ribbon graphs and compactified moduli spaces $(\mathrm{B} 1,2006)$

 Theorem: stable ribbon graph complex $=$ Feynman transform of the modular operad of "associative algebras with scalar product" (odd/even d) algebra over this Feynman transform $\leftrightarrow 1$-to- 1 correspondence with solutions to the nc-BV equation.
The nc-Batalin-Vilkovisky formalism, stable ribbon graphs and compactified moduli spaces $(\mathrm{B} 1,2006)$

§- Theorem: stable ribbon graph complex $=$ Feynman transform of the modular operad of "associative algebras with scalar product" (odd/even d) algebra over this Feynman transform $\leftrightarrow 1$-to-1 correspondence with solutions to the nc-BV equation.
ᄃ- solution to nc-BV equation \rightarrow homology classes in the stable ribbon graph \cdots complex $\left(\Rightarrow\right.$ in $H_{*}\left(\overline{\mathcal{M}}_{g, n}^{\text {comb }}\right)$)

The nc-Batalin-Vilkovisky formalism, stable ribbon graphs and compactified moduli spaces $(\mathrm{B} 1,2006)$

ᄃ- Theorem: stable ribbon graph complex $=$ Feynman transform of the modular operad of "associative algebras with scalar product" (odd/even d) algebra over this Feynman transform $\leftrightarrow 1$-to- 1 correspondence with solutions to the nc-BV equation.
solution to nc-BV equation \rightarrow homology classes in the stable ribbon graph complex $\left(\Rightarrow\right.$ in $\left.H_{*}\left(\overline{\mathcal{M}}_{g, n}^{c o m b}\right)\right)$
starting from dg-associative ($A_{\infty}-$) algebra V with scalar product \rightarrow summation over ribbon graphs defines solution to the nc-BV equation on $H(V)([B 6])$

The nc-Batalin-Vilkovisky formalism, stable ribbon graphs and compactified moduli spaces $(\mathrm{B} 1,2006)$

〔- Theorem: stable ribbon graph complex $=$ Feynman transform of the modular operad of "associative algebras with scalar product" (odd/even d) algebra over this Feynman transform $\leftrightarrow 1$-to-1 correspondence with solutions to the nc-BV equation.
ᄃ○ solution to nc-BV equation \rightarrow homology classes in the stable ribbon graph complex $\left(\Rightarrow\right.$ in $\left.H_{*}\left(\overline{\mathcal{M}}_{g, n}^{c o m b}\right)\right)$
starting from dg-associative ($A_{\infty}-$) algebra V with scalar product \rightarrow summation over ribbon graphs defines solution to the nc-BV equation on $H(V)([\mathrm{B} 6])$
I extend this constructions to algebras without scalar product by setting $V=A \oplus A^{\vee}[d] \rightarrow$ summation over directed ribbon graphs ([B1] (odd d),[B6]).

The nc-Batalin-Vilkovisky formalism, stable ribbon graphs and compactified moduli spaces $(\mathrm{B} 1,2006)$

Theorem: stable ribbon graph complex $=$ Feynman transform of the modular operad of "associative algebras with scalar product" (odd/even d) algebra over this Feynman transform $\leftrightarrow 1$-to- 1 correspondence with solutions
\rightarrow to the nc-BV equation.
solution to nc-BV equation \rightarrow homology classes in the stable ribbon graph complex $\left(\Rightarrow\right.$ in $\left.H_{*}\left(\overline{\mathcal{M}}_{g, n}^{c o m b}\right)\right)$
starting from dg-associative ($A_{\infty}-$) algebra V with scalar product \rightarrow summation over ribbon graphs defines solution to the nc-BV equation on $H(V)([\mathrm{B} 6])$
I extend this constructions to algebras without scalar product by setting $V=A \oplus A^{\vee}[d] \rightarrow$ summation over directed ribbon graphs ([B1] (odd d), [B6]).

Let I - an odd derivation acting on associative superalgebra $V, \operatorname{dim}_{k} V<\infty$, with scalar product, $\operatorname{tr}([a, \cdot])$ on V_{0}, and let $\exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \rightarrow$ Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{c o m b}\right)([\mathrm{B} 2])$

The nc-Batalin-Vilkovisky operator and compactified moduli spaces (B1,2006)

$$
\begin{aligned}
& \text { ~ } \\
& d \in \mathbb{Z} / 2 \mathbb{Z} \text {, } \\
& C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}} \\
& { }_{\square} \text {-the symmetric (resp. exterior) powers for odd (resp even) } d \text {, of cyclic tensors }
\end{aligned}
$$

The nc-Batalin-Vilkovisky operator and compactified moduli spaces (B1,2006)

$$
\begin{aligned}
& d \in \mathbb{Z} / 2 \mathbb{Z} \text {, } \\
& C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}} \\
& \text {-the symmetric (resp. exterior) powers for odd (resp even) } d \text {, of cyclic tensors } \\
& \text { nc-BV equation } \\
& \hbar \Delta S+\frac{1}{2}\{S, S\}=0, S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i}, \quad S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1+d]\right), \\
& \Leftrightarrow \quad \Delta \exp (S / h)=0
\end{aligned}
$$

The nc-Batalin-Vilkovisky operator and compactified moduli spaces (B1,2006)

$$
\begin{aligned}
& \text { 순 } \\
& \text { §o } U-\mathbb{Z} / 2 \mathbb{Z} \text { graded vector space/C, I-scalar product on } U \text { of degree } \\
& d \in \mathbb{Z} / 2 \mathbb{Z} \text {, } \\
& C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}} \\
& \ulcorner\text {-the symmetric (resp. exterior) powers for odd (resp even) d, of cyclic tensors } \\
& \text { nc-BV equation } \\
& h \Delta S+\frac{1}{2}\{S, S\} \quad=\quad 0, S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i}, \quad S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1+d]\right), \\
& \Leftrightarrow \quad \Delta \exp (S / h)=0
\end{aligned}
$$

set of tensors $S_{g, i} \rightarrow$ partition function on stable ribbon graphs: contraction of $\otimes_{\text {vertices }} S_{g, i}$ with $\otimes_{\text {edges }} l$

The nc-Batalin-Vilkovisky operator and compactified moduli spaces (B1,2006)

$U-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space /C, I-scalar product on U of degree $d \in \mathbb{Z} / 2 \mathbb{Z}$,

$$
C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}
$$

\ulcorner-the symmetric (resp. exterior) powers for odd (resp even) d, of cyclic tensors nc-BV equation

$$
\begin{aligned}
h \Delta S+\frac{1}{2}\{S, S\} & =0, S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i}, \quad S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1+d]\right), \\
& \Leftrightarrow \Delta \exp (S / h)=0
\end{aligned}
$$

set of tensors $S_{g, i} \rightarrow$ partition function on stable ribbon graphs: contraction of $\otimes_{\text {vertices }} S_{g, i}$ with $\otimes_{\text {edges }} l$
Theorem: S satisfies nc-BV equation \Longleftrightarrow this is a closed chain in the stable ribbon graph complex $\left(\Rightarrow\right.$ in $\left.H_{*}\left(\overline{\mathcal{M}}_{g, n}^{\text {comb }}\right)\right)$

Solutions to nc BV equation

Theorem ([B6]). Summation over ribbon graphs \rightarrow solution to the nc Batalin-Vilkovisky equation from dg-associative algebras (summation over trees \rightarrow A-infinity algebra structure)

Solutions to nc BV equation

Theorem ([B6]). Summation over ribbon graphs \rightarrow solution to the nc Batalin-Vilkovisky equation from dg-associative algebras (summation over trees \rightarrow A-infinity algebra structure)
Conjecture ([B1]). Counting of holomorphic curves $\left(\Sigma, \partial \Sigma, p_{i}\right) \rightarrow(M$, $\left.\coprod L_{i}, \oplus H_{*}\left(L_{i} \bigcap L_{j}\right)\right)$, with $\mathbb{Z} / 2 \mathbb{Z}$-graded local systems, gives solution to the nc-BV equations.

Derivations and the cohomology classes

Let I - an odd derivation acting on associative superalgebra $V, \operatorname{dim}_{k} V<\infty$, with scalar product l, remark: in general $I^{2} \neq 0$

Derivations and the cohomology classes

- Let I - an odd derivation acting on associative superalgebra $V, \operatorname{dim}_{k} V<\infty$, τ with scalar product l, remark: in general $I^{2} \neq 0$
응 let $\exists \widetilde{I}, \quad[I, \widetilde{I}]=1$, and assume that $\operatorname{tr}([a, \cdot])=0$ for any $a \in V_{0}$.

Derivations and the cohomology classes

Let I - an odd derivation acting on associative superalgebra $V, \operatorname{dim}_{k} V<\infty$, τ with scalar product l, remark: in general $I^{2} \neq 0$
응 let $\exists \widetilde{I}, \quad[I, \widetilde{I}]=1$, and assume that $\operatorname{tr}([a, \cdot])=0$ for any $a \in V_{0}$.
帚。 Theorem $([\mathrm{B} 2],[\mathrm{B} 3])$ This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{\text {comb }}\right)$

Derivations and the cohomology classes

Let I - an odd derivation acting on associative superalgebra V, $\operatorname{dim}_{k} V<\infty$, τ with scalar product l, remark: in general $I^{2} \neq 0$
등 let $\exists \widetilde{I}, \quad[I, \widetilde{I}]=1$, and assume that $\operatorname{tr}([a, \cdot])=0$ for any $a \in V_{0}$.
告。 Theorem ([B2],[B3]) This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{c o m b}\right)$
Construction: contraction of $\otimes_{\text {vertices }} t r^{\sigma, g}$ with $\otimes_{\text {edges }} I^{\vee}(\widetilde{I} \cdot, \cdot)$

Derivations and the cohomology classes

Let I - an odd derivation acting on associative superalgebra V, $\operatorname{dim}_{k} V<\infty$, τ with scalar product l, remark: in general $I^{2} \neq 0$
등 let $\exists \widetilde{I}, \quad[I, \widetilde{I}]=1$, and assume that $\operatorname{tr}([a, \cdot])=0$ for any $a \in V_{0}$. $\stackrel{\text { N }}{\omega}$ - Theorem $([\mathrm{B} 2],[\mathrm{B} 3])$ This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{\text {comb }}\right)$

- Construction: contraction of $\otimes_{\text {vertices }} t^{\sigma, g}$ with $\otimes_{\text {edges }} I^{\vee}(\tilde{I} \cdot, \cdot)$

ले $\stackrel{I}{ }$ is homotopy inverse to the derivation \rightarrow this defines cohomology class

Strange associative superalgebra with odd trace and psi-classes.

$q(N)=\{[X, \pi]=0 \mid X \in g I(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \quad \Xi$ - odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0\right.$ (!))

Strange associative superalgebra with odd trace and psi-classes.

$q(N)=\{[X, \pi]=0 \mid X \in g l(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \quad \Xi$ - odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0\right.$ (!))
Theorem ([B2],[B3]) This is the generating function for products of classes $c_{1}\left(T_{i}\right)$.

Strange associative superalgebra with odd trace and psi-classes.

$q(N)=\{[X, \pi]=0 \mid X \in g l(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \quad \Xi$ - odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0\right.$ (!))
Theorem ([B2],[B3]) This is the generating function for products of classes $c_{1}\left(T_{i}\right)$.
Similarly, with even scalar product and an odd derivation, in particular for $g l(N \mid N)$ and $I=[\Xi, \cdot], \Xi \in g l(N \mid N)_{\text {odd }}$.

References:

[B1] S.Barannikov, Modular operads and Batalin-Vilkovisky geometry. IMRN, Vol. 2007, article ID rnm075. Preprint Max Planck Institute for Mathematics 2006-48 (04/2006),
[B2] S.Barannikov, Noncommutative Batalin-Vilkovisky geometry and matrix integrals. «Comptes rendus Mathematique», presented for publication by M.Kontsevich in 05/2009, arXiv:0912.5484; Preprint NI06043 Newton Institute (09/2006), Preprint HAL, the electronic CNRS archive, hal-00102085 (09/2006)
[B3] S.Barannikov, Supersymmetry and cohomology of graph complexes. Preprint hal-00429963; (11/2009).
[B4] S.Barannikov, Matrix De Rham complex and quantum A-infinity algebras. arXiv:1001.5264, Preprint hal-00378776; (04/2009).
[B5] S.Barannikov, Quantum periods - I. Semi-infinite variations of Hodge structures. Preprint ENS DMA-00-19. arXiv:math/0006193 (06/2000), Intern. Math. Res. Notices. 2001, No. 23
[B6] S.Barannikov, Solving the noncommutative Batalin-Vilkovisky equation. Preprint hal-00464794 (03/2010). arXiv:1004.22.53,

