
XML Reasoning Made Practical

Pierre Genevès 1, Nabil Layaı̈da 2

1CNRS

Grenoble, France
pierre.geneves@inria.fr

2INRIA

Grenoble, France
nabil.layaida@inria.fr

Abstract— We present a tool for the static analysis of XPath
queries and XML Schemas. The tool introduces techniques used
in the field of verification (such as binary decision diagrams) in
order to efficiently solve XPath query satisfiability, containment,
and equivalence, in the presence of real-world XML Schemas.
The tool can be used in query optimizers, in order to prove
soundness of query rewriting. It can also be used in type-checkers
and optimizing compilers that need to perform all kinds of
compile-time analyses involving XPath queries and XML tree
constraints.

I. INTRODUCTION

One of the biggest challenges in XML research today is

to develop automated and tractable techniques for ensuring

static type safety and optimization of programs that manipulate

XML data [1]. To this end, there is a need to solve some basic

reasoning tasks involving complex constructions such as XML

schemas and powerful navigational primitives (XPath queries).

Every future compiler of XML manipulating programs will

have to routinely solve problems such as:

• XPath query emptiness in the presence of a schema [2]:

if one can decide at compile time that a query is not

satisfiable then subsequent bound computations can be

avoided,

• query equivalence, which is important for verifying

soundness of query reformulation and optimization,

• path type-checking, which is a basic property needed

for ensuring at compile-time that invalid documents can

never arise as output of XML processing code.

All of these problems are known to be computationally heavy

(when decidable) [2], [3], and the related algorithms are often

tricky. We present a tool for XML/XPath static analysis based

on our earlier theoretical work [3], [4]. The tool has been

implemented in Java and uses symbolic techniques (binary

decision diagrams) in order to enhance its performance. It is

capable of comparing path expressions in the presence of real-

world schemas (such as the W3C SMIL and XHTML language

recommendations). The tool supports XML schemas seen as

regular tree grammars, and the navigational features of XPath1.

The novelty of this tool is that it is the first to be capable of

proving exact properties over such a large class of schemas and

1The supported XPath fragment is given in appendix.

XPath features. Furthermore, the tool is fairly efficient. The

cost ranges from several milliseconds for comparison of XPath

queries without tree constraints, to several seconds for queries

under very large, heavily recursive, tree constraints, such as

the XHTML DTD. In addition, the analyzer generates XML

counter-examples which allow observing and reproducing the

program defects independently from the analyzer.

II. SYSTEM ARCHITECTURE

The tool is based on our theoretical results presented in [4]

about a tree logic adapted for XML. The system architecture

is illustrated on Figure 1. The tool consists of a combination

of several software components:

• a parser for reading the text problem description. The

syntax combines queries expressed with the standard

XPath syntax, references to XML Schemas (expressed

using DTD, XML Schema or Relax NG [5]). The problem

is then formulated with logical connectives;

• compilers for translating schemas and queries into their

logical representations [4];

• an optimized solver for checking satisfiability of logical

formulas in time 2O(n) where n is the formula size [4];

• and a counter-example XML tree generator.

Fig. 1. System Architecture.

III. DEMONSTRATION OVERVIEW

The demonstration scenario consists of illustrating how to

detect defects and prove properties on programs that ma-

nipulate both schemas and queries. The system has been



implemented as a Java/JSP web application and interaction

with the system is offered through a web user interface in a

web browser. The tool is available online from:

http://wam.inrialpes.fr/xml

Our demonstration aims to showcase the functionality of

the analyser across a variety of use cases. First, we will

analyze the relationship (forward and backward compatibility)

between XHTML basic 1.0 and XHTML basic 1.1 schemas.

Then, we will demonstrate how to check for XPath expressions

emptiness under type constraints, as well as path containment

and equivalence. Finally, we will explore the analysis of XPath

expressions contained in a MathML XSLT transformation

subject to an evolution of the input schema from MathML

1.0 to 2.0. The later is introduced progressively in order to

allow the demo visitors to first notice that the transformation

yields invalid results when fed with MathML 2.0 inputs. Then,

we extract path expressions from the transformation and we

proceed to their analysis. The analysis consists of testing and

refining predicates to better understand the impact of a type

evolution on a query.

The user can either enter an analysis problem using a simple

predicate language through area (1) of Figure 1 or select from

pre-loaded analysis tasks offered in area (4) of Figure 1. The

level of details displayed by the solver can be adjusted in

area (2) of Figure 1 and allows to inspect logical translations

and statistics on problem size and the different operation costs.

The results of the analysis are displayed in area (3) of Figure 1

together with XML counter-examples.

(1)

(2)

(3)

(4)

Fig. 2. Screenshot of the Solver Interface.

Users can formulate a wide range of problems with a user-

friendly syntax based on predicates. Predicates facilitate the

formulation of decision problems. They are logical macros

allowing tool usage while focusing (only) on the XML-side

properties, and keeping the underlying logical formulation

transparent for the user. We show that the tool works fairly

well even with complex queries and fairly large real-world

schemas such as XHTML, MathML, SMIL. The tool is a web-

based application which allows one to formulate an analysis

problem using the predicate language, test the system with

pre-defined set of sample tests, set the level of details for the

analysis phase and produce analysis results. Our demonstration

system is pre-loaded with several instances of real-world XML

schemas together with their various dialects or profiles.

Evolution of XHTML Basic

The first test consists in analyzing the relationship (forward

and backward compatibility) between XHTML basic 1.0 and

XHTML basic 1.1 schemas. In particular, backward compati-

bility can be checked by the following command:

backward_incompatible("xhtml-basic10.dtd",

"xhtml-basic11.dtd", "html")

The test immediately yields a counter example as the new

schema contains new element names. The counter example

(shown below) contains a style element occurring as a child

of head, which is not permitted in XHTML basic 1.0:

<html>

<head>

<title/>

<style type="_otherV"/>

</head>

<body/>

</html>

The next step consists in focusing on the relationship between

both schemas excluding these new elements. This can be

formulated by the following command:

backward_incompatible("xhtml-basic10.dtd",

"xhtml-basic11.dtd", "html")

& exclude(added_element(

type("xhtml-basic10.dtd","html"),

type("xhtml-basic11.dtd", "html")))

The result of the test shows a counter example document that

proves that XHTML basic 1.1 is not backward compatible with

XHTML basic 1.0 even if new elements are not considered.

In particular, the content model of the label element cannot

have an a element in XHTML basic 1.0 while it can in

XHTML basic 1.1. The counter example produced by the

solver is shown below:
<html>

<head>

<object>

<label>

<a>

<img/>

</a>

<img/>

</label>

<param/>

</object>

<meta/>

<title/>

<base/>



</head>

<body/>

</html>

XTML basic 1.0 validity error: element "a" is not

declared in "label" list of possible children

Notice that we observed similar forward and backward com-

patibility issues with several other W3C normative schemas (in

particular for the different versions of SMIL and SVG). Such

backward incompatibilities suggest that applications cannot

simply ignore new elements from newer schemas, as the

combination of older elements may evolve significantly from

one version to another.

Emptiness test for an XPath expression

The most basic decision problem for a query language is the

emptiness test of an expression: whether or not a query always

yields an empty result. This test is important for error-detection

and optimizing implementations of languages in which XPath

expressions are used. For instance, if one can decide at compile

time that a query result is empty then subsequent bound

computations can be ignored (in other terms, dead code can

be eliminated).

Empty queries often come from the use of an XPath ex-

pression in a setting where structural constraints are enforced

by a schema. The combination of navigational information of

the query and structural constraints imposed by the schema

may rapidly yield contradictions. Such contradictions can be

detected by checking a logical formula for satisfiability. For

example, we may be interested in checking emptiness of

an XPath expression over the set of documents which are

valid against the DTD of the SMIL language. The following

example shows the text file description of such a test:

select("descendant::switch[ancestor::head]/

descendant::seq/descendant::audio

[preceding-sibling::video]",

type("SMIL/SMIL10.dtd", "smil"))

The first argument for the predicate select() is the XPath

expression. The second argument describes the structural con-

straint. The predicate type() takes two parameters: a path

to the DTD file (here the DTD is assumed to be located in

a subdirectory called “SMIL”), and the name of the element

to be considered as root symbol. Running the tool with this

example formula yields the following:

Reading tree grammar ’SMIL/SMIL10.dtd’...

CFT: 30 variables, 30 rules, 19 element names.

BTT: 22 variables, 18 rules, 19 element names.

Converted tree grammar into BTT [153 ms].

Translated BTT into Tree Logic [34 ms].

Formula parsed and compiled [total time: 313 ms].

Computing Relevant Closure

Computed Relevant Closure [25 ms].

Computed Lean [1 ms].

Lean size is 52 with 32 eventualities and 20 symbols.

Computing Fixpoint......[55 ms].

Formula is satisfiable [total time: 300 ms].

A satisfying finite binary tree model was found [50 ms].

In XML syntax:

<smil xmlns:solver="http://wam.inrialpes.fr/xml"

solver:context="true">

<head>

<switch>

<seq>

<video/>

<audio solver:target="true"/>

</seq>

<layout>

<root-layout/>

</layout>

</switch>

<meta/>

</head>

</smil>

The tool proceeds as follows. First, the input predicate

select(), the XPath expression and the DTD are parsed and

compiled into the logic. The referred DTD is converted into

an intermediate representation on binary trees (called “BTT”)

before being compiled into the logic.

The logical translation of the problem whose satisfiability is

going to be tested is built into memory. The tool then computes

the Fisher-Ladner closure and the Lean of the formula: the

set of all basic subformulas that notably defines the search

space that is going to be explored by the solver. The solver

attempts to build a satisfying tree in a bottom-up way, in the

manner of a fixpoint computation that iteratively updates a

set of tree nodes. This computation is performed in at most

2O(n) steps with respect to size n of the Lean (see [4] for

details). In this example, the formula is satisfiable: the XPath

expression is not-empty in the presence of this DTD. A sample

XML document satisfying the problem formulation is printed.

Notice that the tool automatically annotates a pair of nodes

related by the query: the query selects the node marked with

solver:target when evaluated from a node marked with

the attribute solver:context.

XPath Containment and Equivalence

Another essential problem for a query language is the

containment problem: whether or not the result of one query is

always included into the result of another one. Containment for

XPath expressions is for instance needed for checking integrity

constraints in XML databases, for the control-flow analysis of

XSLT, for the static type-checking of XPath queries, and for

checking XML access control policies.

Suppose for instance that we want to check containment

between the following XPath expressions:

e1 = descendant::d[parent::b]/following-sibling::a

e2 = ancestor-or-self::*/descendant-or-self::b/

a[preceding-sibling::d]

Since containment corresponds to logical implication, we

actually want to check whether the implication of the two

corresponding logical formulas is valid. Since we use a

satisfiability solver, we verify this validity by checking for

the unsatisfiability of the negated implication, formulated as

follows:
˜(select("e1",#) => select("e2",#))

Queries must be compared from the same evaluation context,

which can be any set of nodes, but the same for both expres-

sions. The evaluation context is denoted by “#”. Running the

tool with this formula returns the following:



Formula parsed and compiled [total time: 131 ms].

Computing Relevant Closure

Computed Relevant Closure [2 ms].

Computed Lean [0 ms].

Lean size is 27 with 22 eventualities and 5 symbols.

Computing Fixpoint.....[8 ms].

Formula is unsatisfiable [22 ms].

The tested formula is unsatisfiable (in other terms: the impli-

cation is valid), so one can conclude that the first expression is

contained in the second expression, for any XML document.

A related decision problem is the equivalence problem:

whether or not two queries always return the same result.

It is important for proving soundness of query rewriting

rules used for query optimization, for instance. Equivalence

corresponds to two containment tests. Note that the previous

XPath expressions are not equivalent. This can be checked

with the tool, that generates the following counter-example

tree:

<b xmlns:solver="http://wam.inrialpes.fr/xml">

<d/>

<a solver:context="true" solver:target="true"/>

</b>

MathML Content to Presentation Analysis

In this test, we focus on the analysis of the queries contained

in the XSLT transformation [6] from MathML [7] Content to

Presentation, and evaluate the impact of the schema change

from MathML 1.0 to MathML 2.0 on these queries. Most of

the queries contained in the transformation represent only a

few patterns very similar up to element names. The following

test checks whether a frequently used XPath pattern may

return new nodes when evaluated over MathML 2.0 documents

compared to MathML 1.0:

new_region("//apply[*[1][self::eq]]","mathml.dtd",

"mathml2.dtd","math")

The predicate new region("query", T , T ′) is satisfied iff

the query query selects elements whose names already oc-

curred in T , but such that these nodes now occur in a new

context in T ′. In this setting, the path from the root of the

document to a node selected by the XPath expression query

contains a node whose type is defined in T ′ but not in T (see

[8] for more details).

The result of the test shows a counter example document

that proves that the query selects new nodes in MathML 2.0

compared to MathML 1.0. In particular, the query selects

apply elements whose ancestors can be declare elements,

as indicated on the document produced by the tool:

<math xmlns:solver="http://wam.inrialpes.fr/xml"

solver:context="true">

<declare>

<apply solver:target="true">

<eq/>

</apply>

<condition/>

</declare>

</math>

To evaluate the effect of this change, the counter example

is filled with content and passed as an input parameter to

the transformation. This shows immediately a bug in the

transformation as the resulting document is not a MathML

2.0 presentation document. Based on this analysis, we know

that the XSLT template associated with the match pattern

//apply[*[1][self::eq]] must be updated to cope

with MathML evolution from version 1.0 to version 2.0.

IV. CONCLUSION

We illustrated how to use the tool with XML schemas

and queries on realistic examples. The tool can be very

useful for standard schema writers, transformation writers, and

maintainers in order to assist them for detecting bugs and

enforcing some level of quality. In the longer term, we plan to

equip XML programming languages with static type-checking

and mechanically verified optimization features.

REFERENCES

[1] E. Sedlar, “Managing structure in bits & pieces: the killer use case for
XML,” in SIGMOD ’05. ACM, 2005, pp. 818–821.

[2] M. Benedikt, W. Fan, and F. Geerts, “XPath satisfiability in the presence
of DTDs,” in PODS ’05: Proceedings of the twenty-fourth ACM Sympo-

sium on Principles of Database Systems. New York, NY, USA: ACM
Press, 2005, pp. 25–36.

[3] P. Genevès, “Logics for XML,” Ph.D. dissertation, Institut
National Polytechnique de Grenoble, December 2006,
http://www.pierresoft.com/pierre.geneves/phd.htm.

[4] P. Genevès, N. Layaı̈da, and A. Schmitt, “Efficient static analysis of XML
paths and types,” in PLDI ’07: Proceedings of the 2007 ACM SIGPLAN

Conference on Programming Language Design and Implementation.
New York, NY, USA: ACM Press, 2007, pp. 342–351.

[5] J. Clark and M. Murata, “RELAX NG specification, OASIS committee
specification,” December 2001, http://relaxng.org/spec-20011203.html.

[6] E. Pietriga, “MathML content2presentation transformation,” May 2005,
http://www.lri.fr/˜pietriga/mathmlc2p/mathmlc2p.html.

[7] D. Carlisle, P. Ion, R. Miner, and N. Poppelier, “Mathematical markup
language (MathML) version 2.0, W3C recommendation,” October 2003,
http://www.w3.org/TR/MathML2/.

[8] P. Genevès, N. Layaı̈da, and V. Quint, “Identifying query incompatibilities
with evolving XML schemas,” in ICFP ’09: Proceedings of the 14th ACM

SIGPLAN international conference on Functional programming. New
York, NY, USA: ACM, 2009, pp. 221–230.

APPENDIX

The syntax of supported XPath queries is given below (see

[4] for a detailed translation of XPath expressions into logical

formulas):

XPath ::= PathExpr | /PathExpr

PathExpr ::= PathExpr/PathExpr | PathExpr[Qualifier] | Step

| PathExpr union PathExpr | PathExpr intersect PathExpr

| PathExpr except PathExpr

Qualifier ::= PathExpr | not Qualifier | Qualifier and Qualifier

| Qualifier or Qualifier | PathExpr/@NameTest

Step ::= Axis::NameTest

Axis ::= self | child | parent | descendant | ancestor | following

| preceding | following-sibling | preceding-sibling

| descendant-or-self | ancestor-or-self

NameTest ::= QName | ∗


