
HAL Id: hal-00494233
https://hal.science/hal-00494233

Submitted on 22 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eliminating Dead-Code from XQuery Programs
Pierre Genevès, Nabil Layaïda

To cite this version:
Pierre Genevès, Nabil Layaïda. Eliminating Dead-Code from XQuery Programs. 32nd ACM/IEEE
International Conference on Software Engineering, May 2010, Cape Town, South Africa. pp.305-306,
�10.1145/1810295.1810363�. �hal-00494233�

https://hal.science/hal-00494233
https://hal.archives-ouvertes.fr

Eliminating Dead-Code from XQuery Programs

Pierre Genevès
CNRS

pierre.geneves@inria.fr

Nabil Layaïda
INRIA

nabil.layaida@inria.fr

ABSTRACT

One of the challenges in web software development is to help
achieving a good level of quality in terms of code size and
runtime performance, for increasingly popular domain spe-
cific languages such as XQuery. We present an IDE equipped
with static analysis features for assisting the programmer.
These features are capable of identifying and eliminating
dead code automatically. The tool is based on newly devel-
oped formal programming language verification techniques
[4, 3], which are now mature enough to be introduced in the
process of software development.

1. INTRODUCTION
One major difficulty for performing dead-code analysis

for XQuery [1] actually comes from XPath expressions, for
which analysis techniques are known to be very complex
from a computational point of view. We build on our pre-
vious work on static analysis techniques for XPath expres-
sions [4, 2], and propose a technique for performing basic
dead-code analysis and elimination from an XQuery pro-
gram. Removing such dead code has two benefits: first, it
shrinks program size, which is an important consideration
from a software engineering perspective, and second, it lets
the running program avoid executing irrelevant operations,
which reduces its running time.

2. XQUERY PROGRAMS
XQuery programs operate on XML documents that are

considered as trees of element and attribute nodes. An
XQuery program is usually written with respect to a schema

that defines constraints that a particular set of documents
should verify (as, e.g., XHTML for web pages). A schema
defines the set of admissible elements and attributes in a
XML document, as well as how they can be assembled to-
gether. This definition is usually done with regular expres-
sions. For example, a simplistic schema for a bookstore (us-
ing DTD notation) follows:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

<!ELEMENT bookstore (book*)>
<!ELEMENT book (title, year, author+)
<!ATTLIST book isbn CDATA #REQUIRED>
...

This states that a bookstore element has any number of
book elements as children. In turn, each book element must
have a title child, followed by a year element and one
or more author elements. Finally, each book element must
carry an isbn attribute. The sample document shown below
is valid with respect to this (partial) schema definition.

<bookstore>
<book isbn=" ">
<title>Ski</title>
<year>2009</year>
<author name=" "/>

</book>
...
<book/>

</bookstore>

isbn

name

bookstore

book ... book

title year

2009

author

Ski

An XQuery program basically takes one (or possibly sev-
eral) XML document as input, performs some computation
based on its tree view, and finally outputs a result in the
form of another XML document. The core of the XQuery
language is composed of XPath expressions that make it pos-
sible to navigate in the document tree and extract nodes that
satisfy some conditions. For instance, a simplistic XQuery
program is:

{
for $x in /descendant::book return
if $x/year>2008 then $x/title else ()

}

where the for loop uses the XPath expression /descen-

dant::book that traverses the whole input XML document
looking for book elements. The for loop iterates over all
these elements, and for each of them, returns the value of
the title subelement, provided the year is greater than
2008. Executing this program produces an XML tree as
output, whose root element is named “ul”, and whose con-
tent is populated by the execution of the loop, that creates
an XHTML-like list of book titles published after 2008.

3. DEAD-CODE ANALYSIS
We present a static analysis of XQuery programs in or-

der to automatically detect and eliminate dead code. Our

analysis is sound and complete over the XPath navigational
fragment of [4]. In order for the analysis to scale to programs
with more complex features, we make several conservative
approximations. First, we abstract over XPath features that
make satisfiability undecidable (such as data value compar-
isons). Second, we consider that XPath expressions return
sets of nodes (as in XPath 1.0) instead of node sequences
(as in XPath 2.0 and XQuery).

These approximations preserve soundness of our approach
(if dead code is detected, it can be safely eliminated as this is
really dead code). However, the analysis may be incomplete
due to undecidable features, that may prevent from finding
some evil dead code.

In order to illustrate the practical relevance of our ap-
proach, consider the following XQuery program:

<para>
{
for $x in //body//switch
where $x/animateMotion
return $x/*

}
</para>

It is intended to be evaluated over SMIL1 documents. Specif-
ically, it has been written against the schema defining SMIL
1.0 documents. When applied to such a document, it re-
turns all children of switch elements that have at least one
animateMotion child, wrapped in a para element.

This code portion may be reused in the context of SMIL
2.0 documents. However, in contrast to SMIL 1.0, the occur-
rence of animateMotion is not permitted as a chid of switch
in SMIL 2.0. In this case, the XPath expression in the where
clause is unsatisfiable, and therefore the whole for loop is
dead code. We explain how we make this static analysis au-
tomatic for a given XQuery program and a given schema in
the next subsections.

3.1 Path-Error Detection
We consider a given XQuery program P and a schema S

that describes constraints over the set of documents that can
serve as input to P . For each XPath expression occurring
in P , we are interested in checking whether it is meaningful
or not with respect to the constraints described in S. It
may happen that the navigational information contained in
a given path contradicts the constraints described in S. In
that case, the path will always return an empty sequence of
nodes no matter what the actual document instance valid
for S is. In that case, we know statically that there is no
need to evaluate the path at runtime. Furthermore, we also
know that all XQuery instructions that depend on this path
(dead code) may be removed.

For performing this path-error analysis, taking into ac-
count the schema S, we use the logical solver developed in
[4]. The solver takes a given path and a schema, trans-
lates them into a logical representation and uses a logical
satisfiability-checking algorithm that determines the exis-
tence (or inexistence) of a tree (a document) that satisfies
both the constraints expressed by the schema and the struc-
tural requirements assumed by the path.

1SMIL is the standard language for expressing synchronized
multimedia documents as found in e.g., MMS mobile phone
messages, and more generally on the web.

3.2 Static Code Refactoring and Highlighting
Each path which is found unsatisfiable indicates dead code.

We perform a code dependency analysis that propagates this
information in order to detect and eliminate dead code from
an XQuery program.

The typical integrated development environment allows
one to open an XQuery program and to associate with it
a schema. A variety of schema languages are actually sup-
ported including DTDs, XML Schemas and Relax NG defini-
tions (see [4] for details). The code analysis process is made
of several steps. First, the program is parsed to build an ab-
stract syntax tree. The abstract syntax tree (AST) analysis
phase consists in extracting all the path expressions from the
program and checking their satisfiability individually. Then,
in a second step, these paths are combined with the schema,
and checked again for satisfiability. Indeed, there are two
kinds of unsatisfiable paths: self-contradicting paths, and
unsatisfiable paths due to the schema. A trivial example of
a self-contradicting path is the following:

child::a/child::b[parent::c]

Beyond this trivial example, XPath errors are often intro-
duced due to the expressive power of XPath for expressing
forward, backward and recursive navigation in trees. Each
kind of unsatisfiable path is marked differently in the AST.
This makes it possible to inform the programmer, by under-
lining the empty path expressions in a different color depend-
ing on the origin of the unsatisfibility (self-contradictory or
unsatisfiable with the given schema). More specifically, each
path is considered as a sequence of basic navigation steps
possibly with qualifiers. The first step is analyzed. Then
each additional step is successively appended to this initial
step and the resulting path is analyzed in turn. This makes
it possible to identify precisely where the error has been
introduced in the path. For instance, in the previous exam-
ple, this step by step subpath analysis identifies the qualifier
parent::c as causing the error.

Whenever an unsatisfiable path is found, a refactoring
command is provided to the IDE user. When this command
is triggered, the AST is pruned using the rules presented
earlier, and the new XQuery program is provided to the
user.

4. CONCLUSION
We have presented a feature that allows an IDE to auto-

matically identify and eliminate of dead code from XQuery
programs. The tool integrates, for the first time, the support
of formally proven properties on types and path expressions
in order to assist programmers writing and updating XQuery
code against complex XML schema evolutions.

5. REFERENCES
[1] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu,

J. Robie, and J. Siméon. XQuery 1.0: An XML query
language, W3C recommendation, January 2007.

[2] P. Genevès. Logics for XML: Reasoning with Trees.

ISBN 3639193717, VDM Verlag, September 2009.

[3] P. Genevès, N. Layäıda, and V. Quint. Identifying
query incompatibilities with evolving XML schemas. In
ICFP’09.

[4] P. Genevès, N. Layäıda, and A. Schmitt. Efficient static
analysis of XML paths and types. In PLDI’07.

	Introduction
	XQuery Programs
	Dead-Code Analysis
	Path-Error Detection
	Static Code Refactoring and Highlighting

	Conclusion
	References

