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We study the strong localization of atomic matter waves in a disordered potential created by
atoms pinned at the nodes of a lattice, for both 3D and 2D systems. The localization length of the
matter wave, the density of localized states, and the occurrence of energy mobility edges (for the
3D system), are numerically investigated as a function of the effective scattering length between
the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies
are explored. Interesting features of the density of states are discovered at negative energies, where
maximums in the density of bound states for the system can be interpreted in terms of bound states
of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidences of up to three
mobility edges, one at positive energies, and two at negative energies, the latter corresponding to
transitions between extended and localized bound states. In 2D, no mobility edge is found, and a
rapid exponential-like increase of the localization length is observed at high energy.
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I. INTRODUCTION

Propagation of waves in disordered systems is a rich
physical phenomenon, object of enduring research inter-
est. Its complexity is due to the fact that the scatter-
ing of a wave by a random potential depends on several
features: energy and type of the wave, internal and ex-
ternal degrees of freedom of the scattering potential, di-
mensionality and symmetry of the physical system, and
possible presence of interaction among the propagating
waves. Such variety is the reason of a wide experimen-
tal and theoretical studies of the diffusion of several kind
of classical and quantum waves by many kinds of disor-
dered potentials. This field of research was started by
P.W. Anderson [1], who predicted in 3D the localization
of a quantum particle experiencing short range hoping
between discrete sites, when the on-site energies are suf-
ficiently random. Several theories have been developed,
leading to a general consensus on the fact that a wave
is localized in 1D and 2D infinite disordered systems,
independently of its energy and of the strength of dis-
order. In 3D systems a metal-insulator phase transition
induced by sufficiently strong disorder may take place: it
exists one (or more) critical energy Ec (called the mo-
bility edge) which separates two energy regions. Waves
with an energy on one side of Ec are spatially localized
(transport is absent), while waves with an energy on the
other side are extended over the entire space (transport
is diffusive). The localized waves are characterized by
an amplitude which decrease exponentially in space at
large distances from a central region, defining a typical
length, called the localization length ξ. The richness of

the phase transition appears in the critical region around
the critical energy Ec: here the physics is supposed to be
universal, depending only on the symmetries of the sys-
tem, and not explicitly on the kind of wave or disordered
potential. This is due to the fact that, in the critical
region, the localization length diverges with a power low
behavior ξ ∝ |E − Ec|ν , where the critical exponent ν
characterizes the universality class of the phase transi-
tion [17–19].

The localization of waves appears as a very rich phe-
nomenon, but it is also very delicate and complex, often
difficult to observe experimentally due to parasitic effects
(absorption of the wave, finite size effects, ...). A large
scientific literature exists on the wave localization for sev-
eral physical systems. Here we deal with the localization
of ultra-cold atomic matter waves. Indeed, ultra-cold
atomic gases offer a unique system in terms of isolation
from environment, cleanness of the system, realization of
the system in several spatial dimensions (1D, 2D, 3D),
development of several direct detection techniques, and
control of the interaction strength. One can even imagine
localizing different kinds of waves (matter or light) in dif-
ferent kinds of disordered potentials (created by light or
matter). Recently, several experimental investigations on
the localization of atomic matter waves have been per-
formed: in a 1D genuine disordered potential made by
a laser speckle [2], in a 1D bi-chromatic optical lattice
(strictly speaking, this is not true disorder, but it is pos-
sible to observe a localization-delocalization transition)
[3], and in an atomic quasi-periodic kicked rotor where a
localization in momentum space has been reported (true
disorder again is absent, but the system, which is 1D in
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real space, can be mapped into an Anderson model with
several effective dimensions in momentum space, giving
the possibility to extract the critical exponents of a 3D
Anderson transition) [4].
A different way to realize a disordered potential for

atomic matter waves, using atoms pinned at random po-
sitions at the nodes of an optical lattice, was proposed
in [5]. This proposal has potentially several advantages
over the laser speckle route. On the experimental side,
it can be realized as easily in 1D, in 2D, and in 3D, and
also since an optimization of the matter wave interac-
tion with each individual scatterer may be performed,
one may hope to reach very short mean free paths and
localization lengths. On the theoretical side, it allows an
exact numerical study for a large number of scatterers
- as many as in typical experiments as we shall see. A
quantitative study of this model was done for a 1D sys-
tem [5], predicting minimal localization lengths . 10µm.
A first investigation of the model for 3D systems was per-
formed in [6], revealing the existence of a large density
of localized states with a very short localization length
(a few microns) for positive energies. Recently, similar
models have been considered in the case where the mat-
ter wave experiences both a periodic potential and inter-
actions among the A atoms [7].
In this paper, we study more extensively the behavior

of the matter wave localization for this model, for both
3D and 2D systems, for both positive and negative ener-
gies, and for a broad range of values of the matter wave-
pinned atom interaction strength. We explicitly study
the features of the localization length and of the density
of localized states, the occurrence of mobility edges, and
the effect of the presence of an underlying periodic lattice.
We find that, both in 2D and 3D, a strongly resonant in-
teraction between the matter wave and each pinned atom
is required to obtain localized states with small localiza-
tion lengths. On the experimental side, this requires a
tuning of this interaction by use of a Feshbach resonance.
First steps in this direction were recently taken: confine-
ment induced resonances between almost free A = 87Rb
atoms and B = 41K atoms tightly trapped in a 1D laser
standing wave were observed [14].
The article is organized as follows. The first part deals

with the 3D case: We present the model in section II, we
calculate the localization length in section III by studying
the response of the system to a source in the medium, we
calculate and discuss the density of localized states in
section IV, in the form of resonances at positive energies
and bound states at negative energies. The second part
of the article contains the same analysis for the 2D case,
see section V. We conclude in section VI.

II. PHYSICAL SYSTEM AND MODEL

We consider two atomic species, A and B. The B
atoms are tightly trapped at the nodes of a cubic opti-
cal lattice of lattice spacing d, in a regime where their
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FIG. 1: For a source placed at the origin r0 = 0, coarse
grained histogram giving 〈ln |D|〉 as a function of the distance
from the source, averaged over 100 realizations of disorder.
The lattice for the B atoms is cubic with a lattice constant
d, and a filling factor pocc = 1/10. The energy of the emit-
ting source is E = ~

2k2/2m with kd = 0.94. The effective
scattering length is aeff = 0.7d. (a) Coarse grained histogram
for 5 different radii R of the sphere containing the scatter-
ers: R/d = 40 (black), R/d = 50 (red), R/d = 70 (green),
R/d = 90 (blue), R/d = 110 (violet). (b) For R/d = 110,
coarse grained histogram (black circles) and its fit by the func-
tional form Eq. (10) (black solid line), resulting in κd = 0.086
and α = 2.5; the same histogram (red circles) and the same
fit (red solid line) with Di multiplied by rαi . The fit was per-
formed over the interval 10 < r/d < 90. Note that the largest
considered value of R/d = 110 corresponds to a number of
scatterers N ≃ 5.6 × 105.

tunneling among the neighboring lattice sites is negligi-
ble over the duration of the experiment. These B atoms
are prepared in the vibrational ground state of the local
microtrap, and are randomly distributed among the lat-
tice sites, with a uniform occupation probability pocc in-
side a sphere of radius R; their locations are independent
random variables, except for the constraint that there is
nowhere more than one B atom per lattice site.
The A atoms form the matter wave to be strongly lo-

calized. They are assumed to move freely in space (in par-
ticular they are insensitive to the optical lattice), except
that they scatter on the B atoms. This scattering is as-
sumed to be elastic, under the condition that the kinetic
energy of the A atoms is much smaller than the quan-

tum of oscillation of the trapped B atoms, ~
2k2

2m ≪ ~ωosc,
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where m and ~k are the mass and momentum of an A
atom. This scattering is also assumed to be in the zero-
range regime kaho ≪ 1 where the aho is the harmonic
oscillator length of the B atoms. In this case, the B
atoms may be considered as point-like scatterers, and
the A − B scattering is characterized by the effective
scattering length aeff [29]. Remarkably, using a Fesh-
bach resonance technique to adjust the free-space A−B
scattering length a, one can realize confinement-induced
resonances leading to arbitrarily large values of aeff [6].
The B atoms may thus effectively constitute a static and
strong disordered potential for the matter wave.
The problem is thus modeled as follows: The mat-

ter wave Hamiltonian is that of the free A atom, H =

− ~
2

2m∆r, with the A−B interaction replaced by the fol-
lowing contact conditions for the matter wave wavefunc-
tion ψ(r): there exist complex numbers Di such that

ψ(r) = − m

2π~2
Di

[

|r− ri|−1 − a−1
eff

]

+O(|r − ri|) (1)

in the vicinity of each B scatterer location ri. The fac-
tor m/(2π~2) is introduced for convenience. The Bethe-
Peierls contact condition (1) is equivalent to the pseudo-
potential as used in [6].
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FIG. 2: For the 3D system: Comparison of the two methods of calculating the Lyapunov exponent κ = 1/ξ. As in Fig.1, the
filling factor is pocc = 1/10, and the effective scattering length is aeff = 0.7d. (a) Lyapunov exponent κ for a fixed energy of
the emitting source, E = ~

2k2/2m with kd = 0.94. Red squares: Lyapunov exponent from the first method, see Eq. (10), for
several values of d/R; each point is the result of a fitting on the interval 10d < r < R− 20d. The second method, see Eqs. (13),
(14), and (15), leads to a Lyapunov exponent which is the extrapolation at d/R = 0 of the black circles; the green straight solid
line is the linear extrapolation, giving κd = 0.089 ± 0.005 at d/R = 0; the three horizontal dotted lines represent the value of
κ and its confidence interval. The two methods are essentially compatible if one considers the scatter in the data for the first
method and the error bars for the second one. (b) For the two methods, Lyapunov exponent κ as a function of energy of the
emitting source E = ~

2k2/2m. The lattice spacing d of the cubic lattice, and the energy E0 = ~
2/(md2), are used as units.

Note that E0 = 2Erec/π
2, where Erec is the atomic recoil energy after absorption of a lattice photon. Here the filling factor

is pocc = 1/10, and the effective scattering length is aeff = 0.7d. The solid lines and the violet star are obtained with the first
method [see Eq. (10)]. The three solid lines correspond to sphere radius R = 50d (black line, triangles), R = 60d (red line,
squares), R = 70d (green line, circles), and an average over 500 realizations of disorder. The violet star corresponds to a bigger
sphere with radius R = 110d, and 100 realizations of disorder. The blue diamond symbols with error bars, are obtained with
the second method [see Eqs. (13), (14), and (15)] where the extrapolation has been performed using d/R = 1/50, d/R = 1/60,
d/R = 1/70, and 500 realizations of disorder. The second method provides results essentially in agreement with those of the
first method. Note the quite small values of the Lyapunov exponents (large localization lengths).

Here, the disordered potential has a finite extension,
so that all the positive energy eigenstates are extended
states belonging to a continuum. However, the localized
states that would exist for a strictly infinite extension
disorder have precursors in the form of sharp resonances
with a width tending exponentially to zero with the dis-
order extension [6, 12]. At negative energies the matter
wave is bound inside the gas of scatterers, and the cor-

responding bound states can be either extended or local-
ized. The appropriate tool to find these resonances and
bound states is the matter wave Green’s function for an
energy E, for a given realization of the disorder,

G(r, r′) = 〈r|
(

1

E + i0+ −H

)

c.c.

|r′〉 (2)

and its analytical continuation to complex energies in the
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lower half-plane. Note that G(r, r′) is subject to the same
contact conditions as ψ in (1), hence the subscript c.c. in
Eq.(2). This Green’s function G actually plays a major
role in the theory of transport phenomena: The large
|r − r

′| behaviors of 〈G(r, r′)〉 and 〈ln |G(r, r′)|〉 provide
the scattering mean free path and the localization length,
respectively, where 〈. . .〉 represents the average over all
realizations of disorder, that is over the B locations.
A remarkable feature of the point-like scatterers is that

the Green’s function may be obtained by the solution of a
N ×N complex linear system, where N is the number of
B scatterers. This allows an exact numerical calculation,
up to N ≈ 105 in this work, a value of the order of typical
experiments with atoms in optical lattices.
This remarkable feature may be derived as follows.

One starts with the fact that the Green’s function
G(r, r0) obeys a Schrödinger equation with a point-like
source term δ(r − r0) of matter waves at position r0.
The diverging terms of the contact conditions (1) for the
Green’s function give rise to secondary point-like sources
of amplitudes Di at the scatterers’ positions ri, by virtue
of the usual relation ∆r|r − ri|−1 = −4πδ(r − ri). The
resulting wave equation is thus

(

E + i0+ +
~
2

2m
∆r

)

G(r, r0) = δ(r− r0)

+

N
∑

i=1

Diδ(r− ri). (3)

This may be integrated using the Green’s function g0(r)
for H in the absence of scatterers. We set

E =
~
2k2

2m
. (4)

For E > 0, we impose k > 0, and

g0(r) = − m

2π~2
eikr

r
. (5)

For E < 0, we take k = iq, with q > 0 in Eq. (5). The
resulting solution of Eq. (3) in thus

G(r, r0) = g0(r− r0) +

N
∑

i=1

Dig0(r− ri). (6)

The secondary sources amplitudes Di are then deter-
mined by imposing on (6) the contact conditions (1) at
the order O(1). That is, for the non-diverging term 1/aeff

N
∑

j=1

MijDj =
2π~2

m
g0(ri − r0), ∀i ∈ {1, . . . , N} (7)

where we have introduced the N ×N matrix

Mij =











−2π~2

m
g0(ri − rj) if i 6= j,

ik + a−1
eff if i = j.

(8)

Eq. (7) constitutes the aforementioned N ×N linear sys-
tem, and its formal solution gives [6]

G(r, r0) = g0(r− r0) +

N
∑

i,j=1

g0(r− ri)[M
−1]ijg0(rj − r0).

(9)
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FIG. 3: For the 3D system: Coarse grained histogram 〈ln |D|〉
as a function of the distance from the source, for two differ-
ent kinds of disorder. The first kind of disorder (solid line)
is obtained by a random filling of the cubic lattice inside the
sphere of radius R = 70d. A second kind of disorder (dashed
line) is obtained first by a random filling of the cubic lattice
inside only one sector (1/8) of the sphere, x > 0, y > 0, z > 0,
and then by filling the remaining seven sectors by reflecting
the positions in the first sector with respect to planes x = 0,
y = 0, z = 0. The average is taken over 50 realizations of dis-
order. The filling factor is pocc = 1/10, the effective scattering
length is aeff = 1.0d and the energy of the emitting source is
E = ~

2k2/2m with kd = 0.1. The circles represent, for the
two kinds of disorder, the fit of the histogram on the interval
10d < r < 55d to extract the Lyapunov exponent κ with the
first method [see Eq. (10)]. We obtain (κd = 0.31, α = 2.2),
and (κd = 0.31, α = 3.6), for the first and second kind of
disorder, respectively. The Lyapunov exponents appear to be
identical, so that one can use the second kind of disorder to
calculate κ with a substantial gain in the computational effort
(a factor 64 on the memory size and a factor 512 in the CPU
time).

The matrix M will play a crucial role in what follows.
Indeed, we will relate the localized eigenmodes of the
matter wave to the eigenvectors of the matrix M . This
matrix shows a purely off-diagonal disordered coupling
between different scatterers, which is long-range at posi-
tive energies, and short-range at negative energies. This
kind of disorder does not coincide with the one originally
introduced by Anderson, characterized by diagonal dis-
order and short range couplings [1]. Finally, it is worth
noticing that this model can be exactly mapped to the
case of a scalar light wave scattered by a disordered en-
semble of two-level atoms, where the same matrix M
appears [22].
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III. LOCALIZATION LENGTH

A. Defining and calculating the localization length

In an infinitely extended disordered three-dimensional
system, a matter wave of positive energy emitted by a
source is expected to be exponentially suppressed (lo-
calized) at large distances, if its energy is smaller than
a critical energy Ec, the so-called mobility edge. This
corresponds to absence of matter wave transport. The
localization length ξ is the length scale associated with
this exponential decay. It is an average quantity, which
has to be calculated by taking the mean over all possible
realizations of the disorder. Waves emitted by a source of
energy E larger than Ec are instead expected to propa-
gate diffusively in the system, with an intensity decaying
as the inverse of the distance.

As we shall see, mobility edges can also be present for
negative energies. Indeed, a single matter wave A atom
exhibits bound states with a few B scatterers (dimers
AB, trimers AB2, tetramers AB3, etc.), that have a
non-zero hopping amplitude among different scatterers.
Then, the evanescent matter wave emitted by a source at
negative energy may populate such bound states. This
may lead to waves of dimers, trimers, etc., bounded in
the volume occupied by the scatterers, but which can be
either extended or localized within that volume.

To obtain these properties we thus calculate the
Green’s function G(r, r0) which gives the r-dependent
matter wave amplitude resulting from the source in r0.
In practice we solve numerically the linear system Eq. (7)
and we extract the localization length ξ for the ampli-
tudes Di in two different ways.
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FIG. 4: For the 3D system: Localization length ξ [(a)], and Lyapunov exponents κ = 1/ξ [(b)], as a function of the energy E
of the emitting source for different values of the effective scattering length aeff : aeff = 0.1d (black solid line), aeff = 0.2d (red
solid line) , aeff = 0.7d (green solid line), aeff = 1.0d (blue solid line), aeff = 1.3d (violet solid line). The mean field calculation
[see Eq. (18)] is also shown for aeff = 0.1d (black dashed line), and for aeff = 0.2d (red dashed line). The lattice spacing d of
the cubic lattice, and the energy E0 = ~

2/(md2), are used as units. Results are obtained using the first method [see Eq. (10)],
with 500 realizations of the disorder for E > 0 and 100 realizations for E < 0. The filling factor is pocc = 1/10, and the sphere
radius is R = 70d, which leads to a mean number of scatterers 〈N〉 ≈ 1.4× 105. Comparing the results for E > 0 with 100 and
500 realizations, we estimate that the error on κ is ≈ 10%, and even smaller for the lowest values of ξ.



6

First method: The spatial localization of the Green’s
function is reflected in a localization of the secondary
source amplitudes Di. We thus calculate the average
over disorder 〈ln |Di|〉, and construct a coarse grained
histogram of the data set (|ri − r0|, 〈ln |Di|〉), that we fit
with the functional form

|r− r0| 7−→ ln

[

C
e−κ|r−r0|

|r− r0|α
]

, (10)

where C, α and the Lyapunov exponent κ are the three
free parameters. The localization length is then ξ = 1/κ.
The fit is performed over the dipoles with positions ri

such that rmin < |ri− r0| < rmax, in order to exclude the
near-field contribution of the source, and to minimize
the effects of the boundaries of the disorder. Both effects
are apparent in Fig.1a, which reveals a boundary layer of
≈ 15 lattice spacings. Apart from these boundary effects,
the results for increasing radii R of the sphere containing
the scatterers are in good agreement, and reveal that the
decay of Di is not simply exponential. On the contrary,
the inclusion of the power-law factor in Eq. (10) provides
an excellent fit to the numerical data, as shown in Fig.1b.
For the system sizes that we are to treat numerically,
the failure to include of α as a fitting parameter would
lead to unreliable values of κ dependent upon the system
size. Finally, we note that the functional form Eq. (10)
includes both the localized and the diffusive sides of the
phase diagram, with ξ = +∞ in the diffusive regions.
Second method: Inspired by the usual definition of the
Lyapunov exponent in one-dimensional disordered sys-
tems, we define a direction dependent transmission coef-
ficient t(n) for the field emitted by the source, for a given
realization of disorder:

G(r, r0) ∼
r→+∞

t(n)g0(r− r0), (11)

with the unit vector n = r/r. Here f ∼ g means f/g → 1.
This expression, compared with Eq. (6) for r → +∞,
provides the exact relation

t(n) = 1 +

N
∑

i=1

Die
−ikn·(ri−r0). (12)

In the one-dimensional case, the quantity to consider is
the logarithm of the transmission coefficient, rather than
the coefficient; the former is indeed a self-averaging quan-
tity contrary to the latter [8]. We thus define the direc-
tion dependent three-dimensional Lyapunov exponent as

κ(n) = − lim
R→+∞

〈ln |t(n)|〉
R

for E > 0, (13)

κ(n) = q − lim
R→+∞

〈ln |t(n)|〉
R

for E < 0, (14)

where R is the radius of the sphere containing the point-
like scatterers and the average is taken over the disorder
[9]. The term q in (14) has been introduced since, for

E < 0, the field emitted by the source g0(r − r0) taken
as a reference field in Eq.(11) decays as e−qr for r → ∞.
We have found numerically that κ(n) only weakly de-

pends on the direction so that we may define the local-
ization length in terms of its average over solid angle:

κ =
1

ξ
≡
∫

d2n

4π
κ(n). (15)

In practice, we calculate the limit in Eq. (13) and (14) by
a linear extrapolation to R−1 = 0 of the values obtained
for at least three different values of R−1.
The first and second methods are compared, for a fixed

value of the energy E in Fig.2a and for several values of
E in Fig.2b, and are found to give compatible values of
the Lyapunov exponent. In practice, the first method has
the advantage of not requiring a calculation for different
values of the radius R, the border effects being elimi-
nated by a suitable choice of the fitting range. Also, the
value of |t(n)| is bounded from below by the numerical
accuracy ǫnum so that the second method may be used
only if exp(−κR) ≫ ǫnum.
A symmetry trick: In practice, to reduce the computa-
tional effort, we have imposed some symmetry proper-
ties on the disorder used to obtain the results shown in
Figs. 1, 2, 4, 5: We have imposed reflection symmetries
with respect to the planes x = 0, y = 0, z = 0 and we
have set r0 = 0, so that the independent unknowns in the
linear system Eq. (7) are the amplitudes Di in the sector
x > 0, y > 0, z > 0. This effectively reduces the number
of unknowns by a factor of 8, resulting in a gain of a
factor 64 on the memory size and of a factor 512 in the
CPU time, without affecting the value of the Lyapunov
exponent κ, as shown in Fig.3.

B. Numerical results for the localization length

Using the first method described in the previous sub-
section, we have calculated numerically the Lyapunov ex-
ponent κ and the localization length ξ = 1/κ for different
values of the effective scattering length aeff , and of the
filling factor pocc, see Figs.4,5,6.
A central point is the choice of the value of pocc. Our

scope was to study the regime where the presence of the
lattice has a small effect on the localization properties,
since we consider here the lattice mainly as an experi-
mental tool to realize strong disorder. To this end we
will not investigate the regime where pocc only weakly
differs from unit: This regime indeed corresponds to a
matter wave propagating in a periodic structure with di-
lute random vacancies. On the other side, the opposite
regime pocc → 0 is not favorable experimentally since it
leads to large localization lengths scaling at least as the

mean distance between scatterers d/p
1/3
occ [11].

For these reasons, we choose in Fig.4 the reason-
able value pocc = 0.1. This figure shows the localiza-
tion length, see Fig.4a, and the Lyapunov exponent, see
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Fig.4b, as a function of the energy E of the emitting
source, both for negative and positive values of E. Sev-

eral values of aeff are considered in this figure.
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FIG. 5: The same as Fig. 4, except that: The value of pocc is 1/80, the radius is R = 140d (corresponding to a mean number

of scatterers 〈N〉 ≈ 1.4 × 105), and aeff is rescaled to have the same values of ρ1/3aeff as in Fig. 4, where ρ = pocc/d
3 is the

mean density of scatterers. Since p
1/3
occ is two times smaller as compared to Fig. 4, we have aeff = 2 × 0.1d (black solid line),

aeff = 2× 0.2d (red solid line) , aeff = 2× 0.7d (green solid line), aeff = 2× 1.0d (blue solid line), aeff = 2× 1.3d (violet solid
line). The axes are rescaled accordingly, to allow a direct comparison with the results of Fig. 4. The number of realizations of
disorder is equal to 100 for all points.

The values aeff/d ≪ 1 are easy to analyze in a per-
turbative picture: The matter wave inside the cloud of
scatterers experiences a mean field shift equal to ρgeff
where ρ = pocc/d

3 is the mean density of scatterers and
geff = 4π~2aeff/(2m) is the effective coupling constant
between the matter wave and a scatterer. In this mean
field model, the Green’s function is simply that of a free
matter wave in the presence of the uniform mean field
shift ρgeff inside the sphere. We then have, for r < R
and r0 < R

〈r| 1

E + i0+ −Hmf
|r0〉 ≃ − m

2π~2
eikmfr

r
, (16)

with Hmf = H + ρgeff . The wave vector is then given by

E =
~
2k2

2m
=

~
2k2mf

2m
+ ρgeff . (17)

The mean field prediction is thus that, for E < ρgeff , kmf

is purely imaginary, the matter wave cannot propagate
in the gas of scatterers and is damped with a Lyapunov
exponent

κ2mf = 4πρaeff − k2. (18)

The two conditions of validity for the this mean field
prediction are that (i) the matter wave scattering on a
single scatterer should be in the regime of the Born ap-
proximation, |kaeff | ≪ 1, and (ii) there should be a large
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mean number of scatterers within the volume ξ3mf , that is
ρξ3mf ≫ 1, so one may neglect fluctuations in the density
of scatterers over the scale ξmf . The mean field prediction
(18) is plotted as a dashed line in Fig. 4 over the range
E < ρgeff , for the two lowest values of aeff/d, where it
is in good agreement with the numerical results. For
E > ρgeff , the mean field picture can of course not pre-
dict how the Green’s function decays with |r−r0|. In the
numerical approach, the localization length turns out to
be too large to be determined in a reliable way for the
accessible system sizes.

In the regime E > ρgeff , we have found a second man-
ifestation of the mean field potential ρgeff . In an optical
analogy, this potential creates a discontinuity in the re-
fractive index for the matter wave at the border of the
sphere containing the scatterers, the index passing from
unity outside the sphere to n ≈ (1 − ρgeff/E)1/2 within.
This induces a reflection of the matter wave, with a Fres-
nel reflection coefficient r = (n − 1)/(n + 1). Since the
source position r0 is in the center of the sphere, this gives
rise to a radial stationary matter wave with an intensity
contrast (Imax − Imin)/(Imax + Imin) = 2|r|/(1 + |r|2),
provided that one can neglect the attenuation of the co-
herent part of the matter field, that is if the mean free
path ≈ 1/(ρσscatt), with σscatt = 4πa2eff , is larger than
the sphere radius. We have indeed observed this phe-
nomenon numerically.

For larger values of aeff , of the order of the lattice spac-
ing d, Fig. 4 shows an interesting structure of maxima
and minima of the Lyapunov exponent at both positive
and negative energies.

For E > 0, the value of aeff = 0.7d shows a wide re-
gion of remarkably small values of the localization length,
with ξ ≈ d even smaller than the mean distance between
scatterers. For larger values of E, a sharp rise of ξ is
observed. A natural question is whether this rise may
be attributed to the presence of a mobility edge. This
requires a proof of the presence of localized states to the
left of this “edge”. This will be addressed in section
IV, where the presence of localized states will be con-
firmed for aeff/d = 1 and 1.3, in contrast to the cases
aeff/d = 0.1, 0.2 and 0.7. A careful study of the corre-
sponding phase transition and its critical exponents re-
quires an examination of finite size scaling that we leave
for future work.

Another interesting point is that, further increasing the
value of aeff/d, although intuitively it must be tough to
increase the strength of disorder, actually leads to larger
values of ξ/d. In particular, at unitarity (aeff/d→ +∞)
our system sizes were too small to allow a reliable deter-
mination of ξ. Similarly, for negative values of aeff/d, we
have not obtained evidence of a finite ξ. This is consistent
with the prediction, based on a perturbative calculation
of the transport mean free path, that no matter wave
localization can take place for aeff < 0 [12].

For E < 0, it there appears in Fig. 4 an energy interval
where the localization length takes very large values. At
first sight, this may be surprising, as one may naively ex-

pect e.g. from Eq. (18), that κ is an increasing function
of |E| at least equal to (2m|E|)1/2/~. In the case where
aeff is much smaller than the mean distance between scat-
terers, we relate the existence of this energy interval to
the fact that the matter wave can form a bound state (a
dimer) of wavefunction φ0(r − ri) with each scatterer i,
of spatial extension aeff and of energy [10]

Edim = − ~
2

2ma2eff
. (19)

The various probability amplitudes to have the dimer on
the sites ri, rj , . . ., are then coupled by transition ampli-
tudes ttrans of the order of Edim times overlap integrals
between φ0(r−ri) and φ0(r−rj), integrals that drop ex-
ponentially with the distance as exp(−|ri − rj |/aeff). A
precise calculation gives a transition amplitude between
two scatterers separated by a distance rij [30]

ttrans(rij) = − ~
2

maeff

e−rij/aeff

rij
. (20)

Over the energy interval roughly extending around Edim

with a width of the order of typical values of |ttrans|, we
then face the problem of a bound state that can “tun-
nel” from one scatterer to another, which may result in
a localization length ξ. It turns out that this length may
have sharp rises as a function of energy, suggesting the
occurrence of two mobility edges. This picture cannot of
course be quantitative for values of aeff as large as 0.7d,
but it correctly predicts that the negative energy interval
of large values of ξ shifts to higher energies and broadens,
when one increases aeff/d.
In Fig. 5 we consider the same problem as in Fig. 4

with a much smaller filling factor pocc = 1/80. We con-
sidered values of aeff such that ρ1/3aeff is the same for
the two figures. We also rescaled the axes of the figure
so that two identical values of the abscissa for Fig. 4 and
Fig. 5 correspond to an identical value of mE/(ρ2/3~2),
and two identical values of the ordinate correspond to an
identical value of ρ1/3ξ. This allows us to see the effect of
the underlying lattice [11]. There are some quantitative
(not qualitative) differences between the two figures. In
particular, at negative energies, the separation between
the energies where ξ has a sharp rise is smaller in the
case of pocc = 1/80 than in the case of pocc = 1/10 and
the periodic case pocc = 1 (as we will see in Fig. 6), on
the rescaled energy axis.
Finally, we consider in Fig. 6 the “periodic” case cor-

responding to pocc = 1. In this case, a non-zero value
of κ is not an effect of disorder but rather results from
the existence of forbidden energy bands. For E < 0 we
recover the same physics due to the existence of a dimer,
leading here to the emergence of an allowed energy band
for the dimer. For E > 0, the dependence of ξ with the
energy is more flat than in the disordered case, except
close to the band edges where it diverges. We note that
the forbidden band is quite broad for values of aeff of the
order of the lattice spacing or larger.
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IV. DENSITY OF LOCALIZED STATES

Calculation of the localization length, as defined in the
previous section, is not sufficient to prove the existence
of localized states at the considered energy. E.g. it is
expected that, in a spectral gap of the system, the local-
ization length is finite whereas there is no state available.
In the present section, we directly investigate the pres-
ence of localized states as a function of the energy E.

A. Method

We have to distinguish two cases, according to the sign
of the energy E.

Negative energies: For E < 0, the eigenstates of the mat-
ter wave are discrete bound states. Such a bound state
corresponds to the matter wave being trapped by the gas
of scatterers, but it is not necessarily a localized state.
In particular, in the limit 0 < aeff smaller than the mean
distance between scatterers, we recall the picture of a
A − B dimer that may tunnel from one scattering site
to another, see subsection III B, and this dimer, with a
negative total energy, may be delocalized over the whole
gas of scatterers.
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FIG. 6: The same as Fig. 4, except that: The value of pocc is 1 (there is no disorder, since all the lattice sites within the sphere
of radius R = 30d are occupied by the scatterers, which leads to N ≈ 1.1×105 [13]), and aeff is rescaled to have the same values

of ρ1/3aeff as in Fig. 4, where ρ = pocc/d
3 is the mean density of scatterers. Since p

1/3
occ is (0.1)1/3 times smaller as compared

to Fig. 4, we have aeff = (0.1)1/3 × 0.1d (black solid line), aeff = (0.1)1/3 × 0.2d (red solid line) , aeff = (0.1)1/3 × 0.7d (green

solid line), aeff = (0.1)1/3 × 1.0d (blue solid line), aeff = (0.1)1/3 × 1.3d (violet solid line). The axes are rescaled accordingly, to
allow a direct comparison with the results of Fig. 4.

The bound state eigenenergies correspond to poles of the Green’s function Eq.(2). Since G(r; r0) diverges for



10

such an eigenenergy, the secondary source amplitudes Di

diverge in Eq.(6), or equivalently, according to Eq.(7),
this implies that the matrix M defined in Eq.(8) has a
zero eigenvalue. For E < 0, the matrix M is real and
symmetric, so has N real eigenvalues mi. To find the
bound state energies, there are two strategies.
In the first strategy, one works for a fixed value of the

effective scattering length aeff , one numerically calculates
the N eigenvaluesmi(E, aeff), 1 ≤ i ≤ N , and then solves
for E each implicit equation

mi(E, aeff) = 0. (21)

This may be done efficiently by dichotomy, using the
property that mi is a monotonically increasing function
of E (see appendix A). In the second strategy, one inverts
the problem, working for a fixed value of the energy E
and solving mi(E, aeff) = 0 for aeff . This turns out to be
straightforward, because of the following structure of the
matrix M [6]:

M =
1

aeff
Id +M∞(E) (22)

where M∞ depends only on the energy, not on the effec-
tive scattering length. For each value of E, one then sim-
ply has to diagonalizeM∞(E), with resulting eigenvalues
m∞

i (E). From the relationmi(E, aeff) = a−1
eff +m∞

i (E) =
0, one obtains the following parameterization of the neg-
ative eigenenergy branches:

1

aeff
= −m∞

i (E). (23)

Positive energies: Let us consider first the ideal case of
scatterers extending over the entire position space. Then,
for E > 0 two kinds of states are expected, square inte-
grable localized states corresponding to a discrete spec-
trum, and extended states corresponding to a continuous
spectrum. It is expected that the continuous spectrum
exists at E > Ec, where Ec is called a mobility edge, and
that the localized states are essentially at E < Ec [16].
In reality, the scatterers occupy a finite volume of ra-

dius R, so that, for E > 0, the energy spectrum of the
matter wave forms a continuum extending from 0 to +∞,
and none of the positive energy eigenstates is square in-
tegrable. Nevertheless, for a large enough radius R, one
can still find eigenstates which, inside the medium, expo-
nentially decrease over several orders of magnitude away
from a central region, toward the borders of the gas of
scatterers [6]. For all practical purposes, these are local-
ized states. From a spectral point of view, these localized
states are expected to correspond to very narrow reso-
nances of the matter wave inside the scattering medium,
that is to complex poles

zres = Eres − i~Γ/2 (24)

of the Green’s function Eq.(2) analytically continued to
the lower half of the complex plane, Γ > 0. Such a reso-
nance, localized close to the center, has a width Γ, i.e. an

inverse lifetime, that vanishes exponentially with the ra-
dius R as exp(−2R/ξ), where ξ is the localization length
of the localized states [6, 12], reproducing for R = +∞
the aforementioned ideal case of poles on the real axis.

To find such resonances, one has to analytically extend
the Green’s function Eq.(2) to complex energies z. Then,
setting k = (2mz/~2)1/2 in Eq.(5), taking the real and
negative axis as the line cut for z1/2, one finds that Eq.(9)
still holds. Then the complex poles zres are such that the
matrix M has a zero eigenvalue. Adopting the second
strategy used for bound states, one actually diagonalizes
M∞(z) so that has to solve the equations for zres:

1

aeff
= −m∞

i (zres). (25)

In practice, to solve Eq.(25), we implement Newton’s
method as follows. We choose some real and positive
value for E. We diagonalize M∞(E), calculating the
eigenvalues and the eigenvectors; we select an eigenvalue
m∞

i (E) and we set the effective scattering length to the
value such that a−1

eff +m∞
i (E) is purely imaginary,

aeff = − 1

Rem∞
i (E)

. (26)

This constitutes the initial guess in Newton’s method.
The successive steps of the method involves the calcula-
tion of the derivative of m∞

i (z) with respect to z, which
can be done thanks to the extension of the Hellmann-
Feynman theorem to non-hermitian matrices [20]. Of
particular interest is the approximate value of zres ob-
tained after the first step:

zres = E − i
Imm∞

i (E)

dm∞
i (E)/dE

, (27)

which, if compared with (24), provides the values of
Eres and Γ. We have checked that, if the imaginary
part of m∞

i (E) is small enough, typically . 10−3/d for
pocc = 0.1, the first step Eq.(27) has in practice already
converged to the exact pole location. To obtain Fig.7, we
used this first step approximation.

B. Results for the density of bound states and

resonances

Using the techniques presented in the previous subsec-
tion, we have calculated the density of resonances and of
bound states in the plane (E, aeff), E being the real part
of Green’s function complex poles for resonances and the
eigenenergy for bound states. The raw result is presented
in Fig.7a.
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For large and negative E, and positive aeff , a first class
of bound states is observed, with a density of states con-
centrated in a narrow interval of values of aeff . This
was expected: For aeff > 0 the matter wave can form a
bound state (a dimer) with a single scatterer, of energy
Edim given by Eq.(19). In the presence of the disordered
ensemble of scatterers, this dimer subsists in the limit
aeff ≪ ρ−1/3, where ρ is the mean density of scatterers.
Simply, the dimer state may tunnel from one scatterer
in location ri to another one in rj , with a tunneling am-
plitude close to Eq.(20). This tunneling broadens the
eigenenergy interval around Edim by an amount of the
order of the tunneling amplitude, a small amount in rel-
ative value if aeff ≪ ρ−1/3.
As one moves to larger values of the energy, the afore-

mentioned interval of eigenenergies moves toward larger
values of aeff and broadens, as expected from the previ-
ous reasoning. In addition, an internal structure is ap-
parent in the figure, see the zoom in Fig.8, the density of
states being peaked over several subintervals, correspond-
ing to various branches. These branches may be identi-
fied physically by calculating the eigenenergies of trimers,
tetramers, ... of the matter wave with two, three, ... scat-
terers on the lattice, see the lines in the corresponding
Fig.8. One simply has to apply the method described
in the previous subsection, for N = 2, 3, . . ., see Eq.(23),
and the corresponding matrices M(E) may be diagonal-
ized analytically. Setting E = −~

2q2/(2m), q > 0, one
finds that aeff is given as a function of the energy of a
AB2 trimer by the two branches

1

aeff
= q ± e−qr12

r12
(28)

where r12 is the distance between the two B scatterers.
The calculation may be done also for the AB3 tetramers,
giving rise to three branches for each particular set of val-
ues of the inter-scatterer distances r12, r13, r23. The an-
alytical expressions are simple in the relevant case r13 =
r23, where one sets β = e−qr12/r12 and δ ≡ e−qr13/r13.
One then finds that one of the branches reduces to one
of the trimer branches, 1/aeff = q + β. The other two
branches are then given by [10]:

1

aeff
= q − 1

2

[

β ± (β2 + 8δ2)1/2
]

. (29)

For negative values of E close to the origin, another
class of bound states is observed for negative aeff . For
values of aeff close to zero, this class may be interpreted
by a simple mean field effect. The matter wave experi-
ences an effective attraction inside the volume containing
the scatterers, represented by the negative mean field po-
tential ρgeff , see Eq.(17), so that the gas of scatterers pro-
duces an effective square well potential of radius R that
can support matter wave bound states. This mean field
interpretation is in good agreement with the numerical
results for small |aeff |. The oblique mean field white line
in Fig.7 giving the bottom ρgeff of the effective square

well potential accurately reproduces the lower boundary
of the bound state energies.
Each of the two components that we discussed for

E < 0 continuously develops in two corresponding com-
ponents on the E > 0 side of Fig.7a.
The component in the lower part of Fig.7a has a first

boundary (delimiting a blue triangular zone containing
no resonances) which is well described by mean field the-
ory at low values of E and aeff , see the oblique white line.
It has a second boundary on the right, corresponding to
a blue oval region again with no resonances. There is
no physical interpretation of this blue oval region at the
present moment. A word of caution may be useful at
this stage. For E > 0, we calculate a density of reso-
nances, with an approximate method valid for long-lived
resonances only (see subsection IVA), so the absence of
resonances does not imply the absence of eigenstates (in
particular extended states) of the system. The blue oval
region thus does not necessarily corresponds to a spectral
gap in the density of states. In particular, the calculation
of the localization length ξ performed in the previous sec-
tion for aeff/d = 0.1 shows a divergence of ξ at the mean
field border, with small values of ξ at energies below this
border, which is compatible with a spectral gap. However
it does not show any sharp decrease of ξ at the border
with the oval region, ξ retains very high values even for
energies in the oval region, raising doubts about the ex-
istence of a spectral gap in that region. As we shall see
in Fig.7b, the component in the lower part of Fig.7a con-
tains no long lived resonances, hence no localized states.
The E > 0 component in the upper part of Fig.7a is

more promising for observing localized states. In Fig.7b
we have kept only very long-lived resonances, with a de-
cay rate Γ < 10−6

~/(md2) [21]. This corresponds to a
lifetime larger than ≃ 200s for 87Rb atoms in an opti-
cal lattice of spacing d = 0.4µm [14]. We see that, after
this selection, the upper component still gives a signifi-
cant contribution, while the lower component essentially
disappears.
In Fig.7c and Fig.7d, we have kept only the bound

states and resonances that are localized in real space,
according to the two following criteria respectively: In
Fig.7c we keep states with a participation volume Vp
smaller than (6.5d)3, where the participation volume is
defined as:

Vp ≡ 1

ρ
∑N

i=1 |Di|4
(30)

where the amplitudesDi are the components of the eigen-
states of the M matrix with a zero eigenvalue, and are

normalized such that
∑N

i=1 |Di|2 = 1. In Fig.7d we keep
states with a root-mean square size σ in real space smaller
than 4.2d, with the definition

σ2 ≡
(

N
∑

i=1

r2i |Di|2
)

−
(

N
∑

i=1

ri|Di|2
)2

, (31)

where the Di are defined as for Vp.
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(a) (b)

(c) (d)

FIG. 7: For the 3D system: Density of resonances and bound states per scatterer in the plane (energy E, effective scattering
length aeff), obtained as explained in subsection IVA. E on the horizontal axis is either the real part of zres on the positive
energy side, or the bound state eigenenergy on the negative energy side. The filling factor is pocc = 1/10 within a sphere of
radius R = 29d, so that the mean number of scatterers is 〈N〉 ≈ 104. The value of E is discretized with a step 0.0025E0 for both
positive and negative values of E, and we use E0 = ~

2/(md2) as unit of energy. For each value of E one different realization
of disorder is used, without imposing any reflection symmetry (see end of subsection IIIA). A logarithmic scale is used: The

color map (see bar on the right) is applied to the quantities log10
Nres

N
E0d
δS

, for E > 0, and log10
Nbound

N
E0d
δS

, for E < 0, where
Nres and Nbound are the number of resonances and bound states respectively, within each rectangular bin of area δS = δEδaeff
(δE = 0.01E0 and δaeff = 0.007d, for both positive and negative values of E). The plotted quantity is then ≃ log10(1.4Nres),
and ≃ log10(1.4Nbound), respectively. The horizontal dashed lines correspond to the values of aeff/d ∈ {0.1, 0.2, 0.7, 1, 1.3} used
in Fig. 4. The oblique solid line is the border of the energy gap E = ρgeff predicted by the mean field theory (see Eq.(18) with
κmf = 0). (a) No selection is applied to the resonances (E > 0). As explained in the text, most of the displayed resonances
(the ones with too large a width) are not expected to be meaningful. (b) Restricting to E > 0, only the resonances with a
width Γ < Γmax = 10−6E0/~ are kept in the density of resonances. The value of Γmax is essentially infinite with respect to the
duration of typical experiments: For a matter wave of 87Rb atoms and an optical lattice with d = 0.4µm, as in [14], one has
indeed 1/Γmax ≃ 200 seconds. (c) Only the resonances and bound states corresponding to a small enough participation volume

Vp are kept in the density (V
1/3
p /d < 6.5, see Fig.9a and c). (d) Only the resonances and bound states corresponding to a small

enough r.m.s. size σ in real space are kept in the density (σ/d < 4.2, see Fig.9b and d).
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FIG. 8: Zoom of figure 7a, in the region of E < 0 and
small and positive values of aeff (here δE = 0.01E0, and
δaeff = 0.005d). On the color map representing the density
of states (see caption of Fig.7a), are plotted the energies of
bound states of an A atom with one, two or three B atoms,
denoted respectively dimer AB, trimer AB2, and tetramer
AB3 states. In particular are plotted the energies of a dimer
Eq.(19) (black solid line), of a trimer Eq.(28) with two B
atoms separated by a distance r12 = d (dashed black and
dash-dotted black lines), of a trimer with two B atoms sepa-
rated by a distance r12 =

√
2d (dashed and dash-dotted blue

lines), and of a tetramer Eq.(29) with three B atoms sepa-
rated by distances r13 = r23 = d and r12 =

√
2d (solid and

dashed magenta lines). It is worth noting that the prediction
for the energy of such isolated bound states correspond to the
higher density lines of the color map plot.

For computational convenience, in defining these two
quantities we used the amplitudes Di, rather than the
wavefunctions ψ of the resonances and the bound states.
We verified for several examples that localization of Di

implies a localization of ψ, and vice versa. This can be
easily understood since the matter wave problem is anal-
ogous to that of a scalar wave of light scattered by pinned
atomic dipoles. In this case, the values of Di correspond
to the values of the electric dipole moment on each atom,
and the matter wave wavefunction ψ corresponds to the
electric field E . In this scalar light analogy it is intuitive
that the spatial extension of the dipoles reflect that of
the electric field, and vice versa [22]. For completeness,
we provide the expression of ψ in terms of Di in the ap-
pendix B.

The choice of above mentioned limiting values for Vp
and σ are motivated by the histograms of Fig.9. For
E > 0, the histograms clearly reveal a bimodal struc-
ture in the probability distribution of Vp and σ, which
suggests the coexistence of localized resonances (small

values of V
1/3
p and σ) and extended resonances (large

values of V
1/3
p and σ, of the order of the radius R = 29d
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FIG. 9: For the 3D system: For all resonances with Eres/E0 ∈
(0, 2) and and aeff/d ∈ (−3, 3), and all bound states with E ∈
(−2, 0)E0 and aeff/d ∈ (−3, 3), the figures show an histogram
giving the number of resonances (in (a) and (b)) and bound
states (in (c) and (d)) per scatterer (the number of scatterers
is N = 104) as a function of: in (a) and (c), the square root
of the participation volume defined in Eq.(30); in (b) and (d),
the r.m.s. size in real space defined in Eq.(31). The bin size
is ∼ 0.2d for (a) and (c), and ∼ 0.26d for (b) and (d). The
parameters are the same as in Fig. 7a. The dashed vertical

lines are the values V
1/3
p /d ≃ 6.5 and σ/d ≃ 4.2 [15] used in

Fig. 7c and Fig. 7d to select the bound states and resonances
that are spatially localized and to filter out the bound states
and resonances that are spatially extended.

of the sphere containing the scatterers). For E < 0, the
bimodal structure is still apparent for σ, showing that
some bound states are extended. Interestingly, the bi-
modal structure is not present for E < 0 on the histogram

of V
1/3
p . Actually, it may happen that a state which is

a coherent superposition of a few-body bound state (e.g.
a dimer, a trimer) at different locations is considered as
a localized state with the criterion based on Vp, whereas
it is considered as an extended state with the one based
on σ. An extreme example of such a case corresponds to
a dimer delocalized over two sites of positions r and −r.

ThenDi = (δri,r+δri,−r)/
√
2, leading to V

1/3
p = (2/ρ)1/3

(insensitive to the distance 2r between the two possible
dimer locations), and to σ = r [31].
Coming back to Fig.7d, we thus see two main streams

of localized states, one restricted to negative energies,
and the other extending to positive energies. The exis-
tence of these two streams explains the structure of the
localization length in Fig.4a. It is possible to establish a
correspondence between the occurrence of divergences of
the localization length, and boundaries between an en-
ergy interval with localized states and an energy interval
with extended states. A particularly rich example corre-
sponds to the effective scattering length value aeff = d,
for which by combining the information coming from the
localization length ξ in Fig.4a, and the density of reso-
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nances/bound states in Figs.7a and 7d, we can distin-
guish 5 energy intervals:

• E/E0 < −1.3: the density of bound states is zero
in Fig.7a, and ξ takes small values Fig.4a. This
reflects the occurrence of an energy gap.

• −1.3 < E/E0 < −1: the density of localized bound
states is non-zero in Fig.7d, and ξ increases with a
divergent behavior at E/E0 ≃ −1 in Fig.4a. This
suggests the presence of an energy band of localized
states with an upper mobility edge at E/E0 ≃ −1.

• −1 < E/E0 < −0.2: there are bound states in
Fig.7a, but no localized bound states in Fig.7d,
and ξ assumes very large values (presumably larger
than the system size). This suggests the presence
of an energy band of extended bound states de-
limited by two mobility edges at E/E0 ≃ −1 and
E/E0 ≃ −0.2.

• −0.2 < E/E0 < 0.6: the density of localized
bound states and localized resonances is non-zero
in Fig.7d, and ξ assume small values away from di-
vergent behaviors at E/E0 ≃ −0.2 and E/E0 ≃ 0.6
in Fig.4a. This suggests the presence of an energy
band of localized states delimited by two mobility
edges at E/E0 ≃ −0.2 and E/E0 ≃ 0.6.

• E/E0 > 0.6: the density of localized resonances is
zero in Fig.7d, and ξ assumes very large values (pre-
sumably larger than the system size). This suggests
the presence of an energy band of extended states
delimited by a lower mobility edges at E/E0 ≃ 0.6.

One can apply the same analysis to other values of
aeff considered in Fig.4a. In particular, it is interesting
to note that for aeff = 0.7d the correspondence between
the positions of mobility edges deduced from the local-
ization length ξ, and deduced from the density of res-
onances/bound states, is only qualitative: for negative
energies, ξ diverges at E/E0 ≃ −1.2 and E/E0 ≃ −0.8
in Fig.4a, while one finds the transition region between
localized and extended states at E/E0 ≃ −1.0 and
E/E0 ≃ −0.9 in Fig.7d. This discrepancy can be ex-
plained in terms of finite size effects, as is apparent from
Fig.10. Indeed, Fig.10a shows a zoom of the figure 7d
(i.e. density of resonances and bound states per scatterer
in the plane (E,aeff) having a r.m.s. size in real space
σ < 4.2d). In Fig.10b we impose an additional filter-
ing with respect to that of Fig.10a: we keep only bound
states and resonances having their maximum |Di| at a
distance less than R′ = 20d from the origin, whereas the
disorder fills a sphere of radius R = 30d. In this way only
localized states located far from the border of the system
are selected. In figure 10b the transition region between
localized and extended states is now at E/E0 ≃ −1.2
and E/E0 ≃ −0.8, in quantitative agreement with the
mobility edges deduced from ξ in Fig.4a.
To conclude the analysis of the 3D system, we give in

Fig.11 the values of the width Γ for the resonances in

(a)

(b)

FIG. 10: For the 3D system: Finite size effect on the density
of localized states. (a) Zoom of the figure 7d, which shows the
density of resonances and bound states per scatterer in the
plane (E,aeff) having a r.m.s. size in real space σ < 4.2d. We
recall that there are N ≃ 104 scatterers in a sphere of radius
R = 29d. (b) Same as (a), with an additional filtering: we
keep only bound states and resonances having their maximum
|Di| at a distance less than R′ = 20d from the origin (in
the normalization, we considered the number of atoms N ′ ≃
3.3× 103 in the sphere of radius R′).

the plane (E, aeff). A filtering was applied to these reso-
nances: In Fig.11a we considered only resonances with a

participation volume V
1/3
p /d ≤ 6.5, and in Fig.11b only

resonances with a r.m.s size in real space σ/d ≤ 4.2. This
analysis shows the presence of numerous extremely long-
lived resonances with Γ ≤ 10−6E0/~. This figure may be
useful for experimental purposes to identify optimal val-
ues of (E, aeff) for the observation of maximally localized
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resonances. These occur for values of aeff ≈ 0.8d and
0 < E/E0 < 0.4, for the considered density of scatterers
pocc = 1/10.

V. LOCALIZATION IN A 2D GEOMETRY

It is now experimentally possible to realize systems
where the atomic matter wave atom A is confined in a
2D geometry. One can apply a strong confinement along
the direction z, freezing the motion in its ground state
along z, while leaving a free motion in the xy plane. In
analogy with the 3D disordered system studied in previ-
ous sections, we study here the 2D case, where both B
scatterers and matter wave atoms A are confined along
the z direction (not necessarily with the same potential),
and B scatterers are randomly distributed at the nodes
of a 2D optical lattice in the xy plane (the A atoms being
insensitive to that lattice). As for the 3D case, the low
energy scattering of an A atom with a single trapped B
atom can be characterized by a 2D effective scattering
length, accounting for the effect of the atomic motion of
the B atom during the scattering process. This allows us
to replace the B atoms by point-like scatterers at fixed
positions, described by contact conditions on the A atom
wavefunction. For simplicity we use for the effective scat-
tering length in 2D the same notation aeff as in 3D. To
our knowledge, the dependence of the effective 2D scat-
tering length on the free space 3D scattering length a, on
the atomic masses and on the oscillation frequencies, has
not yet been investigated.
On the theoretical side there has been significant in-

vestigation of disordered systems in 2D since this is the
lower critical dimension for the occurrence of the metal-
insulator transition. In 2D it is expected that all states
are localized in an infinite system, but the localization
length increases rapidly with the energy [17, 23]. It is
thus important to identify the range of parameters (mat-
ter wave energy E and aeff) for which the localization
length ξ takes small values. In subsection VA we explain
how to adapt the 3D formalism to the 2D case, and in
subsection VB we present the results for the localization
length and the density of localized states.

A. Formalism for 2D systems

In 2D the contact condition on the matter wave wave-
function in the vicinity of each scatterer of position ri

is

ψ(r) =
m

π~2
Di ln(|r − ri|/aeff) +O(|r − ri|) (32)

where aeff is now the 2D effective scattering length (al-
ways positive) [24]. Comparing to the 3D contact con-
ditions Eq.(1), we see that −1/ ln(aeff/d) in 2D plays
the role of aeff/d in 3D. We recall that, in 2D, the limit
aeff → 0 does in fact correspond to a weakly repulsive

FIG. 11: For the 3D system: Width Γ of the resonances as
a function of the energy E and the effective scattering length
aeff [see Eqs. (24) and (27)]. The physical parameters are the
same as in Fig. 7. The plane (E, aeff) is decomposed in rect-
angular bins of widths δE and δaeff . The color map (see bar
on the right) is applied to the quantity log10 ~〈Γ〉/E0 where
〈Γ〉 is the mean value of Γ for the resonances within a given
bin. The resonances are filtered in (a) over the participation
volume as in Fig. 7c and in (b) over the r.m.s. size σ as in
Fig. 7d. In (a) one has δE = 0.009E0 and δaeff = 0.02d, and
in (b) one has δE = 0.008E0 and δaeff = 0.02d.

limit, while aeff → +∞ corresponds to a weakly attrac-
tive limit.
The 2D Green’s function still obeys Eq.(3), so that

formally Eq.(6) still holds provided that one takes for g0
the 2D free matter wave Green’s function. For E > 0,
we set E = ~

2k2/(2m), k > 0, and we obtain

g0(r) = − im

2~2
H

(1)
0 (kr) (33)

with the Hankel function expressed in terms of Bessel
functions as H0(z) = J0(z) + iN0(z). From [25] one ob-
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tains the limiting behaviors

H
(1)
0 (kr) ∼

r→+∞

(

2

πkr

)1/2

ei(kr−π/4), (34)

H
(1)
0 (kr) ∼

r→0
1 +

2i

π
ln

(

kreγ

2

)

+ o(1), (35)

where γ = 0.57721566 . . . is Euler’s constant. The nu-
merical factor in Eq.(33) thus results from the fact that

∆r ln r = 2πδ(r) in 2D. For E < 0, we set E =
−~

2q2/(2m), q > 0. That is, k = iq is now purely imagi-
nary, and we obtain

g0(r) = − m

π~2
K0(qr) (36)

whereK0 is a modified Bessel function of the second kind.
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FIG. 12: For the 2D system: localization length ξ (a), and Lyapunov exponent κ (b), as a function of the energy E. Here the
2D effective scattering length is aeff = d, the lattice filling factor is pocc = 1/10, and an average over 100 realizations for the
positions of the scatterers has been performed. The value of κ is obtained using the second method [see Eqs.(39) and (40)]. For
values of 0 < E/E0 < 0.24, we considered larger and larger system sizes 2R/d ∈ {100, 150, 250, 350} until a convergent value
for κ is reached, within the statistical error bars, which are smaller than 5%. For 0.24 < E/E0 < 0.5 we considered system
sizes 2R/d ∈ {350, 600}, and found a maximal deviation of 10% in κ between the two sizes, finally plotting the values for
2R/d = 600. For negative energies −2 < E/E0 < 0 we considered system sizes 2R/d ∈ {100, 250}, from which we extrapolated
linearly to the case 1/R → 0. In this region we obtain error bars smaller than 1%.

The secondary source amplitudes Di are then deter-
mined by imposing the contact conditions (32) at the

order O(1). That is, for the non-diverging term ln aeff ,

N
∑

j=1

MijDj = −π~
2

m
g0(ri − r0), ∀i ∈ {1, . . . , N} (37)
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where we have introduced the N ×N matrix

Mij =















π~2

m
g0(ri − rj) if i 6= j,

−iπ2 + ln
(

kaeffe
γ

2

)

if i = j.

(38)

For E < 0, where k = iq, q > 0, this holds with the de-
termination ln i = iπ/2, leading to the diagonal element

Mii = ln
(

qaeffe
γ

2

)

.

For the calculation of the localization length ξ, we use
the second method already discussed for the 3D case. By
following the same derivation as in 3D, and using Eq.(34),
we obtain the same expression (12) for the values of the
transmission amplitude t(n) of a source located at the
position r0. Then, we define the Lyapunov exponent κ
as

κ = − lim
R→+∞

∫ 2π

0

dθ

2π

〈ln |t(n)|〉
R

for E > 0, (39)

κ = q − lim
R→+∞

∫ 2π

0

dθ

2π

〈ln |t(n)|〉
R

for E < 0, (40)

where n has coordinates (cos θ, sin θ) in the xy plane, and
R is the radius of the disk containing the disorder.
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FIG. 13: For the 2D system: Lyapunov exponent κ of Fig.12b,
plotted in logarithmic scale (solid black line). The prediction
of the independent scattering approximation (ISA) theory is
also shown (dotted black line).

To obtain the density of bound states and resonances
in 2D, we use the same procedure as in 3D, and split the
matrix M as

M = ln(aeff/d)Id +M∞, (41)

where M∞ is the value of M for 1/ ln(aeff/d) = ∞, i.e.
comes from setting aeff = d in Eq.(38). To evaluate the
density of bound states for a fixed value of aeff one can
solve by dichotomy the 2D equivalent of Eq.(21), using

the fact that the eigenvalues of M(E), for E < 0, are
a monotonically decreasing function of E (see appendix
A).

B. Results for the localization length and the

density of states for the 2D system

In figures 12a and b we show the value of the local-
ization length ξ and of the Lyapunov exponent κ ≡ 1/ξ
of Eqs.(39) and (40), as a function of the energy E of
the matter wave, for the 2D effective scattering length
aeff = d. We note a monotonically increasing behavior
of ξ, and a monotonically decreasing behavior of κ with
the energy E, with the occurrence of a flatter region (a
“shoulder”) around E/E0 = 0.05. The logarithmic plot
for κ in Fig.13 suggests an exponential decay of κ at large
energies. However, being over less than one decade, it is
not fully conclusive. We also performed calculations of
κ for aeff/d = 0.3, obtaining similarly large values of κ
at low energy. In contrast, for aeff/d = 3 the values of κ
drop by an order of magnitude for the same energy in-
terval. In Fig.13 we also plot the prediction coming from
the frequently used independent scattering approxima-
tion (ISA) (see, for instance [26]), according to which the
localization length ξ = l exp (πlRekeff/2), is expressed
in terms of the mean free path l ≡ 1/(2Imkeff), and an
effective wavevector keff defined as

E ≡ ~
2k2

2m
=

~
2k2eff
2m

+ ρ〈k|T (E + i0+)|k〉 (42)

where T is the T-matrix in 2D for a single scatterer [27]:

〈k|T (E + i0+)|k〉 = −π~2/m
ln(kaeffeγ/2)− iπ/2

. (43)

The figure shows that the ISA is not accurate for the
considered parameters, i.e. for large values of aeff , of the
order of the mean distance between scatterers.
In figure 14 we show the density of bound states and

resonances in the (E/E0, ln(aeff/d)) plane, in a 2D sys-
tem (see sections IVA and VA). Calculations have been
performed for a disk of radius R = 150d, and a den-
sity of scatterers pocc = 1/10. In Fig.14a we show raw
data without any selection, in Fig.14b we present only
resonances with a width Γ < 10−6E0/~, in Fig.14c we
present only resonances and bound states with a partic-

ipation surface S
1/2
p /d < 9.5 (this value is motivated by

Figs.17a and c, see below), and in Fig.14d we present only
resonances and bound states with r.m.s. size σ/d < 4.2
(this value is motivated by Figs.17b and d, see below).
Here

Sp ≡ 1

ρ
∑N

i=1 |Di|4
(44)

where the Di are normalized as
∑N

i=1 |Di|2 = 1, and σ is
defined by the 2D version of Eq.(31).
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In figure 15 we show a zoom of Fig.14a in the region of
lowest energies. The streams of higher densities of bound
states are shown to be in correspondence with the energy
of some few body bound states (AB dimers, AB2 trimers,
AB3 tetramers). We recall that, in 2D, the matter wave
has a single bound state AB on a isolated scatterer, with
an energy [10, 24]

Edim = − 2~2

ma2eff e
(2γ)

. (45)

The energy Etrim = −~
2q2/(2m) of the AB2 trimer is

given by [10]

aeff e
γ

2
=

1

q
exp [±K0(qr12)], (46)

where r12 is the distance between the two B scatterers.
The energy Etetra = −~

2q2/(2m) of the AB3 tetramer
is given [10], in the particular case of r13 = r23, by the
expression

aeff e
γ

2
=

1

q
exp

{

1

2
[β ± (β2 + δ2)1/2]

}

, (47)

where β = K0(qr12), δ = K0(qr13) = K0(qr23), and
rij is the distance between the two B scatterers i and
j. The signature left by few body bound states in the
density of states can be further appreciated in Fig.16,
where we plot the density of states as a function of the
energy E < 0, at the fixed value of aeff = d. The energies
of some few body bound states (vertical arrows in the
figure) are shown to correspond to peaks in the density
of states. The same calculation, performed for aeff = 3d,
shows a broad structure where essentially all the peaks
are washed out.
In figure 17 we show histograms of the number of states

as a function of the participation surface Sp and of the
r.m.s. size σ, for positive energies (Figs.17a and b) and
for negative energies (Figs.17c and d). The structure of
the histograms at positive energies shows broad struc-
tures corresponding to states extending over the whole
disordered system. This fact does not contradict the gen-
eral statement that all states are localized in a 2D system
[23]. Indeed, at large energies and large values of aeff ,
the localization length ξ becomes very large, larger than
the system size. For negative energies, the histograms
show one narrow peak with no tails, indicating that all
the states are localized with a localization length of few
lattice spacing only.
In figures 18a and b, we plot the value of the width

Γ of the resonances, on the (E/E0, ln(aeff/d)) plane. In
Fig.18a, we considered only resonances with a partici-

pation surface S
1/2
p /d < 9.5, while in Fig.18b, we con-

sidered only resonances with a r.m.s size σ/d < 4.2. In
both figures wide regions are present corresponding to
very small values of Γ, i.e. to extremely long-lived res-
onances (in practice infinitely long-lived at the scale of
the experiments).

VI. CONCLUSION

We performed a quantitative study of the 3D and 2D
strong localization of matter wave in a random potential
realized by point-like scatterers (atoms) pinned at the
nodes of a cubic or square lattice. This model allows an
exact numerical analysis of both the localization length
and density of states, as a function of the matter wave
energy and of the effective scattering length between the
matter wave and a single scatterer. We considered sys-
tems having a number of scatterers of the same order
as that achieved in current experiments with ultra cold
atomic gases (N ∼ 105), corresponding to systems with a
diameter ∼ 140 lattice spacings in 3D for a lattice filling
factor = 1/10.

In 3D, we found evidences for the occurrence of sev-
eral energy mobility edges, for both positive and nega-
tive matter wave energies E. For E > 0, we found a
mobility edge for a positive effective scattering length of
the order of the mean distance between scatterers. For
a too large positive, or for a negative value of aeff we
found no evidence of mobility edge, in agreement with
the predictions in [12]. For aeff small and positive we
found the occurrence of an energy gap between E = 0
and an upper bound coinciding with a mean field ef-
fect E = geffρ where ρ if the density of scatterers, and
geff = 2π~2aeff/m. Within this energy gap, there is a
small localization length with no evidence of localized
states [32]. For E < 0, where the matter wave is bound
inside the gas of scatterers (a case not explored in previ-
ous works to our knowledge), we found localized bound
states and evidence of two mobility edges separated by
an energy interval where only extended bound states are
present. We also found, for aeff small and negative, ex-
tended bound states in the energy interval between the
mean field shift E = ρgeff and E = 0. To ascertain
the presence of the mobility edges, and to identify the
universality class of this disorder induced transition, a
dedicated analysis should be undertaken using finite size
scaling techniques to determine the critical exponent. For
experimental purposes, large values of the effective scat-
tering length may be obtained by using Feshbach reso-
nances to control the free space scattering length a [6].
Recently a > 1µm has been obtained with Li gases [28].

In 2D, no evidence of mobility edges is found for either
positive or negative energies. Contrary to the 3D case,
at negative energies, all bound states are localized. We
identified regions in the (E/E0, ln(aeff/d)) plane where
the localization length is small and the density of states
is high. This happens for aeff of the order of the average
distance between scatterers, for a wide interval of ener-
gies. At high energies we find a rapid, exponential-like
increase of the localization length with energy. At nega-
tive energies the localization length shows no such rapid
increase of ξ. To our knowledge, large values of the 2D
effective scattering length have not yet been observed. It
is thus interesting to study the dependence of the 2D aeff
with respect to the free space scattering length a, and
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(a) (b)

(c) (d)

FIG. 14: For the 2D system: Density of resonances and bound states per scatterer in the plane (energy E/E0, logarithm of
the effective scattering length ln(aeff/d)), obtained as explained in the subsection VA. E on the horizontal axis is either the
real part of zres on the positive energy side, or the bound state eigenenergy on the negative energy side. The filling factor is
pocc = 1/10 within a disk of radius R = 150d, so that the mean number of scatterers is 〈N〉 ≈ 7 × 103. The value of E is
discretized with a step 0.0025E0 for both positive and negative values of E, and we used E0 = ~

2/(md2) as unit of energy. For
each value of E one different realization of disorder is used, without imposing any reflection symmetry (see end of subsection
IIIA). A logarithmic scale is used: The color map (see bar on the right) is applied to the quantities log10

Nres

N
E0d
δS

, for E > 0,

and log10
Nbound

N
E0d
δS

, for E < 0, where Nres and Nbound are the number of resonances and bound states respectively, within
each rectangular bin of area δS = δEδ ln(aeff/d) (δE = 0.01E0 and δ ln(aeff/d) = 0.007, for E > 0, and δE = 0.01E0 and
δ ln(aeff/d) = 0.004 E < 0). (a) No selection is applied to the resonances (E > 0). As explained in the text, most of the
displayed resonances (the ones with a too large width) are not expected to be meaningful. (b) Restricting to E > 0, only the
resonances with a width Γ < Γmax = 10−6E0/~ are kept in the density of resonances. The value of Γmax is essentially infinite
with respect to the duration of typical experiments. (c) Only the resonances and bound states corresponding to a small enough

participation surface Sp are kept in the density (S
1/2
p /d < 9.5, see Fig.17a and c). (d) Only the resonances and bound states

corresponding to a small enough r.m.s. size σ in real space are kept in the density (σ/d < 4.2, see Fig.17b and d).
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FIG. 15: Zoom of figure 14a, in the region of E < 0 (here
δE = 0.01E0, and δ ln(aeff/d) = 0.003). On the color map
representing the density of states (see caption of Fig.14a),
are plotted the energies of bound states of an A atom with
one, two or three B atoms, called respectively dimer AB,
trimer AB2, and tetramer AB3. In particular are plotted
the energies of a dimer Eq.(45) (black solid line), of a trimer
Eq.(46) with two B atoms separated by a distance r12 = d
(dashed black and dash-dotted black lines), of a trimer with
two B atoms separated by a distance r12 =

√
2d (dashed and

dash-dotted blue lines), of a tetramer Eq.(47) with three B
atoms separated by distances r13 = r23 = d and r12 =

√
2d

(solid and dashed magenta lines). It is worth noting that
the predictions for the energies of such isolated bound states
correspond to the higher density lines of the color map plot.

the harmonic confinement in the microtrap.
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Appendix A: Monotonic behavior of the eigenvalues

of M(E)

We show that, for E = −~
2q2

2m < 0, the eigenvalues
mi(E) of the real symmetric matrix M(E) are mono-
tonic functions of the energy E. This results from the
Hellmann-Feynman theorem, and from the fact that the
matrix dM(E)/dE is positive in 3D (respectively neg-
ative in 2D), so that dmi/dE > 0 in 3D (respectively
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FIG. 16: For the 2D system: density of bound states for a
given value of the 2D effective scattering length aeff = d.
The histogram is the result of the average over 100 random
realizations of the scatterers positions in a disk of radius R =
50d, and a filling factor pocc = 1/10. On average, we find 0.85
bound states per scatterer. As done in Fig.15, we also plot the
energies of bound states of an A atom with one, two or three
B atoms. The vertical lines with arrows indicate the energies
of few body bound states ABn. Black solid line: energy of a
AB dimer Eq.(45), dash-dotted black line: energy of a AB2

trimer Eq.(46) with two B atoms separated by a distance
r12 = d, dashed and dash-dotted blue lines: energy of AB2

with two B atoms separated by a distance r12 =
√
2d, solid

magenta line: energy of the tetramer AB3 Eq.(47) with three
B atoms separated by distances r13 = r23 = d and r12 =

√
2d.

dmi/dE < 0 in 2D).
Let us start with the 3D case. The idea is to show

that, for all 1 ≤ i, j ≤ N ,

d

dE
Mij(E) =

2π~2

m
〈ri|

1

(E − h0)2
|rj〉, (A1)

where h0 = − ~
2

2m∆3D
r

. Since (E−h0)2 is a positive oper-
ator, the positivity of dM/dE readily follows. For i 6= j
one has, from Eq.(8), that

Mij = −2π~2

m
〈ri|

1

E − h0
|rj〉, (A2)

since (E − h0)g0(r) = δ(r). Taking the derivative with
respect to E gives Eq.(A1). It remains to check that
Eq.(A1) also holds for i = j by a direct calculation. On
one hand, Mii = a−1

eff − q so that dMii/dE = m/(~2q).
On the other hand, introducing a closure relation in the
plane wave basis, one indeed finds

2π~2

m
〈ri|

1

(E − h0)2
|ri〉 =

2π~2

m

∫

d3k

(2π)3
1

(E − ~2k2/2m)2
=

m

~2q
. (A3)
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FIG. 17: For the 2D system: For all the resonances with
Eres/E0 ∈ (0, 2) and ln(aeff/d) ∈ (−3, 3), and for all the
bound states with E ∈ (−2, 0)E0 and ln(aeff/d) ∈ (−3, 3), the
figures show an histogram giving the number of resonances (in
(a) and (b)) and bound states (in (c) and (d)) per scatterer
(the number of scatterers is N = 7 × 103) as a function of:
in (a) and (c), the square root of the participation surface
defined in Eq.(44); in (b) and (d), the r.m.s. size in real space
defined by the 2D version of Eq.(31). The bin size is ∼ 0.6d
for (a), ∼ 1.37d for (b), ∼ 0.3d for (c), and ∼ 1.37d for (d).
The parameters are the same as in Fig. 14a. The dashed ver-

tical lines are the values S
1/2
p /d ≃ 9.5 and σ/d ≃ 4.2 [15] used

in Fig. 14c and Fig. 14d to select the bound states and reso-
nances that are spatially localized and to filter out the bound
states and resonances that are weakly localized.

In 2D, the proof is quite similar. One simply has to
show that

d

dE
Mij(E) = −π~

2

m
〈ri|

1

(E − h0)2
|rj〉 (A4)

for all 1 ≤ i, j ≤ N , with h0 = − ~
2

2m∆2D
r

. For i 6= j, one
has from Eq.(38) that

Mij =
π~2

m
〈ri|

1

E − h0
|rj〉, (A5)

since (E − h0)g0(r) = δ(r). For i = j, one again per-
forms a direct calculation. First, dMii/dE = d ln q/dE =
−1/(2E). Second, a closure relation in the plane wave
basis indeed gives

− π~2

m
〈ri|

1

(E − h0)2
|ri〉 =

− π~2

m

∫

d2k

(2π)2
1

(E − ~2k2/2m)2
= − 1

2E
. (A6)

A simple consequence of the monotonic behavior of the
eigenvalues mi, is that the total number of bound states,
for a given realization of disorder, is given by the number
of positive eigenvalues of M(E = 0) in 3D, and by the
number of negative eigenvalues of M(E → 0−) in 2D.

FIG. 18: For the 2D system: Width Γ of the resonances as
a function of the energy E and the logarithm of the effective
scattering length ln(aeff/d) [see Eqs. (24) and (27), applied to
the eigenvalues m∞

i (E) of the matrix M∞ of Eq.(41)]. The
physical parameters are the same as in Fig. 14. The plane
(E, ln(aeff/d)) is decomposed in rectangular bins of widths
δE and δ ln(aeff/d). The color map (see bar on the right) is
applied to the quantity log10 ~〈Γ〉/E0 where 〈Γ〉 is the mean
value of Γ for the resonances within a given bin. The reso-
nances are filtered in (a) over the participation volume as in
Fig. 14c and in (b) over the r.m.s. size σ as in Fig. 14d. In
(a) one has δE = 0.019E0 and δ ln(aeff/d) = 0.027, and in (b)
one has δE = 0.011E0 and δ ln(aeff/d) = 0.024.

Appendix B: Matter wave wavefunction in terms of

Di

We restrict here to the three-dimensional case, the gen-
eralization to the two-dimensional case being straightfor-
ward. Let us consider first a matter wave bound state
with eigenenergy E0 < 0. E0 is a pole of the Green’s
function G(r, r0) defined in Eq.(2), so that, according to
Eq.(9), an eigenvalue m0(E) of the matrix M(E) van-
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ishes for E = E0. Since M(E) is real symmetric, its
inverse has the spectral decomposition

[

M−1
]

ij
(E) =

N−1
∑

n=0

1

mn(E)
D

(n)
i (E)D

(n)
j (E) (B1)

where (D
(n)
i )1≤i≤N is the orthonormal eigenvector of

M(E) with real components and eigenvalue mn(E). In

particular,
∑N

i=1(D
(n)
i )2 = 1. When this spectral decom-

position is injected in Eq.(9), together with the expansion
m0(E) = (E − E0)m

′(E0) + . . ., it leads to

G(r, r0) ∼
E→E0

ψ0(r)ψ0(r0)

E − E0
(B2)

with

ψ0(r) =
1

[m′
0(E0)]1/2

N
∑

i=1

D
(0)
i (E0)g0(r− ri). (B3)

As it is apparent from Eq.(B2), ψ0 is the wavefunction
of the bound state of energy E0. Note that m′

0(E0) is
positive according to Appendix A.
Let us consider now a a resonance zres of the system

with a complex energy zres. Then zres is a pole of the
analytic continuation of the Green’s function from the
upper half-plane to the lower half-plane, so that, accord-
ing to the corresponding analytic continuation of Eq.(9),

an eigenvalue of the matrix M(z) vanishes for z = zres.
Since M(z) is complex symmetric, if it is diagonalizable
its inverse has the spectral decomposition

[M−1]ij(z) =

N−1
∑

n=0

1

mn(z)
D

(n)
i (z)D

(n)
j (z) (B4)

where (D
(n)
i )1≤i≤N is the right eigenvector of M(z) with

complex components and eigenvalue mn(z), the corre-
sponding left eigenvector is simply its complex conjugate,

so that the normalization condition is
∑N

i=1(D
(n)
i )2 = 1.

When this spectral decomposition is injected in the ana-
lytic continuation of Eq.(9), together with the expansion
m0(z) = (z − zres)m

′(zres) + . . ., it leads to

G(r, r0) ∼
z→zres

ψ0(r)ψ0(r0)

z − zres
(B5)

with

ψ0(r) =
1

[m′
0(zres)]

1/2

N
∑

i=1

D
(0)
i (zres)g0(r − ri). (B6)

In the limit of an infinitely extended disordered system
ψ0 would correspond to the wavefunction of a localized
state of energy zres.
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[4] J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szrift-
giser, and J.C. Garreau, Phys. Rev. Lett. 101, 255702
(2008).

[5] U. Gavish, and Y. Castin, Phys. Rev. Lett. 95, 020401
(2005).

[6] P. Massignan, Y. Castin, Phys. Rev. A A 74, 013616
(2006).

[7] P. Vignolo, Z. Akdeniz, and M.P. Tosi, J. Phys. B 36,
4535 (2003); B. Horstmann, J.I. Cirac, T. Roscilde, Phys.
Rev. A 76, 043625 (2007); P. Buonsante, F. Massel, V.
Penna, A. Vezzani, Phys. Rev. A 79, 013623 (2009); K.V.
Krutitsky, M. Thorwart, R. Egger, R. Graham, Phys.
Rev. A 77, 053609 (2008).

[8] P.W. Anderson, D. J. Thouless, E. Abrahms, D.S. Fisher,
Phys. Rev. B 22, 3519 (1980); P. Erdos and R.C. Hern-
don, Adv. Phys. 31, 65 (1982).

[9] An alternative definition of κ, not used in this work, is to
consider the logarithm of the angular average of |t(n)|2
rather than the angular average of the logarithm, setting
κalt = − limR→+∞(2R)−1〈ln〈|t(n)|2〉n〉 where 〈. . .〉n is
the angular average. From the convexity of the function

x → − lnx one has κalt ≤ κ. Using the conservation of
the flux of probability one can show that

〈|t(n)|2〉n = 1− k−1Im

N∑

i=1

Disi (B7)

with si = (2π~2/m)g0(ri − r0). To this end one con-
siders the flux of the probability current φfar through
a sphere of arbitrarily large radius and the flux φnear

through a sphere of arbitrarily small radius around the
source location r0. One finds from Eq. (11) that φfar =
[m/(2π~2)]2(4π~k/m)〈|t(n)|2〉n. Expanding the Green’s
function close to the source up to order |r−r0|0, one finds
φnear and one obtains Eq. (B7). A practical consequence
is that the Lyapunov exponent κalt may be deduced from
measurements of the Green’s function close to the source.

[10] The energy of the ABn bound states between an A atom
and n B atomic scatterers can be calculated by using
equation (23), where the eigenvalues m∞ of M∞ can be
calculated analytically in the case of n ≤ 4.

[11] In the limit pocc → 0 the fact that the scatterers posi-
tions are distributed on a lattice rather than uniformly in
continuous space is expected to be no longer relevant, so
that the lattice spacing spacing d drops out of the prob-
lem. Three length scales then remain, the mean distance

ρ−1/3 = d/p
1/3
occ between scatterers, 1/k and aeff . From

dimensional analysis, ρ1/3ξ is a function of ρ1/3aeff and
of ρ−1/3k. The minimal achievable ξ is then reached for



23

values of aeff and 1/k proportional to ρ−1/3, and scales

as ρ−1/3. This also motivates the choice of ρ−1/3 and
~
2ρ2/3/m as units of length and energy, respectively.

[12] B.A. van Tiggelen, A. Lagendijk, A. Tip, G.F. Reiter,
Europhys. Lett. 15, 535 (1991).

[13] As there is no averaging over disorder, the spatial oscil-
lations in the Green’s function are not washed out. For
values of ξ larger than the ones presented in the figure,
that is for ξ getting larger than the lattice constant d,
our fitting procedure based on Eq.(10) is no longer ap-
propriate.

[14] G. Lamporesi, J. Catani, G. Barontini, Y. Nishida, M. In-
guscio, F. Minardi, Phys. Rev. Lett. 104, 153202 (2010).

[15] For a uniformly distributed state in the sphere of ra-

dius R, one has V
1/3
p /R = (4π/3)1/3 ≃ 1.6 and σ/R =

(3/5)1/2 ≃ 0.77.
[16] This picture is expected for a quadratic matter wave

dispersion relation, as considered here. For more com-
plicated dispersion relations, as in the Hubbard model,
there may be several mobility edges [18].

[17] P.A. Lee, and T.V. Ramakrishnan, Rev. Mod. Phys. 57,
287 (1985).

[18] D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66,
261 (1994).

[19] F. Evers, and A. D. Mirlin, Rev. Mod. Phys. 80, 1355
(2008).

[20] The generalized Hellmann-Feynman theorem is
dm∞

i (z)/dz = ~vi
∗ · dM∞(z)/dz~ui, where ~ui and ~vi

are the left and right eigenvectors, respectively, corre-
sponding to the eigenvalue m∞

i (z), and normalized as
~vi

∗ · ~ui = 1. Since M∞(z) is complex symmetric, one
has ~vi = ~ui

∗ so that it suffices to calculate the right
eigenvector numerically.

[21] We note the presence of a narrow vertical band of reso-
nances for small values of the energy E in the first en-
ergy pixel of Fig.7b. Indeed, for very small values of E
(not shown in Fig.7b) an extra-density of long-lived reso-
nances appear, with values of aeff spreading over a large
interval (including negative values). Nonetheless, these
resonances are not spatially localized, and are eliminated
by the filtering used in Fig.7d. These long-lived extended
states correspond to kR ≤ 1, which suggest that they are
related to finite size effects.

[22] E. Mandonnet, PhD thesis of Université Paris 6, 2000,
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