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Abstract. In this paper we propose an original method to animate a
crowd of virtual beings in a virtual environment. Instead of relying on
models to describe the motions of people along time, we suggest to use
a priori knowledge on the dynamic of the crowd acquired from videos
of real crowd situations. In our method this information is expressed
as a time-varying motion field which accounts for a continuous flow of
people along time. This motion descriptor is obtained through optical
flow estimation with a specific second order regularization. Obtained
motion fields are then used in a classical fixed step size integration scheme
that allows to animate a virtual crowd in real-time. The power of our
technique is demonstrated through various examples and possible follow-
ups to this work are also described.

1 Introduction

Crowds of people exhibit particular and subtle behaviors whose complexity re-
flects the complex nature of human beings. While computer simulation of such
phenomena have made it possible to reproduce particular and singular crowd
configurations, none of them have managed to reproduce, within a generic frame-
work, the typical emergent behaviors observed within a crowd with sufficient
details and at a satisfying level. In the context of animation of human-like fig-
ures, huge progress have been observed with the use of motion capture. It is
now possible to use motions acquired from real performers through a variety of
editing and warping operations with substantial benefits in terms of realism in
the produced animation. The aim of our technique is to provide such a tool in
the context of crowd animation. While other approaches try to track singular
pedestrians into the flow of people, our framework is based on the hypotheses
that the motions of individuals within the crowd is the expression of a contin-
uous flow that drives the crowd motion. This assumes that the crowd is dense
enough so that pedestrians are considered as markers of an underlying flow. In
this sense, our method is more related to macroscopic simulation models (that
try to define an overall structure to the crowd’s motions) rather than microscopic
models (that define the crowd’s motions as an emergent behavior of the sum of
individual displacement strategies).



Our methodology relies on an analysis/synthesis scheme which is depicted
in Figure 1. First, images are extracted from a video of a real crowd. From
all the pairs of successive images a vector field is computed through a motion
estimation process. The concatenation of all these vector fields represent a time
series which accounts for the displacement of the whole crowd along time. This
ends up the analysis part. The synthesis of a new crowd animation is done by
advecting particles (the pedestrians) along this time varying flow.
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Fig. 1. Overview of the whole process

This paper is divided as follow: section 2 is a state of the art of the differ-
ent existing approaches in the context of crowd simulation as well as motion
estimation. Section 3 deals with the estimator used in our methodology, and
section 4 presents the integration of the motion descriptor in a crowd animation
controller. The last two sections present results obtained with our method along
with a conclusion and perspectives for our work.

2 State of the art

The idea of using videos as an input to animation system is not new, and has
already been succesfully used in the context of, for instance, facial animation [9],
character animation from cartoon [8] or animal gaits [14]. Recent works showed
example of re-synthesis of fluids flow from real video examples [3]. Simulating
crowds from real videos fails into this challenging category of methods. First,
it is interesting to understand the limitations of crowd simulation model (first
part of this section). We then introduce some general issues about the motion
estimation problem.

2.1 Crowd simulation

Crowd behavior and motion of virtual people have been studied and modeled
in computers with different purposes: populating virtual environments, video



games, movie production or simulating emergency situations to help the design
of buildings and open-spaces. The state of the art in human crowd behavioral
modelling is large and can be classified in two main approaches: microscopic
and macroscopic models. The models belonging to the first category are those
describing the time-space behavior of individual pedestrians whereas the second
category are those describing the emergent properties of the crowd.

Microscopic simulation The simplest models of microscopic simulation are
based on cellular automata [6,5]. The social force model was first introduced
by Helbing [15]. It consists in expressing the motion of each pedestrian as a
result of a combination of social forces, that repel/attract pedestrians toward
each others. It has been shown that this model generates realistic phenomena
as arc formations in exits or increasing evacuation time with increased desired
velocities. It has been extended to account for individualities [7] or the presence of
toxic gases in the environment [12]. More complex models consider each member
of the crowd as autonomous pedestrians endowed with perceptive and cognitive
abilities [22, 24, 23]. Those models exhibit a variety of results depending on the
quality of the behavior design.

Macroscopic models Modelling a crowd composed of discrete individuals may
lead to incorrect emergent global behaviors. These difficulties may be avoided
by using a continuum formulation [18, 26]. Equations using the concepts of fluid
mechanics have been derived in order to model such approach of human crowds.
Those approaches rely on the assumption that the characteristic distance scale
between individuals is much less than the characteristic distance scale of the
region in which the individuals move [18]. Hence the density of the crowd has to
be taken into account for those models to be pertinent. Finally several hypotheses
on the behavior of each members of the crowd lead to partial derivative equations
governing the flow of people.

Although crowds are made up of independent individuals with their own ob-
jectives and behaviour patterns, the behavior of crowds is widely understood to
have collective characteristics which can be described in general terms. Though,
macroscopic models may lack of subtleties and often rely on strong hypotheses
(notably on density). Our framework propose to capture this global dynamic
from real crowd video sequences. This imposes the use of motion estimation
techniques.

2.2 Motion estimation

When a crowd is dense enough, the usual tracking systems like Kalman filters or
stochastic filtering [13] will generate large state space that will yield a computa-
tionally too expensive problem. It is then necessary to use alternative methods
to obtain the information on the dynamics of the crowd in order to charac-
terize its behavior. This section investigates the different ways to obtain some



motion descriptors from image sequences. Many families of methods are avail-
able to measure a motion information from image sequences. One can cite for
instance the parametric methods, the correlation techniques or the optical flow
approaches (see [21] for a survey). These latter are known to be the most accurate
to address the generic problem of estimating the apparent motion from image
sequences (see for instance [27] for some presentations and [2] for comprehensive
comparisons with completely different approaches). The idea of using optical
flow to estimate crowd motions has recently drawn attention in the context of
human activity recognition [1]. The original optical flow is based on the seminal
work of Horn & Schunck [16] and is briefly described in the next paragraph.

Optical Flow The optical flow based on Horn & Schunck consists in the min-
imization of a global cost function H composed of two terms. The first one,
named “observation term”, is derived from a brightness constancy assumption
and assumes that a given point keeps the same intensity along its trajectory. It
is expressed through the well known optical flow constraint equation (OFCE):

OFE(x,t
Hoe(B) = [[ 5] 9B 0 vix0 + D 0
Q
where v(x,t) = (u,v)” is the unknown velocity field at time ¢ and location

x = (z,y) in the image plane 2, E(x,t) is the image brightness, viewed for a
while as a continuous function.

This first term relies on the assumption that the visible points conserve
roughly their intensity in the course of a displacement.

E E
Ciz—tZVE-v—i—aa—tzO. (2)
The associated penalty function f; is often the Ly norm. However, better es-
timates are usually obtained by choosing a “softer” penalty function [4]. Such
functions, arising from robust statistics [17], limit the impact of the many lo-
cations where the brightness constancy assumption does not hold, such as on
occlusion boundaries.

This single (scalar) observation term does not allow to estimate the two
components u and v of the velocity. In order to solve this ill-posed problem, it
is common to employ an additional smoothness constraint H,.,. Usually, this
second term enforces a spatial smoothness coherence of the flow field. It relies
on a contextual assumption which enforces a spatial smoothness of the solution.
This term usually reads:

Hoeo(v) = [ [ Rl ube )]+ Vux,0)]. ®)

As with the penalty function in the data term, the penalty function f> was taken
as a quadratic in early studies, but a softer penalty is now preferred in order not



to smooth out the natural discontinuities (boundaries, ...) of the velocity field [4,
20]. Based on (1) and (3), the estimation of motion can be done by minimizing:

H(E, V) = Hobs (E’7 v) + aHTag(V)
- [[x {VE(x,t) e+ 2200 gy
2

a// f2[[Vu(x, )] + [Vo(x, t)]],
o)

where a@ > 0 is a parameter controlling the balance between the smoothness
constraint and the global adequacy to the observation assumption.

The minimization of this overall cost function enables to extract the apparent
motion field between a pair of images E(x,t1) and E(x,t2).

Discussion It has been proved that in many image sequences and especially in
fluid-like imagery, these classic assumptions are violated in a number of locations
in the image plane. Even if in most of rigid-motion situations, the use of a
robust penalty function enables us to recover properly the motion of pathological
situations (occluding contours, ...) the usual assumptions are, unfortunately, even
less appropriate in fluid imagery.

Some studies have proved that a crowd dense enough has sometimes a be-
havior that can be explained by some fluid mechanics laws [18]. It is then of
primary interest to integrate such prior knowledge in the optical flow (in the
observation term or on the regularization constraint, depending on the nature of
the physical law to integrate) to obtain a technique devoted to crowd motion. In
this paper, we propose to use a smoothing constraint dedicated to the capture
of the significant properties of the flow from a fluid mechanics point of view.
These properties are the divergence (linked to the dispersion of a crowd) and
the vorticity (also named curl) linked to a rotation.

3 Crowd motion estimation and representation

In this section, we present the regularization used in the motion estimator to
extract a reliable crowd motion information. For more details on the approach,
the reader can refer to [11, 10]. Under the assumption that a dense enough crowd
has a behaviour that can be modeled with some fluid mechanics laws, one can
demonstrate that the usual first-order regularization functional in (3) is not
adapted for fluid situations.

By using Euler-Lagrange conditions of optimality, it is indeed readily demon-
strated [10] that the standard first-order regularization functional :

Hreg(v) = / / Va0 + V() P (5)
0



is equivalent from the minimization point of view, to the so-called div-curl reg-
ularization functional [25]:

Horeg( // (div?v(x) + curl*v(x)) dx, (6)

where divv = g% + 5 8” and curlv = % — g—Z are respectively the divergence and

the vorticity of the motlon field v = (u,v).

A first-order regularization therefore penalizes the amplitude of both the
divergence and the vorticity of the vector field. For a dense crowd motion esti-
mation, this does not seem appropriate since the apparent velocity field normally
exhibits compact areas with high values of vorticity and/or divergence. It seems
then more appropriate to rely on a second-order div-curl regularization [25]:

Hyreg( // |Vdivv(x)[* + |Veurlv(x)| ) (7)

This regularization tends to preserve the divergence and the vorticity of the
motion field v to estimate. Interested readers may referee to [11] to get precise
descriptions on the optimization strategy and on associated numerical imple-
mentation issues.

The motion field v is then the minimum of the following cost function (with

o = (x,1)):
mln // {fl {VE v(e) + 82( ) + a||Vdivv(e)]? +aHchrlv(o)||2}dx
(8)

and the global crowd motion is represented as a time series of such motion fields.

4 Data-driven animation of crowds

Once the time series of motion fields has been computed, it is possible to consider
this information as input data for an animation system. Let us first recall that
the computed velocities correspond to a velocity in the image space, and our
goal is to animate individualities in the virtual world space. Given the position
of such a person in the virtual world, it is possible to get the corresponding
position in the image frame along with a camera projection model. Parameters
for this projection can be obtained exactly through camera calibration. We have
considered as an approximation of this model a simple orthographic projection in
the experiments presented in the result sections. This assumption holds whenever
the camera is sufficiently far away from the crowd scene. Once this projection
has been defined, animating individualities which constitute the crowd amounts
to solve the classical following differential equation (with z(¢) the position of a
person in the image frame at time t) :

ox
ot = v(z(t),1) (9)



equipped with appropriate initial condition 2(0) = ¢ which stands for the initial
positions of the individual in the flow field. In our framework we have used the
classical 4-th order Runge Kutta integration scheme, which allows to compute a
new position z(t + 1) given a fixed timestep with an acceptable accuracy. This
new position is then projected back in the virtual world frame. This process is
depicted in Figure 2.

rtual World

Fig. 2. Motion synthesis from flow field. The position of the crowd’s member is
projected onto the flow (step 1), the integration is performed in the image frame (step
2) and then the new position is projected back in the vritual world frame (step 3).

Let us finally note that the quality of the generated animation is closely linked
with the initial position of the crowd members and their density. We have used
in the subsequent results curve sources that create random pedestrians along a
hand-designed curve situated in the flow.

5 Results

Our approach was first tested on synthetic crowd sequences to validate the the-
oritical part of our work. We have also used real crowd sequences to handle real
cases. Those results are presented in this section.

5.1 Synthetic example

The synthetic sequence represents a continuous flow of human beings with an
obstacle (a cylinder named C) in the middle of the image. It has been generated
using the classical Helbing simulation model [15]. In this situation, the true
motion field inside the cylinder C is known (no motion, i.e. v(x € C) = 0).
The cost function (8) being defined on the whole image plane, we need to have
a particular process to deal with this specific no-data area. Actually, since any
motion inside the area C is a reliable candidate (the OFCE (1) is null everywhere),
the motion estimation using relation (8) is likely to yield some incoherent results
inside and outside the cylinder (due to the regularization term which spreads
errors). To cope with this situation, we completely blurred the cylinder area



from an image to an other, so that the OFCE constraint is verified nowhere in
C. Thanks to the robust estimator f; used in (1), this area is not taken into
account by the observation term of the estimation process. Hence, the motions
fields estimated outside the cylinder are not disturbed by the ones inside C. This
is illustrated in Figure 3. We present an image of the sequence in Figure 3(a),
the estimated motion field in Figure 3(b), a zoom of the cylinder area with and
without the specific treatment proposed on this particular situation (Figure 3(c)
and 3(d) respectively). Some images of the crowd animation synthesis are shown

b ¢ s & d

Fig. 3. Estimation of the motion field on the synthetic example; (a): images
from the original sequence; (b) the estimated motion field; (c) the motion near the
cylinder estimated with a special care of this no-data area and (d) same as (c) but
without a specific treatment for the cylinder. One can see that the motion near the
cylinder in (d) is not totally coherent.

on Figure 4. The animation was generated thanks to a Maya plugin which defines
a crowd as a set of particles and performs the synthesis described in section 4.
As expected, the virtual crowd is in accordance with the underlying motion and
the obstacle is correctly managed. This first example proves the ability of the
proposed approach to synthesize a coherent motion from an estimated motion
field. Let us now apply this technique to real data.

5.2 Real data

We present the results obtained on two real sequences. Both data have been
acquired with a simple video camera with an MPEG encoder. The resulting
images are hence very poor in terms of brightness: this latter is indeed sometimes
constant in a squared area. It is important to note that this point is likely to
disturb the motion estimation process.



Fig. 4. Some images of the synthetic crowd animation for 4 different times of
the sequence.

Strike sequence The first real sequence is a video representing a strike which took
place at Vannes in France. All pedestrians are walking on the same direction.
Two images of the sequence can be seen on Figure 5 (a) and (b). In Figure 5 (c)
and (d), we present the synthetic crowd animation obtained superimposed on
the estimated motion field. One can observe that the resulting crowd animation
is in accordance with the real pedestrian behaviors. Hence, on this example,
our method has the advantage to synthesize correctly the observed phenomena
without resorting to usual motion capture techniques. Let us now see the results
on a more complicated real sequence.

Shibuya sequence The second real sequence is a video acquired in the Shibuya
crossroads in Tokyo, Japan, which is famous for the density of people crossing
the streets. Three images of the sequence can be seen on Figure 6 (a-c). This
situation is complex since at least two main flows of people in opposite directions
are crossing the road. It is important to observe that in this case, the underlying
assumptions of our approach (a very dense crowd) are not totally respected.
This example is therefore shown to evaluate the limits of our method. In Figure
6 (d-f), we present the synthetic crowd animation obtained superimposed on the
estimated motion field. One can see on these figures that the two main opposite
flows are correctly extracted and synthesised, despite the fact that the initial
sequence was very poor in terms of quality and that our initial assumptions
were not respected. The generated sequence is relatively realistic. Nevertheless,
the intersection of the two groups of people is not correctly managed: some
pedestrians have incoherent trajectories. This issue has two main reasons: the
estimation process is locally incoherent when two people occlude each other,
and there is no temporal continuity in the estimated flow. Two possibilities can
be exploited to cope such a situation: the first one consists in improving the
motion estimation process through a temporal smoothing of the motion field
whereas the second possibility is to introduce a dynamical law in the trajectory
reconstruction step. This two key points will be the scope of our further work.

6 Conclusion

In this paper, we have presented a new and orginal method which proposes to
animate a virtual dense crowd thanks to real crowd video sequences. This is done
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Fig. 5. The strike sequence. (a,b): two images of the sequence; (c,d) the correspond-
ing animation superimposed on the estimated motion field.

Fig. 6. The Shibuya sequence. (a-c): two images of the sequence; (d-f) the corre-
sponding animation superimposed on the estimated motion field.



using i) a specific motion information process applied on the input images and
ii) an integration part to obtain the trajectories of individualities in the crowd.
We applied the presented method on both synthetic and real examples. The
experimental part showed the ability of the technique to synthesize reliable crowd
animations but also pointed out some limitations. To improve the presented
approach, some problems will be important to solve. Concerning the analysis
part, the motion estimation process can be improved by introducing more specific
spatio-temporal models of continuous crowd behaviours [18]. This can be done
using the framework of the optical flow but it can also be relevant to explore
the possibilities of the data-assimilation used for instance in meteorology [19].
This constitutes a very exciting challenge for which actually no practical and
generic solution exists and stands as a very appealing alternative to tracking
systems, too expensive in the context of dense crowds. An other important point
would be to specify a motion estimation process for crowds that are not totally
dense. Concerning the synthesis part, we aim at enriching existing simulation
models by integrating this a priori knowledge of the behaviour of the crowd. In
this context, the crowd simulation would integrate both dynamical simulation
models and observed data from real sequences.
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us the shibuya video sequences.
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