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Data-Driven Animation of CrowdsNi
olas Courty1 and Thomas Corpetti2
1 Université de Bretagne-Sud, Laboratoire VALORIA,56000 Vannes Cedex, Fran
eni
olas.
ourty�univ-ubs.fr

2 Université de Haute-Bretagne, Laboratoire COSTEL,35000 Rennes Cedex, Fran
ethomas.
orpetti�uhb.frAbstra
t. In this paper we propose an original method to animate a
rowd of virtual beings in a virtual environment. Instead of relying onmodels to des
ribe the motions of people along time, we suggest to usea priori knowledge on the dynami
 of the 
rowd a
quired from videosof real 
rowd situations. In our method this information is expressedas a time-varying motion �eld whi
h a

ounts for a 
ontinuous �ow ofpeople along time. This motion des
riptor is obtained through opti
al�ow estimation with a spe
i�
 se
ond order regularization. Obtainedmotion �elds are then used in a 
lassi
al �xed step size integration s
hemethat allows to animate a virtual 
rowd in real-time. The power of ourte
hnique is demonstrated through various examples and possible follow-ups to this work are also des
ribed.1 Introdu
tionCrowds of people exhibit parti
ular and subtle behaviors whose 
omplexity re-�e
ts the 
omplex nature of human beings. While 
omputer simulation of su
hphenomena have made it possible to reprodu
e parti
ular and singular 
rowd
on�gurations, none of them have managed to reprodu
e, within a generi
 frame-work, the typi
al emergent behaviors observed within a 
rowd with su�
ientdetails and at a satisfying level. In the 
ontext of animation of human-like �g-ures, huge progress have been observed with the use of motion 
apture. It isnow possible to use motions a
quired from real performers through a variety ofediting and warping operations with substantial bene�ts in terms of realism inthe produ
ed animation. The aim of our te
hnique is to provide su
h a tool inthe 
ontext of 
rowd animation. While other approa
hes try to tra
k singularpedestrians into the �ow of people, our framework is based on the hypothesesthat the motions of individuals within the 
rowd is the expression of a 
ontin-uous �ow that drives the 
rowd motion. This assumes that the 
rowd is denseenough so that pedestrians are 
onsidered as markers of an underlying �ow. Inthis sense, our method is more related to ma
ros
opi
 simulation models (thattry to de�ne an overall stru
ture to the 
rowd's motions) rather than mi
ros
opi
models (that de�ne the 
rowd's motions as an emergent behavior of the sum ofindividual displa
ement strategies).



Our methodology relies on an analysis/synthesis s
heme whi
h is depi
tedin Figure 1. First, images are extra
ted from a video of a real 
rowd. Fromall the pairs of su

essive images a ve
tor �eld is 
omputed through a motionestimation pro
ess. The 
on
atenation of all these ve
tor �elds represent a timeseries whi
h a

ounts for the displa
ement of the whole 
rowd along time. Thisends up the analysis part. The synthesis of a new 
rowd animation is done byadve
ting parti
les (the pedestrians) along this time varying �ow.
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Fig. 1. Overview of the whole pro
essThis paper is divided as follow: se
tion 2 is a state of the art of the di�er-ent existing approa
hes in the 
ontext of 
rowd simulation as well as motionestimation. Se
tion 3 deals with the estimator used in our methodology, andse
tion 4 presents the integration of the motion des
riptor in a 
rowd animation
ontroller. The last two se
tions present results obtained with our method alongwith a 
on
lusion and perspe
tives for our work.2 State of the artThe idea of using videos as an input to animation system is not new, and hasalready been su

esfully used in the 
ontext of, for instan
e, fa
ial animation [9℄,
hara
ter animation from 
artoon [8℄ or animal gaits [14℄. Re
ent works showedexample of re-synthesis of �uids �ow from real video examples [3℄. Simulating
rowds from real videos fails into this 
hallenging 
ategory of methods. First,it is interesting to understand the limitations of 
rowd simulation model (�rstpart of this se
tion). We then introdu
e some general issues about the motionestimation problem.2.1 Crowd simulationCrowd behavior and motion of virtual people have been studied and modeledin 
omputers with di�erent purposes: populating virtual environments, video



games, movie produ
tion or simulating emergen
y situations to help the designof buildings and open-spa
es. The state of the art in human 
rowd behavioralmodelling is large and 
an be 
lassi�ed in two main approa
hes: mi
ros
opi
and ma
ros
opi
 models. The models belonging to the �rst 
ategory are thosedes
ribing the time-spa
e behavior of individual pedestrians whereas the se
ond
ategory are those des
ribing the emergent properties of the 
rowd.Mi
ros
opi
 simulation The simplest models of mi
ros
opi
 simulation arebased on 
ellular automata [6, 5℄. The so
ial for
e model was �rst introdu
edby Helbing [15℄. It 
onsists in expressing the motion of ea
h pedestrian as aresult of a 
ombination of so
ial for
es, that repel/attra
t pedestrians towardea
h others. It has been shown that this model generates realisti
 phenomenaas ar
 formations in exits or in
reasing eva
uation time with in
reased desiredvelo
ities. It has been extended to a

ount for individualities [7℄ or the presen
e oftoxi
 gases in the environment [12℄. More 
omplex models 
onsider ea
h memberof the 
rowd as autonomous pedestrians endowed with per
eptive and 
ognitiveabilities [22, 24, 23℄. Those models exhibit a variety of results depending on thequality of the behavior design.Ma
ros
opi
 models Modelling a 
rowd 
omposed of dis
rete individuals maylead to in
orre
t emergent global behaviors. These di�
ulties may be avoidedby using a 
ontinuum formulation [18, 26℄. Equations using the 
on
epts of �uidme
hani
s have been derived in order to model su
h approa
h of human 
rowds.Those approa
hes rely on the assumption that the 
hara
teristi
 distan
e s
alebetween individuals is mu
h less than the 
hara
teristi
 distan
e s
ale of theregion in whi
h the individuals move [18℄. Hen
e the density of the 
rowd has tobe taken into a

ount for those models to be pertinent. Finally several hypotheseson the behavior of ea
h members of the 
rowd lead to partial derivative equationsgoverning the �ow of people.Although 
rowds are made up of independent individuals with their own ob-je
tives and behaviour patterns, the behavior of 
rowds is widely understood tohave 
olle
tive 
hara
teristi
s whi
h 
an be des
ribed in general terms. Though,ma
ros
opi
 models may la
k of subtleties and often rely on strong hypotheses(notably on density). Our framework propose to 
apture this global dynami
from real 
rowd video sequen
es. This imposes the use of motion estimationte
hniques.2.2 Motion estimationWhen a 
rowd is dense enough, the usual tra
king systems like Kalman �lters orsto
hasti
 �ltering [13℄ will generate large state spa
e that will yield a 
omputa-tionally too expensive problem. It is then ne
essary to use alternative methodsto obtain the information on the dynami
s of the 
rowd in order to 
hara
-terize its behavior. This se
tion investigates the di�erent ways to obtain some



motion des
riptors from image sequen
es. Many families of methods are avail-able to measure a motion information from image sequen
es. One 
an 
ite forinstan
e the parametri
 methods, the 
orrelation te
hniques or the opti
al �owapproa
hes (see [21℄ for a survey). These latter are known to be the most a

urateto address the generi
 problem of estimating the apparent motion from imagesequen
es (see for instan
e [27℄ for some presentations and [2℄ for 
omprehensive
omparisons with 
ompletely di�erent approa
hes). The idea of using opti
al�ow to estimate 
rowd motions has re
ently drawn attention in the 
ontext ofhuman a
tivity re
ognition [1℄. The original opti
al �ow is based on the seminalwork of Horn & S
hun
k [16℄ and is brie�y des
ribed in the next paragraph.Opti
al Flow The opti
al �ow based on Horn & S
hun
k 
onsists in the min-imization of a global 
ost fun
tion H 
omposed of two terms. The �rst one,named �observation term�, is derived from a brightness 
onstan
y assumptionand assumes that a given point keeps the same intensity along its traje
tory. Itis expressed through the well known opti
al �ow 
onstraint equation (of
e):
Hobs(E,v) =

∫∫

Ω

f1

[

∇E(x, t) · v(x, t) +
∂E(x, t)

∂t

]

dx, (1)where v(x, t) = (u, v)T is the unknown velo
ity �eld at time t and lo
ationx = (x, y) in the image plane Ω, E(x, t) is the image brightness, viewed for awhile as a 
ontinuous fun
tion.This �rst term relies on the assumption that the visible points 
onserveroughly their intensity in the 
ourse of a displa
ement.
dE

dt
= ∇E · v+

∂E

∂t
≈ 0. (2)The asso
iated penalty fun
tion f1 is often the L2 norm. However, better es-timates are usually obtained by 
hoosing a �softer� penalty fun
tion [4℄. Su
hfun
tions, arising from robust statisti
s [17℄, limit the impa
t of the many lo-
ations where the brightness 
onstan
y assumption does not hold, su
h as ono

lusion boundaries.This single (s
alar) observation term does not allow to estimate the two
omponents u and v of the velo
ity. In order to solve this ill-posed problem, itis 
ommon to employ an additional smoothness 
onstraint Hreg. Usually, thisse
ond term enfor
es a spatial smoothness 
oheren
e of the �ow �eld. It relieson a 
ontextual assumption whi
h enfor
es a spatial smoothness of the solution.This term usually reads:

Hreg(v) =

∫∫

Ω

f2

[

|∇u(x, t)| + |∇v(x, t)|
]

, (3)As with the penalty fun
tion in the data term, the penalty fun
tion f2 was takenas a quadrati
 in early studies, but a softer penalty is now preferred in order not



to smooth out the natural dis
ontinuities (boundaries, ...) of the velo
ity �eld [4,20℄. Based on (1) and (3), the estimation of motion 
an be done by minimizing:
H(E,v) = Hobs(E,v) + αHreg(v)

=

∫∫

Ω

f1

[

∇E(x, t) · v(x, t) +
∂E(x, t)

∂t

]

dx+

α

∫∫

Ω

f2

[

|∇u(x, t)| + |∇v(x, t)|
]

,

(4)where α > 0 is a parameter 
ontrolling the balan
e between the smoothness
onstraint and the global adequa
y to the observation assumption.The minimization of this overall 
ost fun
tion enables to extra
t the apparentmotion �eld between a pair of images E(x, t1) and E(x, t2).Dis
ussion It has been proved that in many image sequen
es and espe
ially in�uid-like imagery, these 
lassi
 assumptions are violated in a number of lo
ationsin the image plane. Even if in most of rigid-motion situations, the use of arobust penalty fun
tion enables us to re
over properly the motion of pathologi
alsituations (o

luding 
ontours, ...) the usual assumptions are, unfortunately, evenless appropriate in �uid imagery.Some studies have proved that a 
rowd dense enough has sometimes a be-havior that 
an be explained by some �uid me
hani
s laws [18℄. It is then ofprimary interest to integrate su
h prior knowledge in the opti
al �ow (in theobservation term or on the regularization 
onstraint, depending on the nature ofthe physi
al law to integrate) to obtain a te
hnique devoted to 
rowd motion. Inthis paper, we propose to use a smoothing 
onstraint dedi
ated to the 
aptureof the signi�
ant properties of the �ow from a �uid me
hani
s point of view.These properties are the divergen
e (linked to the dispersion of a 
rowd) andthe vorti
ity (also named 
url) linked to a rotation.3 Crowd motion estimation and representationIn this se
tion, we present the regularization used in the motion estimator toextra
t a reliable 
rowd motion information. For more details on the approa
h,the reader 
an refer to [11, 10℄. Under the assumption that a dense enough 
rowdhas a behaviour that 
an be modeled with some �uid me
hani
s laws, one 
andemonstrate that the usual �rst-order regularization fun
tional in (3) is notadapted for �uid situations.By using Euler-Lagrange 
onditions of optimality, it is indeed readily demon-strated [10℄ that the standard �rst-order regularization fun
tional :
Hreg(v) =

∫∫

Ω

|∇u(x)|2 + |∇v(x)|2dx (5)



is equivalent from the minimization point of view, to the so-
alled div-
url reg-ularization fun
tional [25℄:
Hreg(v) =

∫∫

Ω

(div2v(x) + 
url2v(x)
)

dx, (6)where divv = ∂u
∂x

+ ∂v
∂y

and 
urlv = ∂v
∂x

− ∂u
∂y

are respe
tively the divergen
e andthe vorti
ity of the motion �eld v = (u, v).A �rst-order regularization therefore penalizes the amplitude of both thedivergen
e and the vorti
ity of the ve
tor �eld. For a dense 
rowd motion esti-mation, this does not seem appropriate sin
e the apparent velo
ity �eld normallyexhibits 
ompa
t areas with high values of vorti
ity and/or divergen
e. It seemsthen more appropriate to rely on a se
ond-order div-
url regularization [25℄:
Hreg(v) =

∫∫

Ω

(

|∇divv(x)|2 + |∇
urlv(x)|2
)

dx. (7)This regularization tends to preserve the divergen
e and the vorti
ity of themotion �eld v to estimate. Interested readers may referee to [11℄ to get pre
isedes
riptions on the optimization strategy and on asso
iated numeri
al imple-mentation issues.The motion �eld v is then the minimum of the following 
ost fun
tion (with
• = (x, t)):v(•) = minv∈Ω

∫∫

Ω

{

f1

[

∇E(•) · v(•) +
∂E(•)

∂t

]

+ α‖∇divv(•)‖2 + α‖∇
urlv(•)‖2

}

dx.(8)and the global 
rowd motion is represented as a time series of su
h motion �elds.4 Data-driven animation of 
rowdsOn
e the time series of motion �elds has been 
omputed, it is possible to 
onsiderthis information as input data for an animation system. Let us �rst re
all thatthe 
omputed velo
ities 
orrespond to a velo
ity in the image spa
e, and ourgoal is to animate individualities in the virtual world spa
e. Given the positionof su
h a person in the virtual world, it is possible to get the 
orrespondingposition in the image frame along with a 
amera proje
tion model. Parametersfor this proje
tion 
an be obtained exa
tly through 
amera 
alibration. We have
onsidered as an approximation of this model a simple orthographi
 proje
tion inthe experiments presented in the result se
tions. This assumption holds wheneverthe 
amera is su�
iently far away from the 
rowd s
ene. On
e this proje
tionhas been de�ned, animating individualities whi
h 
onstitute the 
rowd amountsto solve the 
lassi
al following di�erential equation (with x(t) the position of aperson in the image frame at time t) :
∂x

∂t
= v(x(t), t) (9)



equipped with appropriate initial 
ondition x(0) = x0 whi
h stands for the initialpositions of the individual in the �ow �eld. In our framework we have used the
lassi
al 4-th order Runge Kutta integration s
heme, whi
h allows to 
ompute anew position x(t + 1) given a �xed timestep with an a

eptable a

ura
y. Thisnew position is then proje
ted ba
k in the virtual world frame. This pro
ess isdepi
ted in Figure 2.
Fig. 2. Motion synthesis from �ow �eld. The position of the 
rowd's member isproje
ted onto the �ow (step 1), the integration is performed in the image frame (step2) and then the new position is proje
ted ba
k in the vritual world frame (step 3).Let us �nally note that the quality of the generated animation is 
losely linkedwith the initial position of the 
rowd members and their density. We have usedin the subsequent results 
urve sour
es that 
reate random pedestrians along ahand-designed 
urve situated in the �ow.5 ResultsOur approa
h was �rst tested on syntheti
 
rowd sequen
es to validate the the-oriti
al part of our work. We have also used real 
rowd sequen
es to handle real
ases. Those results are presented in this se
tion.5.1 Syntheti
 exampleThe syntheti
 sequen
e represents a 
ontinuous �ow of human beings with anobsta
le (a 
ylinder named C) in the middle of the image. It has been generatedusing the 
lassi
al Helbing simulation model [15℄. In this situation, the truemotion �eld inside the 
ylinder C is known (no motion, i.e. v(x ∈ C) = 0).The 
ost fun
tion (8) being de�ned on the whole image plane, we need to havea parti
ular pro
ess to deal with this spe
i�
 no-data area. A
tually, sin
e anymotion inside the area C is a reliable 
andidate (the of
e (1) is null everywhere),the motion estimation using relation (8) is likely to yield some in
oherent resultsinside and outside the 
ylinder (due to the regularization term whi
h spreadserrors). To 
ope with this situation, we 
ompletely blurred the 
ylinder area



from an image to an other, so that the of
e 
onstraint is veri�ed nowhere in
C. Thanks to the robust estimator f1 used in (1), this area is not taken intoa

ount by the observation term of the estimation pro
ess. Hen
e, the motions�elds estimated outside the 
ylinder are not disturbed by the ones inside C. Thisis illustrated in Figure 3. We present an image of the sequen
e in Figure 3(a),the estimated motion �eld in Figure 3(b), a zoom of the 
ylinder area with andwithout the spe
i�
 treatment proposed on this parti
ular situation (Figure 3(
)and 3(d) respe
tively). Some images of the 
rowd animation synthesis are shown
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dFig. 3. Estimation of the motion �eld on the syntheti
 example; (a): imagesfrom the original sequen
e; (b) the estimated motion �eld; (
) the motion near the
ylinder estimated with a spe
ial 
are of this no-data area and (d) same as (
) butwithout a spe
i�
 treatment for the 
ylinder. One 
an see that the motion near the
ylinder in (d) is not totally 
oherent.on Figure 4. The animation was generated thanks to a Maya plugin whi
h de�nesa 
rowd as a set of parti
les and performs the synthesis des
ribed in se
tion 4.As expe
ted, the virtual 
rowd is in a

ordan
e with the underlying motion andthe obsta
le is 
orre
tly managed. This �rst example proves the ability of theproposed approa
h to synthesize a 
oherent motion from an estimated motion�eld. Let us now apply this te
hnique to real data.5.2 Real dataWe present the results obtained on two real sequen
es. Both data have beena
quired with a simple video 
amera with an MPEG en
oder. The resultingimages are hen
e very poor in terms of brightness: this latter is indeed sometimes
onstant in a squared area. It is important to note that this point is likely todisturb the motion estimation pro
ess.



Fig. 4. Some images of the syntheti
 
rowd animation for 4 di�erent times ofthe sequen
e.Strike sequen
e The �rst real sequen
e is a video representing a strike whi
h tookpla
e at Vannes in Fran
e. All pedestrians are walking on the same dire
tion.Two images of the sequen
e 
an be seen on Figure 5 (a) and (b). In Figure 5 (
)and (d), we present the syntheti
 
rowd animation obtained superimposed onthe estimated motion �eld. One 
an observe that the resulting 
rowd animationis in a

ordan
e with the real pedestrian behaviors. Hen
e, on this example,our method has the advantage to synthesize 
orre
tly the observed phenomenawithout resorting to usual motion 
apture te
hniques. Let us now see the resultson a more 
ompli
ated real sequen
e.Shibuya sequen
e The se
ond real sequen
e is a video a
quired in the Shibuya
rossroads in Tokyo, Japan, whi
h is famous for the density of people 
rossingthe streets. Three images of the sequen
e 
an be seen on Figure 6 (a-
). Thissituation is 
omplex sin
e at least two main �ows of people in opposite dire
tionsare 
rossing the road. It is important to observe that in this 
ase, the underlyingassumptions of our approa
h (a very dense 
rowd) are not totally respe
ted.This example is therefore shown to evaluate the limits of our method. In Figure6 (d-f), we present the syntheti
 
rowd animation obtained superimposed on theestimated motion �eld. One 
an see on these �gures that the two main opposite�ows are 
orre
tly extra
ted and synthesised, despite the fa
t that the initialsequen
e was very poor in terms of quality and that our initial assumptionswere not respe
ted. The generated sequen
e is relatively realisti
. Nevertheless,the interse
tion of the two groups of people is not 
orre
tly managed: somepedestrians have in
oherent traje
tories. This issue has two main reasons: theestimation pro
ess is lo
ally in
oherent when two people o

lude ea
h other,and there is no temporal 
ontinuity in the estimated �ow. Two possibilities 
anbe exploited to 
ope su
h a situation: the �rst one 
onsists in improving themotion estimation pro
ess through a temporal smoothing of the motion �eldwhereas the se
ond possibility is to introdu
e a dynami
al law in the traje
toryre
onstru
tion step. This two key points will be the s
ope of our further work.6 Con
lusionIn this paper, we have presented a new and orginal method whi
h proposes toanimate a virtual dense 
rowd thanks to real 
rowd video sequen
es. This is done



a b

 dFig. 5. The strike sequen
e. (a,b): two images of the sequen
e; (
,d) the 
orrespond-ing animation superimposed on the estimated motion �eld.

a b 

d e fFig. 6. The Shibuya sequen
e. (a-
): two images of the sequen
e; (d-f) the 
orre-sponding animation superimposed on the estimated motion �eld.



using i) a spe
i�
 motion information pro
ess applied on the input images andii) an integration part to obtain the traje
tories of individualities in the 
rowd.We applied the presented method on both syntheti
 and real examples. Theexperimental part showed the ability of the te
hnique to synthesize reliable 
rowdanimations but also pointed out some limitations. To improve the presentedapproa
h, some problems will be important to solve. Con
erning the analysispart, the motion estimation pro
ess 
an be improved by introdu
ing more spe
i�
spatio-temporal models of 
ontinuous 
rowd behaviours [18℄. This 
an be doneusing the framework of the opti
al �ow but it 
an also be relevant to explorethe possibilities of the data-assimilation used for instan
e in meteorology [19℄.This 
onstitutes a very ex
iting 
hallenge for whi
h a
tually no pra
ti
al andgeneri
 solution exists and stands as a very appealing alternative to tra
kingsystems, too expensive in the 
ontext of dense 
rowds. An other important pointwould be to spe
ify a motion estimation pro
ess for 
rowds that are not totallydense. Con
erning the synthesis part, we aim at enri
hing existing simulationmodels by integrating this a priori knowledge of the behaviour of the 
rowd. Inthis 
ontext, the 
rowd simulation would integrate both dynami
al simulationmodels and observed data from real sequen
es.A
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