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Data-Driven Animation of CrowdsNiolas Courty1 and Thomas Corpetti2
1 Université de Bretagne-Sud, Laboratoire VALORIA,56000 Vannes Cedex, Franeniolas.ourty�univ-ubs.fr

2 Université de Haute-Bretagne, Laboratoire COSTEL,35000 Rennes Cedex, Franethomas.orpetti�uhb.frAbstrat. In this paper we propose an original method to animate arowd of virtual beings in a virtual environment. Instead of relying onmodels to desribe the motions of people along time, we suggest to usea priori knowledge on the dynami of the rowd aquired from videosof real rowd situations. In our method this information is expressedas a time-varying motion �eld whih aounts for a ontinuous �ow ofpeople along time. This motion desriptor is obtained through optial�ow estimation with a spei� seond order regularization. Obtainedmotion �elds are then used in a lassial �xed step size integration shemethat allows to animate a virtual rowd in real-time. The power of ourtehnique is demonstrated through various examples and possible follow-ups to this work are also desribed.1 IntrodutionCrowds of people exhibit partiular and subtle behaviors whose omplexity re-�ets the omplex nature of human beings. While omputer simulation of suhphenomena have made it possible to reprodue partiular and singular rowdon�gurations, none of them have managed to reprodue, within a generi frame-work, the typial emergent behaviors observed within a rowd with su�ientdetails and at a satisfying level. In the ontext of animation of human-like �g-ures, huge progress have been observed with the use of motion apture. It isnow possible to use motions aquired from real performers through a variety ofediting and warping operations with substantial bene�ts in terms of realism inthe produed animation. The aim of our tehnique is to provide suh a tool inthe ontext of rowd animation. While other approahes try to trak singularpedestrians into the �ow of people, our framework is based on the hypothesesthat the motions of individuals within the rowd is the expression of a ontin-uous �ow that drives the rowd motion. This assumes that the rowd is denseenough so that pedestrians are onsidered as markers of an underlying �ow. Inthis sense, our method is more related to marosopi simulation models (thattry to de�ne an overall struture to the rowd's motions) rather than mirosopimodels (that de�ne the rowd's motions as an emergent behavior of the sum ofindividual displaement strategies).



Our methodology relies on an analysis/synthesis sheme whih is depitedin Figure 1. First, images are extrated from a video of a real rowd. Fromall the pairs of suessive images a vetor �eld is omputed through a motionestimation proess. The onatenation of all these vetor �elds represent a timeseries whih aounts for the displaement of the whole rowd along time. Thisends up the analysis part. The synthesis of a new rowd animation is done byadveting partiles (the pedestrians) along this time varying �ow.
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Fig. 1. Overview of the whole proessThis paper is divided as follow: setion 2 is a state of the art of the di�er-ent existing approahes in the ontext of rowd simulation as well as motionestimation. Setion 3 deals with the estimator used in our methodology, andsetion 4 presents the integration of the motion desriptor in a rowd animationontroller. The last two setions present results obtained with our method alongwith a onlusion and perspetives for our work.2 State of the artThe idea of using videos as an input to animation system is not new, and hasalready been suesfully used in the ontext of, for instane, faial animation [9℄,harater animation from artoon [8℄ or animal gaits [14℄. Reent works showedexample of re-synthesis of �uids �ow from real video examples [3℄. Simulatingrowds from real videos fails into this hallenging ategory of methods. First,it is interesting to understand the limitations of rowd simulation model (�rstpart of this setion). We then introdue some general issues about the motionestimation problem.2.1 Crowd simulationCrowd behavior and motion of virtual people have been studied and modeledin omputers with di�erent purposes: populating virtual environments, video



games, movie prodution or simulating emergeny situations to help the designof buildings and open-spaes. The state of the art in human rowd behavioralmodelling is large and an be lassi�ed in two main approahes: mirosopiand marosopi models. The models belonging to the �rst ategory are thosedesribing the time-spae behavior of individual pedestrians whereas the seondategory are those desribing the emergent properties of the rowd.Mirosopi simulation The simplest models of mirosopi simulation arebased on ellular automata [6, 5℄. The soial fore model was �rst introduedby Helbing [15℄. It onsists in expressing the motion of eah pedestrian as aresult of a ombination of soial fores, that repel/attrat pedestrians towardeah others. It has been shown that this model generates realisti phenomenaas ar formations in exits or inreasing evauation time with inreased desiredveloities. It has been extended to aount for individualities [7℄ or the presene oftoxi gases in the environment [12℄. More omplex models onsider eah memberof the rowd as autonomous pedestrians endowed with pereptive and ognitiveabilities [22, 24, 23℄. Those models exhibit a variety of results depending on thequality of the behavior design.Marosopi models Modelling a rowd omposed of disrete individuals maylead to inorret emergent global behaviors. These di�ulties may be avoidedby using a ontinuum formulation [18, 26℄. Equations using the onepts of �uidmehanis have been derived in order to model suh approah of human rowds.Those approahes rely on the assumption that the harateristi distane salebetween individuals is muh less than the harateristi distane sale of theregion in whih the individuals move [18℄. Hene the density of the rowd has tobe taken into aount for those models to be pertinent. Finally several hypotheseson the behavior of eah members of the rowd lead to partial derivative equationsgoverning the �ow of people.Although rowds are made up of independent individuals with their own ob-jetives and behaviour patterns, the behavior of rowds is widely understood tohave olletive harateristis whih an be desribed in general terms. Though,marosopi models may lak of subtleties and often rely on strong hypotheses(notably on density). Our framework propose to apture this global dynamifrom real rowd video sequenes. This imposes the use of motion estimationtehniques.2.2 Motion estimationWhen a rowd is dense enough, the usual traking systems like Kalman �lters orstohasti �ltering [13℄ will generate large state spae that will yield a omputa-tionally too expensive problem. It is then neessary to use alternative methodsto obtain the information on the dynamis of the rowd in order to hara-terize its behavior. This setion investigates the di�erent ways to obtain some



motion desriptors from image sequenes. Many families of methods are avail-able to measure a motion information from image sequenes. One an ite forinstane the parametri methods, the orrelation tehniques or the optial �owapproahes (see [21℄ for a survey). These latter are known to be the most aurateto address the generi problem of estimating the apparent motion from imagesequenes (see for instane [27℄ for some presentations and [2℄ for omprehensiveomparisons with ompletely di�erent approahes). The idea of using optial�ow to estimate rowd motions has reently drawn attention in the ontext ofhuman ativity reognition [1℄. The original optial �ow is based on the seminalwork of Horn & Shunk [16℄ and is brie�y desribed in the next paragraph.Optial Flow The optial �ow based on Horn & Shunk onsists in the min-imization of a global ost funtion H omposed of two terms. The �rst one,named �observation term�, is derived from a brightness onstany assumptionand assumes that a given point keeps the same intensity along its trajetory. Itis expressed through the well known optial �ow onstraint equation (ofe):
Hobs(E,v) =

∫∫

Ω

f1

[

∇E(x, t) · v(x, t) +
∂E(x, t)

∂t

]

dx, (1)where v(x, t) = (u, v)T is the unknown veloity �eld at time t and loationx = (x, y) in the image plane Ω, E(x, t) is the image brightness, viewed for awhile as a ontinuous funtion.This �rst term relies on the assumption that the visible points onserveroughly their intensity in the ourse of a displaement.
dE

dt
= ∇E · v+

∂E

∂t
≈ 0. (2)The assoiated penalty funtion f1 is often the L2 norm. However, better es-timates are usually obtained by hoosing a �softer� penalty funtion [4℄. Suhfuntions, arising from robust statistis [17℄, limit the impat of the many lo-ations where the brightness onstany assumption does not hold, suh as onolusion boundaries.This single (salar) observation term does not allow to estimate the twoomponents u and v of the veloity. In order to solve this ill-posed problem, itis ommon to employ an additional smoothness onstraint Hreg. Usually, thisseond term enfores a spatial smoothness oherene of the �ow �eld. It relieson a ontextual assumption whih enfores a spatial smoothness of the solution.This term usually reads:

Hreg(v) =

∫∫

Ω

f2

[

|∇u(x, t)| + |∇v(x, t)|
]

, (3)As with the penalty funtion in the data term, the penalty funtion f2 was takenas a quadrati in early studies, but a softer penalty is now preferred in order not



to smooth out the natural disontinuities (boundaries, ...) of the veloity �eld [4,20℄. Based on (1) and (3), the estimation of motion an be done by minimizing:
H(E,v) = Hobs(E,v) + αHreg(v)

=

∫∫

Ω

f1

[

∇E(x, t) · v(x, t) +
∂E(x, t)

∂t

]

dx+

α

∫∫

Ω

f2

[

|∇u(x, t)| + |∇v(x, t)|
]

,

(4)where α > 0 is a parameter ontrolling the balane between the smoothnessonstraint and the global adequay to the observation assumption.The minimization of this overall ost funtion enables to extrat the apparentmotion �eld between a pair of images E(x, t1) and E(x, t2).Disussion It has been proved that in many image sequenes and espeially in�uid-like imagery, these lassi assumptions are violated in a number of loationsin the image plane. Even if in most of rigid-motion situations, the use of arobust penalty funtion enables us to reover properly the motion of pathologialsituations (oluding ontours, ...) the usual assumptions are, unfortunately, evenless appropriate in �uid imagery.Some studies have proved that a rowd dense enough has sometimes a be-havior that an be explained by some �uid mehanis laws [18℄. It is then ofprimary interest to integrate suh prior knowledge in the optial �ow (in theobservation term or on the regularization onstraint, depending on the nature ofthe physial law to integrate) to obtain a tehnique devoted to rowd motion. Inthis paper, we propose to use a smoothing onstraint dediated to the aptureof the signi�ant properties of the �ow from a �uid mehanis point of view.These properties are the divergene (linked to the dispersion of a rowd) andthe vortiity (also named url) linked to a rotation.3 Crowd motion estimation and representationIn this setion, we present the regularization used in the motion estimator toextrat a reliable rowd motion information. For more details on the approah,the reader an refer to [11, 10℄. Under the assumption that a dense enough rowdhas a behaviour that an be modeled with some �uid mehanis laws, one andemonstrate that the usual �rst-order regularization funtional in (3) is notadapted for �uid situations.By using Euler-Lagrange onditions of optimality, it is indeed readily demon-strated [10℄ that the standard �rst-order regularization funtional :
Hreg(v) =

∫∫

Ω

|∇u(x)|2 + |∇v(x)|2dx (5)



is equivalent from the minimization point of view, to the so-alled div-url reg-ularization funtional [25℄:
Hreg(v) =

∫∫

Ω

(div2v(x) + url2v(x)
)

dx, (6)where divv = ∂u
∂x

+ ∂v
∂y

and urlv = ∂v
∂x

− ∂u
∂y

are respetively the divergene andthe vortiity of the motion �eld v = (u, v).A �rst-order regularization therefore penalizes the amplitude of both thedivergene and the vortiity of the vetor �eld. For a dense rowd motion esti-mation, this does not seem appropriate sine the apparent veloity �eld normallyexhibits ompat areas with high values of vortiity and/or divergene. It seemsthen more appropriate to rely on a seond-order div-url regularization [25℄:
Hreg(v) =

∫∫

Ω

(

|∇divv(x)|2 + |∇urlv(x)|2
)

dx. (7)This regularization tends to preserve the divergene and the vortiity of themotion �eld v to estimate. Interested readers may referee to [11℄ to get preisedesriptions on the optimization strategy and on assoiated numerial imple-mentation issues.The motion �eld v is then the minimum of the following ost funtion (with
• = (x, t)):v(•) = minv∈Ω

∫∫

Ω

{

f1

[

∇E(•) · v(•) +
∂E(•)

∂t

]

+ α‖∇divv(•)‖2 + α‖∇urlv(•)‖2

}

dx.(8)and the global rowd motion is represented as a time series of suh motion �elds.4 Data-driven animation of rowdsOne the time series of motion �elds has been omputed, it is possible to onsiderthis information as input data for an animation system. Let us �rst reall thatthe omputed veloities orrespond to a veloity in the image spae, and ourgoal is to animate individualities in the virtual world spae. Given the positionof suh a person in the virtual world, it is possible to get the orrespondingposition in the image frame along with a amera projetion model. Parametersfor this projetion an be obtained exatly through amera alibration. We haveonsidered as an approximation of this model a simple orthographi projetion inthe experiments presented in the result setions. This assumption holds wheneverthe amera is su�iently far away from the rowd sene. One this projetionhas been de�ned, animating individualities whih onstitute the rowd amountsto solve the lassial following di�erential equation (with x(t) the position of aperson in the image frame at time t) :
∂x

∂t
= v(x(t), t) (9)



equipped with appropriate initial ondition x(0) = x0 whih stands for the initialpositions of the individual in the �ow �eld. In our framework we have used thelassial 4-th order Runge Kutta integration sheme, whih allows to ompute anew position x(t + 1) given a �xed timestep with an aeptable auray. Thisnew position is then projeted bak in the virtual world frame. This proess isdepited in Figure 2.
Fig. 2. Motion synthesis from �ow �eld. The position of the rowd's member isprojeted onto the �ow (step 1), the integration is performed in the image frame (step2) and then the new position is projeted bak in the vritual world frame (step 3).Let us �nally note that the quality of the generated animation is losely linkedwith the initial position of the rowd members and their density. We have usedin the subsequent results urve soures that reate random pedestrians along ahand-designed urve situated in the �ow.5 ResultsOur approah was �rst tested on syntheti rowd sequenes to validate the the-oritial part of our work. We have also used real rowd sequenes to handle realases. Those results are presented in this setion.5.1 Syntheti exampleThe syntheti sequene represents a ontinuous �ow of human beings with anobstale (a ylinder named C) in the middle of the image. It has been generatedusing the lassial Helbing simulation model [15℄. In this situation, the truemotion �eld inside the ylinder C is known (no motion, i.e. v(x ∈ C) = 0).The ost funtion (8) being de�ned on the whole image plane, we need to havea partiular proess to deal with this spei� no-data area. Atually, sine anymotion inside the area C is a reliable andidate (the ofe (1) is null everywhere),the motion estimation using relation (8) is likely to yield some inoherent resultsinside and outside the ylinder (due to the regularization term whih spreadserrors). To ope with this situation, we ompletely blurred the ylinder area



from an image to an other, so that the ofe onstraint is veri�ed nowhere in
C. Thanks to the robust estimator f1 used in (1), this area is not taken intoaount by the observation term of the estimation proess. Hene, the motions�elds estimated outside the ylinder are not disturbed by the ones inside C. Thisis illustrated in Figure 3. We present an image of the sequene in Figure 3(a),the estimated motion �eld in Figure 3(b), a zoom of the ylinder area with andwithout the spei� treatment proposed on this partiular situation (Figure 3()and 3(d) respetively). Some images of the rowd animation synthesis are shown
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dFig. 3. Estimation of the motion �eld on the syntheti example; (a): imagesfrom the original sequene; (b) the estimated motion �eld; () the motion near theylinder estimated with a speial are of this no-data area and (d) same as () butwithout a spei� treatment for the ylinder. One an see that the motion near theylinder in (d) is not totally oherent.on Figure 4. The animation was generated thanks to a Maya plugin whih de�nesa rowd as a set of partiles and performs the synthesis desribed in setion 4.As expeted, the virtual rowd is in aordane with the underlying motion andthe obstale is orretly managed. This �rst example proves the ability of theproposed approah to synthesize a oherent motion from an estimated motion�eld. Let us now apply this tehnique to real data.5.2 Real dataWe present the results obtained on two real sequenes. Both data have beenaquired with a simple video amera with an MPEG enoder. The resultingimages are hene very poor in terms of brightness: this latter is indeed sometimesonstant in a squared area. It is important to note that this point is likely todisturb the motion estimation proess.



Fig. 4. Some images of the syntheti rowd animation for 4 di�erent times ofthe sequene.Strike sequene The �rst real sequene is a video representing a strike whih tookplae at Vannes in Frane. All pedestrians are walking on the same diretion.Two images of the sequene an be seen on Figure 5 (a) and (b). In Figure 5 ()and (d), we present the syntheti rowd animation obtained superimposed onthe estimated motion �eld. One an observe that the resulting rowd animationis in aordane with the real pedestrian behaviors. Hene, on this example,our method has the advantage to synthesize orretly the observed phenomenawithout resorting to usual motion apture tehniques. Let us now see the resultson a more ompliated real sequene.Shibuya sequene The seond real sequene is a video aquired in the Shibuyarossroads in Tokyo, Japan, whih is famous for the density of people rossingthe streets. Three images of the sequene an be seen on Figure 6 (a-). Thissituation is omplex sine at least two main �ows of people in opposite diretionsare rossing the road. It is important to observe that in this ase, the underlyingassumptions of our approah (a very dense rowd) are not totally respeted.This example is therefore shown to evaluate the limits of our method. In Figure6 (d-f), we present the syntheti rowd animation obtained superimposed on theestimated motion �eld. One an see on these �gures that the two main opposite�ows are orretly extrated and synthesised, despite the fat that the initialsequene was very poor in terms of quality and that our initial assumptionswere not respeted. The generated sequene is relatively realisti. Nevertheless,the intersetion of the two groups of people is not orretly managed: somepedestrians have inoherent trajetories. This issue has two main reasons: theestimation proess is loally inoherent when two people olude eah other,and there is no temporal ontinuity in the estimated �ow. Two possibilities anbe exploited to ope suh a situation: the �rst one onsists in improving themotion estimation proess through a temporal smoothing of the motion �eldwhereas the seond possibility is to introdue a dynamial law in the trajetoryreonstrution step. This two key points will be the sope of our further work.6 ConlusionIn this paper, we have presented a new and orginal method whih proposes toanimate a virtual dense rowd thanks to real rowd video sequenes. This is done
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 dFig. 5. The strike sequene. (a,b): two images of the sequene; (,d) the orrespond-ing animation superimposed on the estimated motion �eld.
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d e fFig. 6. The Shibuya sequene. (a-): two images of the sequene; (d-f) the orre-sponding animation superimposed on the estimated motion �eld.
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