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Abstract:  
 
In a quasi-geostrophic model, we study the baroclinic instability of a two-layer vortex. The singular 
unstable modes for potential vorticity anomalies are compared with the classical normal modes. Short-
time singular modes are explosively unstable and, at short times, depend only on the baroclinic 
component of the flow. As time progresses, they evolve towards the normal modes and their sensitivity 
to flow parameters is explored. Asymptotic solutions are provided.  
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1 Introduction 
 
 
 
In stratified rotating turbulence and in planetary fluids, baroclinic processes have 

been recognized as essential in the generation and evolution of vortices. Indeed, 

such vortices can be generated by the instability of intense surface jets, or via 

mechanical or thermal forcing at the fluid surface. Once formed, these vortices most 

often reach a cyclogeostrophic balance in stratified, rotating fluids. Up to now, 

thestability of circular geostrophic vortices has been mostly studied with normal-mode 

perturbations ([1], [2], [3], [4], [5], [6], [7]). These studies have shown that the 

nonlinear evolution of such unstable vortices, perturbed with normal modes, can lead 

to more complex vortices (multipoles). Explosive growth of perturbations on 

atmospheric flows has often been observed. Such explosive growth is usually related 

to singular modes, which are the temporarily fastest growing perturbation of the 

linearized dynamical equations, ([8]). Singular modes are a linear combination of the 

normal modes when these latter are not orthogonal (i.e. when the linear operator is 

not self-adjoint). The present study considers the nature and properties of singular 

modes in the baroclinic instability of a circular vortex in a two-layer model, and relates 

them to normal modes. 
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2 Model equations, linear instability of the baroclinic vortex and normal modes

The two-layer quasi-geostrophic equations describe the conservation of layerwise potential vorticity in
the absence of forcing and of dissipation

dqj
dt

= 0, with qj = ∇2ψj + Fj(ψk − ψj)

where qj is layerwise potential vorticity (the subscripts j = 1, 2 denote upper and lower layers respec-
tively, and k = 3 − j)), Fj are the layer coupling coefficients (Fj = f2

0 /g
′Hj), Hj is layer thickness,

and H = H1 +H2. The internal deformation radius is Rd =
√
g′H1H2/f0

√
H and γ is its inverse.

In the two-layer quasi-geostrophic model, we study the instability of a circular baroclinic vortex,
composed of two superimposed disks of constant potential vorticity Qj and of unit radius. This mean

vortex is steady and has potential vorticity Qj(r) and streamfunction ψj(r).
Hereafter, the perturbation is assumed to have a wave-like dependence in angle, but not always an
exponential variation with time (i.e. the perturbation is not always a normal mode): its streamfunction
is

ψ′

j(r, θ, t) = Aj(t)φj(r)exp(ilθ).

The perturbation is a displacement of the vortex boundary which becomes. This vortex boundary is
then rj = 1 + ηj(θ, t). The vorticity contour displacement is written

ηj(θ, t) = η0
j (t)exp(ilθ).

The linear instability equations are obtained by applying three conditions : continuity of normal and
tangential velocities at the boundary for the total flow, kinematic condition for the contour displace-
ment (see again [1], [2], [3], [5]). For convenience, the linear equations are written in terms of barotropic
and baroclinic flow components. These components are defined by Qt = h1Q1 + h2Q2, Qc = Q1 −Q2

with hj = Hj/H . The mean flow has only tangential velocity given in barotropic and baroclinic compo-
nents by Vt(r) = Qtr/2, Qt/2r (inside and outside the vortex) and Vc(r) = QcI1(γr)K1(γ), QcI1(γ)K1(γr).

We also write δ = H1/H2, ξ = (1 − δ)/
√
δ and V0 = Vt(1)/Vc(1). With these notations, the linear in-

stability is described in vertical modes by the equations

∂tη
0
t = −il[Vt(1)(1 − 1

l
) η0

t + Vc(1)(1 − 1

2lI1(γ)K1(γ)
) η0

c ]

∂tη
0
c = −il[Vc(1)(1 − Il(γ)Kl(γ)

I1(γ)K1(γ)
) η0

t + Vt(1)(1 − 2Il(γ)Kl(γ))η
0
c + ξVc(1)(1 − Il(γ)Kl(γ)

I1(γ)K1(γ)
) η0

c ]

This problem can be set in vector form as ∂tX = AX with X(η0
t , η

0
c ) and

A = −il
(

a0 b0
c0 d0

)

Normal modes are obtained by setting ∂tX = σX where σ contains the growth rate s and the
rotation rate ω of the perturbation (σ = s− ilω). They are computed via

σ± =
−il(a0 + d0)

2
± il

2

√
∆

with ∆ = (a0 − d0)
2 + 4b0c0. Instability occurs when ∆ < 0.

These growth rates are plotted in the (γ, V0) plane in figure 1 (upper left panel) for l = 2 and equal
layer thicknesses (δ = 1); one can clearly see that the largest growth rates are obtained for deformation
radii smaller than the vortex radius (γ > 1) and for moderate barotropic potential vorticity of the
mean state. Vertical symmetry of the physical configuration explains the invariance of results with
respect to a sign reversal in V0. For a shallower upper layer (H1/H2 = 0.2, upper right panel of fig.1),
this symmetry is broken and maximal growth rates are displaced towards negative components of
barotropic potential vorticity of the mean state. Such vortices intensified at depths are not typical of
the ocean. For very thin upper layers (not shown), the maximal growth rates are not substantially
modified in amplitude, but they are shifted towards strongly negative V0. Finally, for higher modes,
maximal growth rates are similar in amplitude to those of l = 2, but are found at larger deformation
radii, as usual for baroclinic instability (see [3]).
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Fig. 1 Growth rates of normal modes in the (γ, V0) plane, for l = 2, δ = 1 (left) and for l = 2, δ = 0.2 (right)

3 Singular modes definition and results and asymptotic formulations

For the linear equation ∂tX = AX with X(η0
t , η

0
c ), the solution will be

X(t) = M(t)X(0), M(t) = exp(At)

if A is stationary. M is called the resolvent. Singular modes are defined as those providing the largest
amplification rate at given time t; this rate is

λ(t) =
|X(t)|2
|X(0)|2 =

|M(t)X(0)|2
|X(0)|2

Therefore, λ(t) is the largest eigenvalue of M∗(t)M(t) or exp(A∗t).exp(At). If A is self-adjoint (Her-
mitian), then its eigenvectors (the normal modes) are orthogonal and identical to the singular modes,
because then M∗M = exp(2At). Singular modes differ from normal modes when A is not Hermitian.
The anti-Hermitian part of the matrix is related to the baroclinic component of the mean state and
to the different Green’s functions for the Poisson and Helmholtz problems. Detailed calculation pro-
cedures for the singular modes and their associated eigenvectors are provided in [9] and [10]. These
formulae have been adapted to the present problem.

For comparison with normal mode growth rates, we associate singular growth rates to the singular
amplification rates via σs(t) = Log(λ(t))/2t. Singular growth rates are plotted in figure 2 at different
times. At short times, these rates do not depend on the barotropic component of the flow. Indeed,
the onset of baroclinic instability depends on the sign reversal of the mean potential vorticity gradient
(Charney-Stern criterion) and on the proper phase relation between layerwise perturbations. This
involves only the baroclinic component of the flow. One can note also that singular growth rates are
much larger then than those of normal modes (twice as large). This result can also be obtained via an
asymptotic expansion of M∗M at short times (as shown by [8] and by [9]):

M∗M ∼ Id+ (A∗ +A)t

where Id is the identity matrix. The amplification rates thus obtained are identical to those obtained
by the complete computation of eigenvalues of M∗M at short time (see again upper left panel of fig.2).
This expansion also explains mathematically the independence of λ on V0 in this case: the extradiagonal
terms involve only Vc and not Vt. Now, as time goes, the diagonal terms of M∗M will come into play
and sensitivity to V0 will appear. This is shown on figure 2, upper right and lower panels, for increasing
time. A decrease in amplification rate accompanies this evolution. At long times, the singular growth
rates become comparable to the normal mode growth rates. Indeed, as shown by [10], and calling
η+(1, a+) and η−(1, a−) the eigenvectors associated to σ+ and to σ−, the amplification rate at long
times can be expressed as

λ(t) =
(1 + |a+|2)(1 + |a−|2)

|a+ − a−|2
exp(2Re(σ+t))
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Fig. 2 Growth rates of singular modes at short time (t = 0.1, upper left), and with longer time (t = 5, 20, 100,
upper right, lower left, lower right) in the (γ, V0) plane (case of l = 2 and equal layer thicknesses).

and thus σs → Re(σ+) (see again [9]). One can also note that the associated eigenvector is then the bi-
orthogonal of η+ and is η++(a+,−1). Finally, the sensitivity of singular modes to physical parameters
is explored. For higher modes than l = 2, the time-evolution of singular modes is very similar to that
shown on fig.2. For unequal layer thicknesses, the parity bias of growth rates with respect to V0 grows
with time as shown by fig.3, but the global evolution is similar to that of equal layer thicknesses.

4 Conclusions

In this paper, we have shown how a baroclinic vortex can be unstable both to normal and to singu-
lar modes in a two-layer quasi-geostrophic model. The sensitivity of baroclinic instability with nor-
mal modes to the barotropic component of the mean flow, to stratification and to the perturbation
wavenumber have been explored. Singular modes can grow in regions of parameter space where normal
modes are stable. Singular modes are due to the non-Hermiticity of the matrix associated with linear
dynamics (or in other words to the absence of orthogonality of normal modes). Singular modes are
much more unstable than normal modes, on short times. On the long run, their growth rates converge
towards those of the normal modes.
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