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ABSTRACT

Human motions are now frequently used in several appli-
cations ranging from computer animation to biomechanics
analysis. Acquiring such data can be performed in several
ways, but none of them is fully accurate and usually a de-
noising process is required as post-treatment. This paper
presents a new method to process motion data that tends to
preserve some characteristic features of human motions. It
is based on an adaptation of the well-known bilateral filter to
orientation data. We give an algorithm that computes the fil-
ter response, and we show practical results obtained on real
motion capture data.

1. INTRODUCTION

Using human motion data has become increasingly popu-
lar in several applications such as digital effects produc-
tion, video games, virtual reality applications, video analysis,
medicine or biomechanics. Acquiring such type of data can
be done in various settings, ranging from optical devices to
inertial or magnetic systems. Optical devices with passive or
active markers usually show the best accuracy with high fre-
quencies capture but at the expense of wearing special suits.
Markerless motion capture [4, 5], based on vision algorithms,
offers an interesting alternative that imposes less constraints,
but yet has only been partially solved. Other equipments,
such as inertial, mechanics or magnetic systems suffer from
calibration problems and can encounter drifting issues over
time. New methods such as Prakash [18] are very promis-
ing and brings to life the possibilities of on-set motion cap-
ture systems. Nevertheless, none of these methods provide
fully accurate results, and usually a filtering step is required
to smooth data and remove noise from the raw signal. Clas-
sical de-noising methods are based on local operators that
smooth the input signal (such as a Gaussian blur or a Butter-
worth filter filter which are commonly used by animators) or
on subspace techniques such as PCA [20] (and its variations)
that seeks to preserve the principal features of the motion.

Though, human motion have specific features that need
to be taken into account. For instance, communicative ges-
tures such as non-verbal communication gestures are charac-
terized by rapid and subtle changes that influence greatly the
perceived meaning of the gesture [10]. These high frequency
information produce subtle details that human beings are able
to interpret and decrypt. It is thus of primary interest to be
able to preserve those aspects while canceling the inherent
noise of the capture system. In this paper, we propose an
adaptation of the well-known bilateral filter to rotation data,
thus making it suitable to treat human motion. We argue that
for the de-noising purpose, the bilateral filter tends to pre-
serve some characteristic features of human motion such as
rapid changes in the velocity profile.

The remainder of this paper is organized as follow: we
first begin by a short related work on bilateral filtering. Sec-
tion 3 present the type of data involved in the representation
of a human motion and some possible way to handle those
data in a filtering framework. Section 4 presents our Bilat-
eral filter for motion data, while section 5 show results

2. RELATED WORK

Bilateral filtering is a well-known technique in signal and
image processing. First introduced with its current name
by Tomasi et al. [21], it has been used in several contexts
such as image denoising [2, 14], computational photogra-
phy [15, 6, 17, 1], stylization [22], optical flow computa-
tion [24] or even biomedical imaging [23]. Several theo-
ritical studies have revealed its intrinsic nature and limita-
tions [7, 3]. In the context of image denoising, it has been
shown can be related to the classical PDEs such as heat dif-
fusion or the Perona-Malik equation [3]. The reasons for its
success are its simplicity to design (it usually implies a lo-
cal averaging scheme) and to parameterize (only the spatial
extent and the contrast preserving strength are required). Bi-
lateral filter has also been extended to other types of data.
In [12, 9], it is used as a smoothing operator for 3D meshes.
In [16], Paris and colleagues have used bilateral filtering to
smooth a 2D orientation field by incorporating a mapping
into the complex plane C. In this sense, their works can be
related to our technique. To the best of our knowledge, no
existing method uses an adaptation of the bilateral filtering
to manifold-valued signal such as 3D rotation time series.

3. ORIENTATION DATA FILTERING

In this section we first recall some general facts about the
representation of rotations with quaternions and we give our
definition of the motion. Secondly, we will review existing
methods to filter orientation data.

3.1 Motion representation

A motion M can be represented as a time series of rotation
vectors, each rotation representing a rotation of a particular
joint in an articulated figure. Those rotations are now fre-
quently defined as unit quaternions [19, 8], since they have
proved to be relatively compact and efficient. Let us re-
call for clarity some facts about representing rotations with
unit quaternions. The quaternion space H is spanned by a
real axis and three imaginary axis i, j and k under Hamil-
ton’s conventions. A quaternion q is a 4-uple of real values
(w,x,,z). Unit quaternions (||q|| = 1) can be used to param-
eterize rotations in R?, and can be considered as a point on
the unit hyper-sphere 3. As shown by Euler, any rotation
map € SO(3) can be represented by an angle 6 around an



arbitrary axis v. This leads to an intuitive representation of
the quaternion as an ordered pair of a real and a vector, i.e.
q = (w,a) with w = cos ¢ and a = sin $v. The multiplica-
tions of two quaternions is defined but not commutative, i.e.
q1d2 7 q2q1- The definition of a motion with quaternions
for a given kinematic structure is finally:

M={a®)li€[0--n], re0--m} (1)

where 7 is the number of quaternions used to represent a pos-
ture of the skeleton, and m the number of postures in the mo-
tion. Hence, M is a time series of rotation vectors.

3.2 Filtering orientation data

Filtering rotation data is a difficult problem that comes from
the non-linearity of the unit quaternion space. Let X = {x;}
be a signal with elements in R”. The classical convolution
operation with a filter mask (m_y, ..., my) of size 2k+ 1 gives
the following filter response at the ith element:

H(xi) =MmM_jXi—k+...+moxo+...+mXiy

This operation does not transpose to a signal Y = {q;} of
elements in SO(3) because the addition is not correctly de-
fined for two unit quaternions since the result is no longer a
unit quaternion. A possible solution would be to consider the
embedding space R*, perform computation on quaternions
such as vectors of this linear space and then re-normalize
the result. Though, this solution can lead to strange behav-
iors when data are not sufficiently dense enough [13]. An-
other solution considers a global linearization of the input
signal [11], by using for instance the exponential mapping
between S and R3. This method also suffers from prob-
lems since there is no such global mapping (e.g. the expo-
nential mapping is ill-defined at the antipode of the identity
quaternion), and therefore some singularities may corrupt the
result. The concept of local linearization was first used by
Fang and colleagues [8]. It consists in decomposing the in-
put signal into a succession of linear displacements between
each consecutive samples, filter those displacements, and fi-
nally construct the filtered signal by integrating those dis-
placements. As pointed out in [13], this integration yields
drifting problems over time. Lee and Shin [13] have pro-
posed a filter design that avoids this problem. The key idea is
to consider angular displacement between each samples as a
linear displacement in R?, filter this vector counterparts and
construct the signal back through exponentiation, thus avoid-
ing the drifting problem induced by integration in the method
of Fang et al. [8]. Moreover, they demonstrated that their
construction protocol leads to a linear time-invariant class of
filters (LTI filters). Their framework defines the output re-
sponse of a filter H as:

k—1
H(qi) = aiExp( Y bywiir) )
r=—k
where 1
w; = Log(q; "qit1)
are the local linearizations of the input signal, and b, scalars
derived from the traditional filter mask coefficients m; and
defined such that:
—k<r<o0

Y my if
0<r<k &)

b, = .
' { Z,];:rJrl m; lf

This construction method has been chosen in order to design
our bilateral orientation filter.

4. BILATERAL MOTION FILTERING

We first begin this section by recalling the classical form of
the traditional bilateral filter. We then present its adaptation
to orientation data.

4.1 Bilateral filtering in a linear space

In its original form [21], the bilateral filter is a weighted av-
erage of a sample i of the original signal X = {x;}, given
by:
k .
__W(i,r)x;
Zr:—k W(lv r)

where W (i,r) are the weights of the filter and are given by
a combination of functions of the temporal distance W; (i, r)
and the geometric distance between the samples i and i +
r: Wg(i,r). W functions are smoothly decaying functions,
usually Gaussian functions. In this case, W (i,r) writes:

“

W(i,r) = W(i,r)«We(i,r)

. d(iyi+r) 7]
Wir) = e ep(—5L)

. dz(xiaxiH) |xi+r_xi|2)
Wg(lvr) = exp(_T>: (_T‘E)

The idea behind this definition is that both near samples
and samples with close-by values will have more influence
on the final result. o; and o, set their relative strength and
are generally used to privilege one of these two aspects.

4.2 Bilateral filtering on rotation data

In order to adapt the bilateral filter to orientation data, we first
need to choose a metric between rotations. It is common to
use the length of the geodesic path between two elements on
the hypersphere (geodesic distance). This choice is important
as it conditions some of the filter properties (see below). This
distance is given for two unit quaternions by:

d(qi,qz) = |[log(q; @) 5)

We now adopt the construction method of Lee and Shin [13]
described in the previous section to build our filter. The m;
coefficients used in equation 3 are given by:

: "] [log(q; 'air) )
mj=W(i,r) = exp(—f._tz)exp(—le)

Those coefficients characterize the Bilateral Orientation fil-
ter. They have to be computed with respect to a sliding win-
dow over the signal. As the distance between each samples
of the signal has to be evaluated several times, it can be con-
venient to pre-compute all these distances as a band matrix
D as depicted in figure 1. The symmetry of the distance
function allows to store only the upper-diagonal part of the
matrix!.

Algorithm 1 gives the final algorithm that computes the
bilateral orientation filter (BOF) for a rotation signal T.

'In this case, D(i, k) becomes D(k, i) if i > k.
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Figure 1: Precomputation table. This figure shows a band ma-
trix which contains the distance information used by the filter. Each
element correspond to a geodesic distance between samples. Nor-
mally, the quaternionic signal belongs to the unit hypersphere in 4D,
but has been represented here, without loss of generality, as the unit
sphere in 3D.

The filter construction presented in [13] guaranties that
the filter is linear time-invariant. In our case, this proposition
does not hold anymore since the filter coefficients depend
on the input signal. Nevertheless, we demonstrate that our
bilateral orientation filter keeps interesting properties:

Proposition 1 The bilateral orientation filter is coordinate-
invariant, that is to say that for any a,b € §3, BOF (aq;b) =
aBOF(q;)b.

Proof It is sufficient to note that the geodesic met-

ric is also coordinate invariant: let a and b e S3.
We have Hlog(b"qi_la"aqu)H = Hlog(b’lqi_lqu)H
= |[b~'log(q; 'a;)b|| = |[log(q; 'q,)||. knowing that

log(agb) = alog(q)b. The rest of the demonstration is the
same as in [13].

Proposition 2 The bilateral orientation filter is time-
invariant,

Proof It is sufficient to note that the geodesic metric is triv-
ially time-invariant. The rest of the demonstration is the same
as in [13].

In the case of human motion processing, we simply filter
every joint orientation with our filter. As the joints are or-
ganized into a hierarchy of joints (the wrist depends on the
elbow which depends on the shoulder, etc.), the coordinate
invariance property is strongly desirable since the result of
the filtering operation will be the same whereas the joints ori-
entations are expressed in local or global coordinate frames.

5. RESULTS

We now present some results obtained with our new filter on
real motion capture data. These data represent a complete
human body with two hands for a total of 75 joints. The per-
formed motion correspond to a sign language motion. It is
depicted in Figure 4.a. The BO filter was first tested on the
rotation of the left hand. The original signal is presented in
2.a. We added manually to this signal a quaternionic Gaus-
sian noise with variance o = (.18 radians (Figure 2.d). For

Algorithm 1 Bilateral filtering of a rotation signal T of a set
of rotation q; of size n = 2k + 1

1: forall q; € T do

Compute w; = log(q; 'qi11)
end for
: fori=0tondo
forr:—ktok‘d‘o ia)

_ r D(i,i+r

my = eXP(—@) CXP(—W)
end for
for r = —k to k do

my = % {Normalization }

10:  end for
for r= —ktokdo

W R

—_
—_

12: if —k <r <0 then
13: b, = ):;}kaj

14: else if 0 < r < k then
15: b, = ZIJ(»:rJrl a;

16: end if

17 end for_

18: addto T: BOF(q;) =q; exp(Z’j;]_k bwiyr)
19: end for

20: return T

comparison purposes, we first filter the noisy signal with
a Gaussian filter (Figure 2.b) with variance o; = 1.0, then
with the Bilateral Orientation filter (Figure 2.c) with tempo-
ral variance 6; = 1.0 and spatial variance 6, = 0.1. Both
filters were applied five times to the noisy signal. Bound-
ary conditions were handled by mirroring the signal at both
extremities. It is interesting to notice how the overall shape
of the signal and the principal features have been recovered
through the filtering process. Figure 2.e and .f shows the
angular velocity of the original signal compared to the final
signal. It is computed as ||log(q; 'qit1)|| rad.s~'. While
Gaussian blur exhibits less peaks in the signal and a globally
less important magnitude, the BO filter preserves the overall
aspect of the velocity profile, at the expense of amplifying in
some cases the speed magnitude.

Figure 3 shows the evolution of the Mean Square Error
(MSE) computed between the original signal and the filtered
signal for different values of the o, parameter. o; was set in
this experiment to 1.0. For orientation data, we have chosen
the following measure between two signals q1 and q2 (of
same length N + 1):

1 ¥ _
MSE =} [[log(a1; 'a2)))|*
i=0

One can observe that the choice of the spatial variance
impacts on the quality of the de-noising process. Indeed, this
figure suggests that applying an average of 5 times the filter
yields generally good results.

We then processed the entire motion (75 rotation time se-
ries corresponding to every joints). The length of the motion
was about 150 frames. Our implementation yields a compu-
tation time on a standard laptop of 300 ms. Figure 4 illus-
trates the impact of filtering the rotational components of the
motion on the resulting trajectories of the end effectors (in
our case, the hands) expressed in the cartesian space. Fig-
ure 4.a gives a short outline of the test motion. The test hand



Original Fiotation signal

Fatation signal with Gaussis

iar biur Ratation, signal with BOF

Oiiginal signal with Gaussian neise Accsleration

Tom T80 50 [ T80

Original
Gavssian Blr

Original
——BOF

€

Figure 2: Filtering real data. (a) Original signal (d) plus Gaussian noise (b) filtered with a Gaussian Kernel o; = 1.0 (c) filtered with BO
filter o; = 1.0, o, = 0.1 (e,f) Comparisons between original and filtered signals angular velocities.
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Figure 3: MSE Evolution. This diagram shows the evolution of
Mean Square Error (MSE) between the original and the filtered sig-
nal along several application of the Bilateral Orientation filter for
different values of og.

trajectory has been represented in red. This trajectory cumu-
lates in some sense all the errors on the previous articulations
along the kinematic chain (i.e. elbow, shoulder, etc.). This
propagation effect magnifies at the same time the effect of the
filtering process. For example, processing the whole motion
with Gaussian filtering leads a global diminution of the mo-
tion’s energy, thus leading to a smoother trajectory but with
less amplitude (Figure 4.c). In this last case, some details of
the hand motion are lost (bottom left of the trajectory). Those
details are in fact small and quick repetitions that are used in
the case of sign language to outline a particular idea. We can

see that in the case of Bilateral Orientation filter (Figure 4.d),
this pattern is conserved. Moreover, the global amplitude
compares better to the original signal.

6. CONCLUSION AND FUTURE WORKS

In this paper we have presented a new and original filter for
human motion data. Based on bilateral filtering, it processes
orientation data without any global linearization process.
The filter is designed to preserve some characteristic features
of human motion such as rapid change in accelerations, and
exhibits interesting properties such as coordinate and time
invariances. The filter was tested on real motion capture
data, and preliminary results are very promising. We plan
to complete this work by studying more in depth the prop-
erties of our filter and compare with other state-of-the-art
de-noising methods such as PCA or Kernel-PCA. Other
applications such as motion stylization and caricature will
also be considered.
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