
HAL Id: hal-00494253
https://hal.science/hal-00494253

Submitted on 22 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of Large Crowds Including Gaseous
Phenomena

Nicolas Courty, Soraia Musse

To cite this version:
Nicolas Courty, Soraia Musse. Simulation of Large Crowds Including Gaseous Phenomena. Proc.
of IEEE Computer Graphics International 2005, Jun 2005, New York, United States. pp.206–212.
�hal-00494253�

https://hal.science/hal-00494253
https://hal.archives-ouvertes.fr

Simulation of Large Crowds in Emergency Situations Including Gaseous
Phenomena

Nicolas Courty
SAMSARA – University of Bretagne Sud

Campus de Tohannic – 56000 Vannes – France
Nicolas.Courty@univ-ubs.fr

Soraia Raupp Musse
CROMOS – PIPCA – Unisinos

Sao Leopoldo – Rio Grande do Sul – Brazil
soraiarm@exatas.unisinos.br

Abstract

Crowd animation and simulation have been widely stud-
ied over the last decade for many purposes : populating col-
laborative virtual environments, entertainment and special
effects industry and finally simulating behaviors and motion
of people in emergency situations for safety systems. This
last topic is addressed in this paper. We propose an orig-
inal enhancement of a well known physics-based anima-
tion model which allows to consider influence of gaseous
phenomena such as smoke or toxic gases in the behavior
of the crowd. In order to get real time performances we
also propose an implementation of this framework on mod-
ern graphics hardware, which allows to simulate crowds of
thousands individuals at interactive framerate.

1 Introduction

Crowd behavior and motion of virtual people have been
studied and modeled in computers with different purposes.
Virtual crowds can populate collaborative virtual environ-
ments to increase their credibility. Different approaches
have been proposed in order to animate crowds for the en-
tertainment industry. Finally, research on safety systems,
where crowds are used to simulate behaviors of people in
emergency situations, provide useful tools that can help the
design of buildings and open-spaces. This last topic is ad-
dressed in this paper. While a lot of previous works focus on
the behaviors of escaping crowd, few works have also dealt
with potential risks that occur from smoke or gases-filled
environments. Though, it has been often observed that dur-
ing a fire, smoke can be as deadly as fire [15]. Moreover,
most people are not aware of the dangers of prolonged in-
halation of smoke, and this constitutes another motivation
for building simulation systems that mix crowd simulation
with smoke or gas propagation. We believe that such sys-
tems can help designing fire safety installations.

We thus propose in this paper an original enhancement
of a well known physics-based animation model (Helbing’s
model [13]) which allows to consider gaseous phenom-
ena such as smoke or toxic gases in the behavior of the
crowd. The choice of a macroscopic model for crowd simu-
lation (instead of a behavioral, individuality-based system)
derivates from the typical emergency situations we are deal-
ing with. Such situations include a lot of people in panic
state, where individual specific behaviors tend to disap-
pear. It has also appeared that an efficient simulation system
should include possibilities of interaction with the crowd,
so that a potential user may dynamically change the condi-
tions of the simulation. For such a system to be interactive,
it is necessary to provide real time performances for large
crowds and smoke or gas simulation. Therefore we present
as a second major contribution of this paper an implementa-
tion of our framework based on modern graphics hardware,
which permits simulations of high density crowds at inter-
active framerate.

The remaining of this paper is organized as follow: first
we review related works. In section 3, we present our sim-
ulation engine, then its implementation on the GPU (sec-
tion 4). Finally, section 5 is dedicated to experimental re-
sults and conclusion.

Figure 1. A toxic gas is spreading while peo-
ple are trying to escape. People in white have
absorbed a deadly dose of gas.

2 Related Works

Some authors have discussed how to simulate virtual
crowds. Reynolds [25] described a distributed behavioral
model for simulating flocks of birds formed by actors en-
dowed with perception skills with many purposes. In fact,
the birds (or boids) maintain proper position and orientation
within the flock by balancing their desire to avoid collisions
with neighbors, to match the velocity of neighbors and to
move toward the center of the flock. Reynolds work shows
realistic animation of groups by applying simple local rules
within the flock structure.

Tu and Terzopoulos [29] have worked on behavioral an-
imation for creating artificial life, where virtual agents are
endowed with synthetic vision and perception of the envi-
ronment. The repertory of fishes behaviors relies on their
perception of the dynamic environment, and the fishes re-
actions are not entirely predictable because they are not
scripted. Bouvier [3] used particle systems adapted for
studying crowd movements where human beings are mod-
eled as an interactive set of particles. The motion of people
is based on Newtonian forces as well as on human goals
and decisions. They introduced the concept of decision
charges and decision fields modeled by using notions of
the so called decision charges of a person, interacting with
a surrounding decision field in the same way an electric
charge is influenced by an electric field.

Brogan and Hodgins [5, 6] have used dynamics for mod-
eling the motion of groups with significant physics. They
reproduced movements of legged robots, bicycle riders and
point-mass systems based on dynamics, considering a col-
lision avoidance algorithm, which determines the desired
position for each individual, given the locations and veloc-
ities of the visible creatures and obstacles. Indeed, a per-
ception model to determine creatures and obstacles visible
to each individual in the group precedes the displacement
algorithm. Recently, same authors proposed a method to
explore an approach for generating reactive path following
based on the users examples of the desired behavior. The
examples are used to build a model of the desired reac-
tive behavior. The model is combined with reactive con-
trol methods to produce natural 2D pedestrian trajectories.
Then the system automatically generates 3D pedestrian lo-
comotion using a motion-graph approach [21].

Musse and Thalmann presented a hierarchical model
to describe crowds with different levels of control: from
guided to autonomous ones [22]. The behavior of crowds
is based on rules dealing with the information contained in
the groups of individuals. Helbing [13] proposed a model
based on physics and socio-psychological forces in order
to describe the human crowd behavior in panic situations.
This model has been extended in order to include different
individualities in the particle systems providing groups be-

havior, which is attained as an emergent function of local
interactions between individuals [4].

In this paper, we used the original Helbing Model [13]
as a basis. In order to get real time performances, we chose
to exploit the computational power of the latest graphics
boards. Though first designed for computer graphics in-
dustry, graphics processing units (GPU) have revealed over
the last years to be high performance computing platforms
at low cost. With their increased programmability possibili-
ties and an higher precision arithmetic processing, it is now
possible to consider execution of non-graphic applications
on such boards. The reasons for their high performances on
data-parallel computations comes from their streaming ar-
chitecture, which allows several data to be processed at the
same time according to the same computation kernel, and
their dedicated high-speed memory. As a consequence, the
resolution of a dynamic equation for crowd simulations is
then well adapted to this process, as far as many individuals
are likely to be treated at the same time. Several researchers
have already explored those possibilities for a wide variety
of computationally expensive problems: image and volume
processing, sparse matrix and multigrid solvers, algebra op-
erator or physics simulations [8, 16, 26, 11, 1]. Those exam-
ples demonstrate the effective computation power of those
units. Recently, some authors have started to use GPU in an
animation context (particle engine) [14, 17].

3 Simulation Engine

Helbing [13] proposed a generalized force model based
on socio-psychological and physical forces in order to de-
scribe the human crowd behavior in panic situations. This
model generates realistic phenomena as arc formations in
exits or increasing evacuation time with increased desired
velocities. This model is based on a particle system and in-
volves different components: how to reach the desired des-
tination, how to avoid other particles and how to avoid col-
lisions with the environment.
Those three elements are combined into a classical New-
tonian equation involving masses mi of the N members of
the crowd, thus designing a dynamical system. Provided
that a given person i wants to move into a particular direc-
tion ei with a desired velocity vd

i , this person tends to adapt
its own velocity vi within a certain characteristic time τi. At
the same time, this person tries to keep a velocity-dependent
distance from the other pedestrians j, and elements of the
environment W (such as walls). The resulting forces rep-
resent interaction forces that will be respectively noted Fij

and FiW in the remaining. For each iteration, the accelera-
tion for each person is given by the equation:

dvi

dt
=

vd
i ei − vi

τi
+

∑
j(6=i) Fij

mi
+

∑
W FiW

mi
(1)

In our implementation, solving this dynamical system is
performed through the use of the Verlet Leapfrog integration
scheme, which permits an accurate integration while de-
creasing the importance of the choice of the time step [24].
Moreover, comparing to the traditional Verlet integration al-
gorithm where positions for three consecutive time steps are
required, it only requires to store one set of positions and
one set of velocities for each member of the crowd, which is
interesting for performance purposes. Let us note A = dvi

dt
the acceleration computed from equation 1. The following
equations defining the algorithm allow us to compute the
velocity half a step ahead the current step n (n+ 1

2), and the
new position rn+1 of the person at the next step:

vn+ 1
2

= vn− 1
2

+ Aδt (2)
rn+1 = rn + vn+ 1

2
δt (3)

Let us finally note that if the velocity for the current time
step is required, it can be computed as:

vn =
1
2
(vn+ 1

2
+ vn− 1

2
) (4)

The following chapters present an original approach to
integrate gaseous phenomena inside Helbing’s model. We
first present some general considerations about behaviors of
people involved in emergency situations including smoke,
then we present some modifications to equation 1 and fi-
nally a way to deal with injuries caused by inhalation of
smoke or toxic gases.

3.1 Behaviors of people wrt. gaseous phe-
nomena

In most cases, people are afraid by fire, and tend to es-
cape from such situations as fast as they can. Considering
gaseous phenomena such as smoke, it has recently appeared
that people have a biased idea of the danger induced by trav-
eling through smoke and inhalating for a long period their
toxic components. For instance, during the world trade cen-
ter disaster, it has been observed that a lot of people would
enter smoke-filled staircases and travel through smoke for
extended amounts of time (see [23] for details). Moreover,
when dealing with invisible or inodorous gases, most of
people are not aware of the presence of toxic components
in the air, and behave normally. In this context, it is some-
how difficult to design a pertinent psycho-social force that
modify people’s behavior. We decided to take into account
two parameters: a repulsion force which is expressed as a
function of the surrounding smoke concentration, and an
health status that modify the velocity of member of crowds.

3.2 Designing new psycho-physical forces

In order for the crowd to react to smoke, a force Fs that
influence motions of the members of the crowd should be

computed. We decided to design this force as a function
of the surrounding concentrations. The expression for this
force can be written as a function of the gradient of the con-
centration T of the smoke:

Fs = A(∇T) (5)

where A is a scalar parameterizing the force. In its dis-
cretized form, this equation can be written as:

Fs = A(Ti−1,j(t)u1,0 + Ti+1,j(t)u−1,0 +
Ti,j−1(t)u0,1 + Ti,j+1(t)u0,−1)

where uα,β is a unit vector (α, β). Figure 2 is a graphical
representation of the computation of this force.

Figure 2. Computing forces from the smoke
based on the concentration information. A
linear interpolation between 4 unit vectors
is performed, weighted by concentrations of
surrounding cells.

The resulting acceleration Fs

mi
is finally added to equa-

tion 1. As a result members of the crowd are not able to
go through areas where the concentration of smoke is too
elevated. Moreover, they are repulsed in the direction of
propagation of the smoke. A person inside the smoke may
therefore have an erratic behavior, but will tend to go out of
the smoke by going in the areas of lesser concentration. An
illustration of this behavior is given in figure 3.

3.3 Injuries caused by smoke or gas in-
halation

Smoke inhalation stands for a significant cause of death
in fire victims [15]. To account for the different symptoms
of the possible injuries induced by smoke or toxic gases, an
health status has been added to individuals that constitute
the crowd. This parameter Hi represents a global health
status of the person i, varying from 1 (good health) to 0
(death). This parameter decrease over time until 0 with re-
spect to the concentration of smoke present in their location.
This can be modeled as the following equation:

Hi(t + δt) = Hi(t)− βT (t)δt

a b c

Figure 3. A group of individuals trying to
find its way through smoke (a) the group is
stopped by smoke (b) some of them are try-
ing to avoid the smoke (c) finally, while the
smoke is dissipating, some of them manage
to go across.

where β is a scalar regulating the toxicity with respect to
the concentration. This parameter can account for different
types of chemical products for instance.

In order to take into account effects from prolonged
smoke or gas inhalation (such as headache, disorientation
and global weakness), we simply modify the desired veloc-
ity with respect to the health status parameter:

vd
i (t + δt) = −γHi(t)vd

i (t) (6)

where γ is a scalar regulating the importance of the health
status in the modification of the velocity. As a result, people
that have been in contact for a long period with the smoke
have a slower way to travel through the environment (see
figure 4 for an example).

Figure 4. People that have stayed for a long
period in the gas have diminished capabil-
ities and are moving slower than others,
which explains the end ”forked” shape of the
crowd.

4 Using graphics hardware to simulate the
crowd

In this section, we first present an overview of the reso-
lution of the equation onto the graphics card (section 4.1).

We then present the way to handle environment-dependent
forces (section 4.2), the way to compute inter-agents forces
section 4.3), and finally the gaseous phenomena simulation
(section 4.4).

4.1 Overview

The resolution of this dynamical system can be related to
a technique used to perform cloth simulation developed by
Green [10]. It uses Render-To-Texture capabilities of mod-
ern graphics hardware, through the use of pbuffer, which
are off-screen rendering buffers. Those buffers can contain
float elements, i.e. they can be considered as arrays of 4-
dimensional vectors of float values. Let us note that those
buffers can be as well considered as input textures for ren-
dering. In order for data to be processed, a textured quad is
rendered in the float pbuffer, exactly fitting the size of the
viewport. This results in a direct correspondence between
elements of the texture and the pbuffer. Hence, elements of
the texture (input) are used to compute a new value (output)
stored in the pbuffer. This computation is performed onto
the graphical processing unit via a simple program named
fragment shader. This technique has been widely used for
general purpose computation on graphics boards (a good
review can be found in [9]). When multi-texturing is al-
lowed, several textures can be used as input in this calculus.
In our case, the crowd is represented as float textures con-
taining information about individuals involved in the crowd.
Figure 5 shows a representation of those textures. For dy-
namical data such as position (changing over time), the tex-
ture is in fact associated to a float pbuffer (in which new
positions are computed). The resolution of the dynami-

Figure 5. Representations of the crowd as
float textures. In this figure, two float textures
are represented : one is related to positions,
the other to personal data.

cal system is composed of three different rendering steps as
shown in figure 6. The first step computes acceleration for
each member of the crowd. The two velocities pbuffer are
required to compute the acceleration allowing to reach the

goal (first term of equation 1). It also uses the current po-
sition pbuffer, as well as input textures data (as described
in next sections). From this acceleration and the previous
velocities (vn− 1

2
), the next velocities (vn+ 1

2
) are computed

(step 2 in figure 6). Finally the new positions are computed
within the integration process described in equation 3 (step
3). At the end of this multi-step rendering process, the pre-
vious and next velocities pbuffers are swapped (ping-pong
buffering), as well as the current and next positions pbuffers.
The next parts of this section explain how environment and
individuals inter-dependent forces are computed and taken
into account in the computation of acceleration.

Figure 6. The three rendering steps for the
resolution of the dynamical system. Arrows
stand for ”used as input in”.

4.2 Computing environment dependent
forces

Environment dependent forces stand for all the forces ex-
erted by the environment onto the agent, thus modifying its
current direction. They usually represent repulsion forces
from walls and obstacles. Those forces, noted FiW in equa-
tion 1, are expressed in Helbing’s model as:

FiW = (AexpB(ri−di) + λK(ri − di))diW (7)

where diW is a normalized vector in the opposite direction
of the obstacle. A, B, and K stand for scalar values pa-
rameterizing the repulsion forces. λ is a function equal to
zero if di > ri, or one otherwise. Hence, the last term of
the sum is taken into account for regions next to walls.

Computing for each iteration those forces for each per-
son represents one of the bottleneck of this type of simu-
lation. Given an environment with a lot of walls, one has
to consider special algorithms to determine which are the
walls that potentially has an influence over one person’s
motions, and that is not acceptable when dealing with large

crowds. For those reasons, we decided to precompute those
forces as a force field represented in a float texture on the
GPU memory.

Representing the force field as a texture. In order to
do so, a discretization of the environment along a regular
grid is performed. In each point of the grid the sum of all
the forces from every walls is computed. The resulting bi-
dimensional vector is stored as a texture unit in a float tex-
ture, in the red and green components. Though, as stated
in equation 7, the forces depend on the radius of the crowd
members. To cope with this problem, an approximation of
the exact force is performed. We compute the force field for
the minimum and maximum radius, and store the two force
fields in one unique texture (on the 4 rgba components). At
runtime, in the fragment shader program responsible for the
computation of acceleration, the exact position of the per-
son allows to compute a look-up value in this texture (i.e.
which texel corresponds to the current position of the per-
son). Then, given its radius, a linear interpolation between
the rg and ba components is performed.

Obstacles and dynamic environments In order to in-
crease potential interaction with the crowd, it can be use-
ful to design a set of tools to add/remove obstacles, or even
move dynamically those obstacles within the environment.
In our framework, those types of interaction are possible.
Two types of obstacles have been designed, based on the
same methodology: moving and dynamic obstacles. Mov-
ing obstacles are of arbitrary form and can be displaced ac-
cording to user’s interaction. At the beginning of the simu-
lation, the force field of those obstacles are generated as a
float texture. Those texture are then blended with the envi-
ronment force field texture wrt. the position defined by the
user. The result of this blending is computed on the CPU
and uploaded to the graphics card memory. Dynamic ob-
stacles represent obstacles that have a particular behavior
along time during simulation. As an example, let’s consider
a turnstile turning around its axis. It exists two methods
to describe this behavior along time. First, it is possible
to compute before the simulation all the force fields cor-
responding to this animation (their number depends on the
desired precision and in our case symmetry factors). The
second method (that may be more time consuming) consists
in computing at each frame the corresponding force field.
The advantage of using such a method for small obstacles
comes from the gain in memory occupation. At runtime,
the corresponding force field is composed with the envi-
ronment texture following the blending method described
above. Figure 7 shows an example of those dynamic obsta-
cles (a turnstile).

Figure 7. Dynamic obstacle: a turnstile is
regulating the flow of people within a corri-
dor. Right parts of both pictures is the cor-
responding environment force field float tex-
ture (with false coloring)

4.3 Computing inter-agents forces

Those forces are applied by agents on other agents. Its
equation is similar to the equation 7. They usually represent
repulsion forces between individuals. Those forces, noted
Fij in equation 1, are expressed in Helbing’s model for two
individuals i and j as:

Fij = (AexpB(rij−dij) + λK(rij − dij))nij (8)

In this case, rij is the sum of the radius of the two individ-
uals, i.e. rij = ri + rj , dij is the distance between those
two individuals, and nij a normalized vector pointing from
pedestrian j to pedestrian i.

In terms of complexity, computation of all those forces
normally requires an o(n2) algorithm. This problem,
known as the n-body forces problem, has been widely stud-
ied. However, it is possible to note that it exists a radial
cut-off in the definition of the force: at a distance dij > 2
meters, the value of the force is almost zero. In this con-
figuration, algorithm such as the Barnes-Hut algorithm [2]
(which allows an o(n log n) complexity) are not optimal.
In our case we developed two methods that have a globally
linear complexity.

CPU-based method The first method is entirely executed
on the CPU. It consists in a discretization along a regular
grid of the environment. Each element of this grid contains
a double-chained list of the individuals of the crowd inside
it. For a given person, one has to compute the forces for
all the individuals inside the same case, and as well a given
number of adjacent cases. The step of discretization deter-
mines the number of adjacent cases that have to be consid-
ered. At each iteration, the position on the grid of the dif-
ferent pedestrians has to be updated. This technique ensures
that for a given person, no more than k individuals will have
to be considered, hence resulting in an o(k n) complexity.
When all the forces have been computed, a float texture is
generated with those forces, and passed as input in the ac-
celeration fragment program.

GPU-based method It is also possible to render all the
individuals with a quad textured by their respective ”force
field” (as for the environment). When blending is on, the
sum of the forces is computed at each point of the grid
through this rendering step. Afterward, in the fragment
shader that computes acceleration, a correct lookup func-
tion makes it possible to get the resulting force.

Comparison After experimenting those two methods, we
have come up with the conclusion that the gain provided
by a GPU implementation was not obvious in every case.
Hence, the second method’s complexity depends upon the
resolution of the grid. We plan to publish detailed bench-
marks of those methods and comparison with existing meth-
ods such as [14] in subsequent publications.

4.4 Gaseous phenomena simulation

Recently, there have been some works allowing to sim-
ulate and visualize smoke in real time [7, 12, 18, 19].
In [12, 18, 19], the overall optimization comes from the use
of the GPU. Hence, to provide an interaction tool with the
crowd based on the propagation of the smoke, we decided to
implement on the GPU a very simple diffusion model com-
bined with a simple advection scheme, already described
in [12]. A major advantage comes from the fact that all
the computations take place onto the graphics board, which
avoids time-consuming memory transfer to CPU, and runs
effectively in combination with our architecture. Let us fi-
nally note that our model does not guarantee a physically
correct propagation of gas. We designed this very simple
model to test the interactions between gas and the crowd,
but it would be more consistent to use a model respecting
the Navier-Stokes equation (including complex boundary
conditions). Those aspects are part of the extensions of our
work.

Diffusion In this context, in order to compute the diffu-
sion of smoke within the environment, the diffusion for a
cell Ti,j(t) is given by:

Ti,j(t + δt) = Ti,j(t) +
cd

4
∇2Ti,j(t)δt (9)

where cd is the coefficient of diffusion, and ∇2Ti,j(t) the
Laplacian of the concentration, which can be written in its
discretized form as:

∇2Ti,j(t) = Ti−1,j(t) + Ti+1,j(t)
+Ti,j−1(t) + Ti,j+1(t)− 4Ti,j(t)

Using a similar method described in [12], a simple frag-
ment shader is built which computes diffusion of the smoke
within a grid of a given resolution. In order for the smoke

to diffuse wrt. the environment, a simple texture of the en-
vironment is built with only one component per texel which
indicates whether a wall is present or not. Then, inside the
corresponding fragment shader program, this texture is ad-
dressed to know if the neighboring values are walls or not.

Advecting gas field It has appeared that it could be of
interest to be possible to advect the gas field wrt. some ve-
locity fields in order to simulate ventilation systems. In this
case, the gas density at a given position r must be displaced
along the grid according to a velocity field U (in our case,
constant over time). This can be simply expressed as:

T(r+Urδt)(t + δt) = Tr(t)

To solve this equation, we use an implicit method described
in [27] and implemented for GPU in [12]. This method con-
sists in inverting the problem, and expressing the new den-
sity T at a given cell with position r as:

Tr(t + δt) = T(r−Urδt)(t) (10)

In case of discrete grid (such as in a GPU implementation),
the quantity T(r−Urδt) is obtained via bilinear interpolation
with surrounding cells.

5 Implementation and Performance

In this section, the tools used for the implementation of
our framework are presented, and results about the perfor-
mances of our system are presented.

5.1 Rendering crowds

Displaying large crowds can be a difficult problem when
dealing with thousands of individuals. Hence, displaying
articulated virtual humanoids composed with around 1000
polygons can only bring to crowd populated with less than
one thousand if interactive rate is a major constraint. A new
set of technique has recently been developed by Tecchia et
al. [28] based on impostors. Though the results are very
goods and look attractive, it is still difficult to handle crowd
with more than 10K individuals. We decided therefore to
use techniques that are traditionally used in particle render-
ing. This technique is similar to [14, 17] and shall not be
described in this paper. Though, let us note that those tech-
niques are using vertex shaders capabilities, which run in an
effective way with our architecture.

5.2 Performance study

In order to implement our library, we used the CG
toolkit [20] for the fragment shaders, in combination with

the NVIDIA pbuffer class. The computer used for tests
was an Athlon XP 2500+ equipped with a GeForce 5900.
The library was written in C++ with OpenGL for interfac-
ing with the video card. When considering interactions
with smoke, our system proves to be much faster than a
CPU optimized version, as shown in figure 8. Those results
where obtained within a complex evacuation scene, where
the computation of smoke was performed on a 692 × 256
grid, including three dynamical obstacles. A picture of this
simulation can be seen in figure 9. As a conclusion, it is
possible to animate and interact with crowd composed by
more of ten thousands individuals at interactive rates.

Figure 8. Comparison between our imple-
mentation and a CPU optimized one on a
complex scene with smoke and interactions
with dynamic obstacles.

Figure 9. A complex evacuation scene (un-
der smoke conditions) populated by 4000 in-
dividuals within 3 different groups, running
at 25 fps. Groups are following precomputed
paths in the environment.

6 Conclusion and Future Works

This paper presents an original model allowing to take
into account gaseous phenomena in crowd simulation.
Based on Helbing’s model, our framework integrates new
forces which account for difficulties that people may en-
counter while traveling through smoke-filled environments,
and also the possible harm caused by smoke. In order to
provide interactive performances for our simulation, a GPU
implementation of our framework is also presented, and al-
low to consider crowds constituted with several thousands
of people in smoke-filled environments within real time.
Moreover, this characteristic allows interactions with the
crowd, which constitutes a plus for potential applications.
Our model stands for, to our knowledge, the first attempt to
mix crowd and gas simulation, and though the results seem
quite attractive, we still need to perform more validations,
notably by comparing our results to real cases.

References

[1] C. H. A. Lefohn, J. Kniss and R. Whitaker. Interactive defor-
mation and visualization of level set surfaces using graphics
hardware. Proc. of IEEE Visualization 2003, 2003.

[2] J. Barnes and P. Hut. A hierarchical O(N log N) force-
calculation algorithm. Nature, 324(6270):446–449, 1986.

[3] E. Bouvier, E. Cohen, and L. Najman. From crowd simula-
tion to airbag deployment: particle systems, a new paradigm
of simulation. Journal of Electronic Imaging, 6(1):94–107,
Jan. 1997.

[4] A. Braun and S. R. Musse. Modeling individual behaviors
in crowd simulation. In Proc. of Computer Animation and
Social Agents (CASA’03) (New Jersey, USA), May 2003.

[5] D. Brogan and J. Hodgins. Group behaviors for systems with
siginificant dynamics. Technical Report 95-18, Georgia In-
stitute of Technology. Graphics, Visualization and Usability
Center, 1998.

[6] D. Brogan, R. Metoyer, and J. Hodgins. Dynamically sim-
ulated characters in virtual environments. IEEE Computer
Graphics and Applications, 18(5):58–69, Sept./Oct. 1998.

[7] R. Fedkiw, J. Stam, and H. Jensen. Visual simulation of
smoke. In E. Fiume, editor, SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, pages 15–
22. ACM Press / ACM SIGGRAPH, 2001.

[8] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and
G. Humphreys. A multigrid solver for boundary value
problems using programmable graphics hardware. In
W. Mark and A. Schilling, editors, Proc. of ACM SIG-
GRAPH/Eurographics Conf. on Graphics Hardware (EGGH-
03), pages 102–111, Aire-la-ville, Switzerland, July 26–27
2003. Eurographics Association.

[9] GPGPU. General purpose computation on GPUs.
http://www.gpgpu.org, 2004.

[10] S. Green. NVIDIA cloth simulation. http:// devel-
oper.nvidia.com/ object/ demo cloth simulation.html, 2003.

[11] M. Harris, W. Baxter, T. Scheuermann, and A. Lastra.
Simulation of cloud dynamics on graphics hardware. In

W. Mark and A. Schilling, editors, Proc. of the ACM SIG-
GRAPH/Eurographics Conference on Graphics Hardware
(EGGH-03), pages 92–101, Aire-la-ville, Switzerland, July
2003. Eurographics Association.

[12] M. Harris, G. Coombe, T. Scheuermann, and A. Lastra.
Physically-based visual simulation on graphics hardware. In
Proc. of the 17th Eurographics/SIGGRAPH workshop on
graphics hardware (EGGH-02), pages 109–118, New York,
Sept. 1–2 2002. ACM Press.

[13] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical
features of escape panic. Nature, 407(1):487–490, 2000.

[14] P. Kipfer, M. Segal, and R. Westermann. Uber-
flow: A GPU-based particle engine. In Proc. of ACM
SIGGRAPH/Eurographics Symp. on Graphics Hardware
(EGGH-04), pages 115–122, 2004.

[15] N. Kirchner and H. Savolainen. Triage of fire smoke intoxi-
cated victims in a disaster situation. The Internet Journal of
Rescue and Disaster Medicine, 1(2), 2000.

[16] J. Krueger and R. Westermann. Linear algebra operators for
gpu implementation of numerical algorithms. ACM Trans. on
Graphics (TOG), 22(3):908–916, 2003.

[17] L. Latta. Building a million particle system. In Proc. of
Game Developers Conference(GDC-04), 2004.

[18] W. Li, X. Wei, and A. Kaufman. Implementing lattice boltz-
mann computation on graphics hardware. The Visual Com-
puter, 19(7-8):444–456, Dec. 2003.

[19] Y. Liu, E. Wu, and X. Liu. Real-time 3d fluid simulation on
gpu with complex obstacles. In Proc. of IEEE Pacific Graph-
ics 2004, Seoul (Korea), Oct. 2004.

[20] W. Mark, R. Glanville, K. Akeley, and M. Kilgard. Cg: a sys-
tem for programming graphics hardware in a c-like language.
ACM Trans. on Graphics (TOG), 22(3):896–907, 2003.

[21] R. Metoyer and J. K. Hodgins. Reactive pedestrian path fol-
lowing from examples. The Visual Computer, 20(10):635–
649, 2004.

[22] S. R. Musse and D. Thalmann. Hierarchical model for real
time simulation of virtual human crowds. In IEEE Trans.
on Visualization and Computer Graphics, volume 7(2), pages
152–164. IEEE Computer Society, 2001.

[23] G. Proulx and R. Fahy. Account analysis of WTC survivors.
In Proc. of the 3rd Int. Symp. on Human Behaviour in Fire,
Belfast, Sept. 2004.

[24] O. Rapaport. The Art of Molecular Dynamic. Cambridge
University Press, New-York, 1996.

[25] C. W. Reynolds. Flocks, herds, and schools: A distributed
behavioral model. Computer Graphics: Proc. of SIGGRAPH
‘87, 21(4):25–34, July 1987.

[26] A. Sherbondy, M. Houston, and S. Napel. Fast volume seg-
mentation with simultaneous visualization using program-
mable graphics hardware. Proc. of IEEE Visualization 2003,
2003.

[27] J. Stam. Stable fluids. Computer Graphics, 33(Annual Con-
ference Series):121–128, 1999.

[28] F. Tecchia, C. Loscos, and Y. Chrysanthou. Image-based
crowd rendering. IEEE Computer Graphics and Applica-
tions, 22(2):36–43, Mar./Apr. 2002.

[29] X. Tu and D. Terzopoulos. Artificial fishes: Physics, loco-
motion, perception, behavior. In Proc. of SIGGRAPH ’94
(Orlando, Florida, July 24–29, 1994), Computer Graphics
Proceedings, Annual Conference Series, pages 43–50. ACM
SIGGRAPH, ACM Press, July 1994.

