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Abstract 

Understanding sub-cellular dynamic processes governing pathogenic mechanisms is a 

necessary step towards the development of new drugs and strategies against infectious 

diseases. Sub-cellular pathogenic mechanisms, such as viral invasion processes involve 

highly dynamic nano-metric scale objects and rapid molecular interactions that require 

the study of individual particle paths. Single particle tracking methods allow to visualize 

and characterize the dynamics of biological objects and provide a straightforward and 

accurate means to understand sub-cellular processes. This review describes a number of 

particle tracking methods in time-lapse microscopy sequences and provides examples of 

using such techniques to investigate mechanisms of host-pathogen interactions. 
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1 Introduction 

Pathogenic mechanisms are inherently governed by highly dynamic processes both at the 

molecular and the cellular level. Understanding and interfering with these processes are 

necessary steps toward the development of new drugs and strategies against infectious 

diseases. The path towards this goal has been significantly enlightened over the past 

decades thanks to the numerous advances in fluorescent probes, labeling techniques and 

microscopy systems, which allow one to look directly at the biological system at the 

appropriate scale both in space and time. Recent fluorescent imaging protocols have thus 

allowed scientists to shed light on a large amount of biological phenomena both at the 

cellular and sub-cellular level, many of which had never been observed in other imaging 

modalities [1]. 

The study of a dynamic process is intricately related to its spatio-temporal scale, both on 

the imaging and on the quantification side. More specifically, the distinction between 

cellular and molecular scales has lead to different imaging techniques and different 

approaches to analyze the resulting images. This review focuses on nano scales while a 

companion paper in a future issue will cover cellular scales.  

Sub-cellular pathogenic mechanisms, such as viral invasion and spreading of prions 

involve highly dynamic nano-metric scale objects and fast interactions. Indeed, 

pathogens usually exhibit rapid motion within cells, especially when supported by an 

active transport mediated through F-actin, myosin or motors of the microtubule network 

[2]. For example, viruses can spread from cell to cell on small protrusions either driven 

by actin polymerization or along thin connecting fibers [3], and tunneling nanotubes 

may also represent a means of cell-to-cell communication used by prions for intercellular 

spread [4]. The characterization of these fast processes is of major interest to understand 
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pathogenic mechanisms. For instance, viral infection processes include many steps 

involving dynamic interactions with different cellular structures such as the binding of 

the virus to specific receptors or attachment factors on the cell surface, and the transport 

to specific sites mediated by the cell cytoskeleton. The diversity of these interactions, 

and the possible existence of alternative infection routes, makes it necessary to study 

individual viral particles paths. Single particle tracking allows one to visualize and 

characterize the path of dynamic nano-metric objects, and provides a straightforward and 

accurate means to understand pathogenic mechanisms. Single-virus tracking has 

consequently emerged over the past few years as a powerful technique for the study of 

virus trafficking (see [3] and references therein for a comprehensive review) or prions 

spreading [4]. 

This review describes a number of particle tracking methods in time-lapse microscopy 

sequences, from the earlier and generally simpler techniques up to the most recent and 

more evolved tracking methods. It also provides recent examples from our own work 

that used particle tracking algorithms to investigate infectious diseases mechanisms. 

2 Particle tracking in fluorescent microscopy 

2.1 Early works 

An intuitive idea to solve the tracking problem is to decouple a detection stage from a 

linking procedure between the measured positions. When imaging cellular processes, the 

fluorescently labeled objects often appear as small bright spots superimposed to an 

uneven background. A spot is defined as a relatively small and compact object with an 

intensity that is both diffuse and higher than the immediate neighborhood. Detecting 

spots in a noisy background is a fairly standard image processing task and many efficient 
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methods have been designed to obtain a set of point coordinates that correspond to the 

objects of interest [5–8]. However in the context of living cellular systems, spot tracking 

is made difficult by the poor quality of images and the fact that the dynamics of spots 

can change over time. Moreover when the density of objects is high, the targets can 

aggregate temporarily which makes the appearance of spots change and their localization 

ambiguous. 

Conventional multiple particle tracking techniques rely on a detection step of the spots 

followed by a nearest neighbor association (NNA) [9] or a constrained NNA [10] to 

build the trajectories from the set of detections. The principle is fairly intuitive: in an 

iterative way a trajectory is extended with the nearest detection in the next frame. For a 

comparative study of these techniques for tracking multiple particles in 2D images refer 

to [11]. These kind of methods produce satisfactory results when image sequences show 

a limited number of objects that are easily identifiable and move slowly. However in 

practice these conditions are rarely satisfied, especially when imaging fast processes in 

3D. So as to keep the acquisition time as short as possible, the exposure time is generally 

set very short, resulting in low intensity spots and a very high acquisition noise. In this 

case the detection process may fail and the detection of noisy artifacts can occur due to 

the low signal-to-noise ratio. 

In order to overcome the problem of corrupted detections, methods that do not use a 

frame by frame detection correspondence have been proposed to perform simultaneously 

detection and tracking [12]. A 2D sequence in time is considered as a 3D volume and the 

tracking problem is formulated as a global optimization process solved by dynamic 

programming. In a given track, the method looks for the best path in the spatiotemporal 

volume that links high intensity pixels and has minimum displacements. This method is 

able to extract a particle trajectory even when images are extremely noisy. However 
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multiple targets can be tracked only if they are sufficiently distant and can be considered 

as spatially separated.  

A similar approach has been proposed in [13]. Here the detection of particles and the 

creation of trajectories are decoupled tasks but the association is modeled as a perceptual 

grouping problem in the spatiotemporal volume. The tracking model is defined such that 

each individual trajectory is a minimal path in a Riemannian metric. The proposed 

algorithm extracts trajectories sequentially thanks to a fast marching procedure. The 

method is robust to transient object disappearance and was successfully used to track 

blinking quantum dots on membranes in 2D images. 

Both methods use a regularity constrain of the spatiotemporal volume to extract 

trajectories even with high levels of noise or temporary disappearance of the particles, 

but a number of additional assumptions are made that are not always biologically 

relevant. For example, a strong requirement is that particles should have a slow motion 

compared to the acquisition rate, so that they are nearly overlapping in two successive 

frames and produce smooth spatiotemporal curves in the 2D+t volume. This is not 

adapted to most 3D applications in which movements are fast compared to the 

acquisition rate, and limits the use of the methods to 2D applications. Another similar 

approach has been proposed in [14] where the 3D+t space is projected in a 2D space 

called kymograph, where trajectories are extracted as smooth curves. This method has 

proved efficient on data sets where movements are linear and slow. 

As a general fact, one can say that methods based on the regularity of trajectories are 

difficult to adapt to most biological applications. They aim at extracting long and smooth 

trajectories while in reality trajectories are often short and very irregular due to fast 

changes in motion. Moreover, prior knowledge such as the level and the distribution of 

noise in the images, the lifetime of trajectories, statistics of appearance or disappearance 
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of the particles or probability of motion changes are difficult to incorporate into such 

models. Also, as their formalism lacks generality and flexibility, these methods are 

difficult to transpose out of the dedicated context they were developed for. In the sequel, 

we focus on the Bayesian filtering approach, which is a more general framework based 

on statistical modeling, and was first developed in the radar surveillance and computer 

vision communities.  

2.2 Bayesian multiple target tracking 

The Bayesian approach to tracking is inspired from the estimation theory [15] and was 

extensively used for years in fields such as radar surveillance [16] and computer vision. 

This approach consists in building the most probable trajectories given the set of 

detections in the entire sequence. The objective score function to maximize is defined as 

the likelihood of the association between tracks and detections. Corresponding 

probabilities are generally decomposed following the Bayes rule, which allows one to 

estimate the likelihood of association in an iterative way. In practice, most methods 

perform the computation sequentially in the order of detection occurrence, which is 

suitable to real time tracking applications. 

In most cases trajectories can be considered independent, so the association likelihood is 

computed as a combination of the individual track probabilities, which are computed 

separately by adopting a so-called state space formalism [15, 17]. The state of a target is 

a vector containing its coordinates at a given time. In practice the state is unknown and 

we have only access to a measurement whose relationship with the state is defined in the 

state space by the measurement equation. The accuracy of the measurement procedure is 

limited by the resolution of the acquisition device and the accuracy of the localization 

algorithm. So in order to take into account a possible lack of precision a random term is 

included in the measurement equation.  
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The evolution equation models the dynamics of a target in the state space. The equation 

defines a relationship between the current and previous states. As biological targets do 

not show a deterministic behavior but instead exhibit a random motion such as diffusive 

Brownian motion, a random term, coined process noise, is introduced in the evolution 

equation. In order to get relevant probabilistic scores from the dynamics model, the 

evolution equation has to model accurately the true behavior of the target. Diffusive 

motion has attracted a lot of attention in the biophysical community and many subtypes 

have been described, each with different models of motion [18, 19]. Brownian motion, 

however, which is a special case of diffusive motion, is the most used in the biological 

tracking community. Statistical physics has shown that the position of a Brownian 

particle after a macroscopic time lag follows a multidimensional Gaussian distribution 

centered on the previous position [20], therefore the state evolution probability is written 

as a Gaussian function. The covariance matrix quantifies the motility of the particle: it 

depends on the time lag and the diffusion coefficient, which is influenced by physical 

data such as the shape of the target, its weight, the temperature and the viscosity of the 

medium. 

Biological objects often move along a preferred direction when they evolve in an active 

flow or when they interact with the cytoskeleton, like, for instance, cargos on 

microtubules that move in a linear fashion with a high speed. In this case, directed or 

curvilinear models of motion are accurate. For most biological targets though, the 

motion is not known a priori, and, moreover, it can change during the observation time 

lapse. Hence it was proposed in [21] to describe the target motion as an adaptive mixture 

of three of the most general kinds of movement: Brownian, directed and curvilinear 

motions. Based on the Interacting Multiple Model (IMM) filter [22], the weights of the 

model mixture self adapt to the observed motion of the target. By doing so it is possible 

to track targets for which there is little or no knowledge about the dynamics. The 
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parameters of the motion models are generally fixed based on prior knowledge about the 

target behavior [19]. However it is also possible to define appropriate motion models that 

include an online estimation technique of these parameters. A good overview of such 

techniques is given in [23]. 

Thanks to the evolution and measurement equations, the probability of a given 

measurement knowing all past detections generated by a target can be computed. 

Generally, linear equations with Gaussian noises are appropriate. In this case, Kalman 

filtering [15] is the optimal estimation technique. Techniques such as the extended 

Kalman filter [16] or particle filtering [17] are used in the non linear case to approximate 

probability distributions. 

In the field of cellular imaging, the Bayesian tracking model was first used in [24] to 

track particles in 2D and extended to 3D in [25]. The principle of this approach is to use 

an iterative decomposition of the measurements likelihood to extend a set of active 

tracks frame by frame. The associations are sequentially chosen following a maximum 

likelihood principle: the most likely association between a track and a detection is 

selected, then the associated measurement and track are removed from the association 

problem. The procedure is repeated until there are no more tracks or detections to 

associate. The measurements that remain unassigned are used to instantiate new tracks, 

while a track with no detection can be extended during some frames thanks to a 

prediction given by the kinetic filter. The latter possibility models the temporary 

disappearance of a particle which is especially important when processing noisy images 

or when tracking blinking objects such as quantum dots. This algorithm has been used 

successfully in 3D biological applications such as HIV-1 virus tracking [26] and Golgi 

units tracking in the Drosophila oocyte [27]. It is worth pointing out that 3D imaging 

facilitates the tracking as it reduces the occlusion problems that occur in 2D images. 
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Particle filtering has been proposed in [28, 29] as an alternative resolution scheme for the 

Bayesian tracking problem in 2D images and used in [30] to track HIV-1 particles. 

Particle filtering is a sampling technique used to model the uncertainty of the association 

between tracks and targets. The algorithm maintains several hypotheses of association 

called particles in order to implicitly delay the association decision to a latter time. The 

selection of association hypotheses is achieved by a probabilistic resampling of the 

particles at each frame. An up-to-date review of particle filtering techniques can be 

found in [31]. There are however a number of critical issues like the selection of the 

optimal number of particles, the sample impoverishment or the drift of particles that can 

make the technique difficult to apply. A number of recent improvements proposed by the 

computer vision community [32–34] or specific to the biological field, like the 

introduction of multiple models of motion [35] have made the method more suitable for 

biological tracking applications.  

The Bayesian framework is still very attractive for particle tracking in biology, as 

exemplified by recent works [36, 37]. In [36] Bayesian filtering was combined with a 

post processing technique to link incomplete tracks and obtain very long 2D trajectories 

of mRNA molecules in cells. In [37] the Bayesian tracking approach was used to study 

the in vivo colocalization of Oskar mRNA and trans-acting proteins. 

While they have allowed significant improvements in the modeling of multiple particle 

tracking systems, the described Bayesian approaches do however suffer from a number 

of limitations in biological imaging. In particular, as they fully depend on the kinetic 

models of targets, which in many real situations are not discriminant enough or lack 

robustness, the association performances are often sub-optimal. For instance, in the 

frequent case of a high density of similar and closely spaced targets, subjected to 

Brownian diffusion, the association scores based on kinetic parameters are often not able 
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to provide the true associations. Indeed, because of the randomness of the motion 

process, many hypotheses in the association problem have similar kinetic scores and it 

often happens that the true association hypothesis is not the one with the best kinetic 

score. In such cases, decisions based only on the kinetic information therefore lead to 

false associations that have a dramatic impact on the downstream track analysis. 

One proposed solution to this problem has been to use the intensity of the detected 

objects in the Kalman filtering technique [35, 36, 38]. The state space representation 

allows the extension of the measurement and state vector with a number of non kinetic 

features. The main difficulty of this kind of approach is to fuse this additional feature 

information with the kinetic information in a proper way. A probabilistic model of 

temporal evolution and a measurement model for non kinetic features are indeed 

required, and it is a major issue to design a balanced score function of the kinetic and the 

non kinetic information. Some of our recent work [39, 40] proposes a solution to these 

issues by integrating image and kinetic information in a statistical framework.  

2.3 Joint image and kinetic based tracking 

Tracking numerous and closely spaced targets is a very challenging task because of the 

limitations of the kinetic information and the interactions between targets. In order to 

solve this issue we have presented in [39] a unified Bayesian framework that fully 

exploits all the information available about the scene. We revisited the original definition 

of the scene likelihood, in order to define an enriched likelihood of association that 

combines in one function the target motion and the image formation process description, 

hereafter called appearance information. 

The kinetic information and appearance information are split following the Bayes rule. 

On one hand the kinetic part is computed thanks to a Kalman filtering-derived technique 
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and using multiple models of motion. On the other hand the appearance likelihood relies 

on the description of a statistical model of image generation, which depends on the 

acquisition device. In practice this process is known accurately since the optical study of 

microscopy devices is a very active research field and accurate models exist [41, 42]. We 

describe an image at a given time as the sum of the intensities originating from the 

targets, of a locally constant background and of a random acquisition noise. The noise is 

a random value that follows a probabilistic distribution that is generally well 

characterized, so its distribution will be used to give an accurate score to associations. 

The difference between the observed image and the profiles and the background, which 

we call the residual, should follow the same distribution as the noise if the association is 

correct. Hence we use the statistics of the residual to compute the likelihood of an 

association given the image. 

The appearance model is also used to split closely spaced targets that appear fused due to 

the resolution limit. The procedure is naturally integrated in the tracking procedure 

without any ad hoc decision step. Super resolution techniques [6, 43] also exploit the 

appearance of objects to address this issue, although the approach introduced in [39] 

performs significantly better, especially when the level of noise is high. This higher 

sensibility and robustness of the method comes from the exploitation of all the 

information available. Data such as dynamics of targets, statistics of targets appearance 

and disappearance, are used to decide if spots have to be separated. This method 

combined with the IMM filter was used to track in 3D hundreds of small fluorescent 

beads diffusing in water [40]. Figure 1 depicts the trajectories extracted from this very 

dense environment where beads have a fast and directed motion due to a global flow. It 

also shows that the separation of aggregated particles is efficient. 

3 Motion analysis and applications 
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3.1 Trajectories analysis 

The final stage consists in the analysis of the trajectories resulting from cell or particle 

tracking. The exact type of analysis depends intrinsically on the biological question, but 

the study of the diffusion is most of the time a relevant issue. The Mean Square 

Displacement (MSD) [18, 19] is a useful measure to characterize the diffusion of 

individual particles. By definition, the MSD is a function of the time lag during which 

displacements are measured and averaged. The shape of the MSD-time curve for a given 

trajectory is indicative of the mode of motion of the corresponding particle. We 

summarize the behavior of the MSD curve for different types of motion in Figure 2. In 

the case of normal diffusion by pure thermally driven Brownian motion, the MSD will 

increase linearly as a function of time. The diffusion constant determines the slope of the 

MSD line. In the case of flow or active transport the MSD increases more rapidly: 

quadratically with the time lag instead of linearly. The case of anomalous subdiffusion, 

characterized by a lagging MSD-time curve compared to normal diffusion, occurs if the 

motion is obstructed by obstacles. Confined motion, caused by corrals, tethering or other 

restrictions, manifests itself by a converging curve, where the limiting MSD value is 

proportional to the size of the region accessible for diffusion. Once the type of motion is 

identified, some subsequent parameters can be computed by regression. For instance the 

Brownian motion is fully characterized by its diffusion coefficient, and a directed motion 

is described by its direction and the velocity along it. 

3.2 3D tracking of viruses 

In [26], 3D tracking MSD analyses were performed in order to study virus-host cell 

interactions during infection of human cells by HIV-1 virus. The integrase of the virus 

was labeled with the bis-arsenical fluorescein derivative FlAsH which allowed imaging 
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both intracytoplasmic and intranuclear HIV-1 complexes. Tracking experiments of virus 

complexes resulted in the construction of 923 trajectories through time in 3D. The MSD 

analysis was used to determine the types of movement of HIV-1 complexes in the 

cytoplasm, during the association with the nuclear membranes and in the nucleus. For 

cytoplasmic HIV-1 complexes at early time points after infection, the shape of the MSD 

curve was a polynomial of order 2 which indicates a directed motion. Two types of such 

directed motions were distinguished based on their characteristics and velocities. First 

some fast and curvilinear motions (82 +/- 7.4 nm/s) exhibited a saltatory property: both 

anterograde and retrograde movements were observed but with a global directionality 

towards the nucleus. This feature is compatible with microtubule-associated movement. 

The second class of motion was observed in the perinuclear area. It was still a directed 

motion but with lower speed (18+/- 1.3 nm/s) on short distances, which is typical of 

actin-based transport. The implication of microtubules and actin in the motion of virus 

complexes was then confirmed by other standard biological techniques. For instance 

colocalization studies showed that HIV-1 complexes overlapped with both microtubules 

and actin filaments. Then pharmacological experiments were done: the dynein-based 

transport was uncoupled with a specific drug which resulted in the inhibition of entrance 

of the labeled virus into the nuclear compartment, while the inhibition of the actin-

mediated transport resulted on a drastic diminution of cytoplasmic transport of viruses. 

The dynamic study of association of complexes with nuclear membranes revealed 

significantly different characteristics compared to cytoplasmic transport. For instance, 

once the virus complexes were associated with the membrane their MSD trajectory curve 

was indicative of a restricted motion which implied confinement to a small volume or 

tethering. 

3.3 Prion tracking inside tunnelling nanotubes (TNTs)  

Page 14 of 25

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

A recent study [4] used latest advances in particle tracking methods [44] to characterize 

the intercellular spreading of prions. Imaging techniques were used to show that TNTs 

allow transfer of exogenous and endogenous prions between infected and naive neuronal 

CAD cells. The CAD cells were labeled with LysoTracker red and imaged by spinning-

disk confocal microscopy in 3D. Lyso-Tracker-positive vesicles were visualized moving 

towards naive cells inside nanotubes. The infectious vesicles were automatically 

detected, and their trajectories were reconstructed thanks to a Bayesian tracking method 

[44], while moving inside TNTs and entering into the cells. A typical 3D prion vesicle 

trajectory is shown in Figure 3. The MSD analysis of the track revealed that the vesicle 

has a directed motion towards the recipient cell. The estimated velocity of the tracked 

vesicle (41.5 nm/s on average) is very similar to that calculated for a complex myosin VI 

and the GLUT1 transporter binding protein, indicating the possible involvement of actin 

mediated motors 

4 Conclusion 

Recent advances in optical systems and imaging protocols have allowed observing 

pathogens over time at the cellular and sub-cellular scale in multiple colors and 

dimensions in a fast and automated way. Systematic quantification of the recorded data 

sets requires fully automated image processing tools and algorithms specifically adapted 

to the problem at hand. Throughout this review we have browsed a number of methods 

developed to track sub-cellular objects in image sequences. The particle tracking 

problem includes many issues such as particles localization, motion estimation and 

measurements linking. The definition of the Bayesian framework has been an important 

achievement in the modeling of such a complex problem since it allows one to include in 

a uniform way prior knowledge about the scene and to define general objective 

functions. Enriching this framework with even more models dedicated to bioimaging and 
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developing algorithms able to solve problems in this formalism should attract much 

interest in the future.  
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Figure legends 

Figure 1 

Fluorescent beads (200 nm diameter) in water imaged with a Disk Scanning confocal 

microscope [50]. Left: Trajectories extracted by joint image and kinetic tracking. Right: 

Separation of targets by the tracking algorithm while spots appear fused at frames t13 

and t14. 

Figure 2 

Mean Square displacement curve for three different types of motions: pure diffusive 

(green), super diffusive (red) and sub diffusive (blue). The type of motion is related on 

the curvature of the curve. 

Figure 3 

Prion tracking on tunnelling nanotubes. Left: 3D view of a prion vesicle moving on a 

TNT towards a naive CAD cell. Right: Mean Square Displacement analysis of the 

vesicle trajectory inside the TNT (blue), and entering into the cell (green). The curvature 

of each curve indicates a directed motion with different velocities: the infectious vesicle 

exhibits a fast motion inside the TNT (41.5nm/s on average), and a slow motion (around 

10nm/s) in the cell. From [10]. 
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Fluorescent beads (200 nm diameter) in water imaged with a Disk Scanning confocal microscope 
[50]. Left: Trajectories extracted by joint image and kinetic tracking. Right: Separation of targets 

by the tracking algorithm while spots appear fused at frames t13 and t14  
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Mean Square displacement curve for three different types of motions: pure diffusive (green), super 
diffusive (red) and sub diffusive (blue). The type of motion is related on the curvature of the curve  
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Prion tracking on tunnelling nanotubes. Left: 3D view of a prion vesicle moving on a TNT towards a 
naive CAD cell. Right: Mean Square Displacement analysis of the vesicle trajectory inside the TNT 
(blue), and entering into the cell (green). The curvature of each curve indicates a directed motion 

with different velocities: the infectious vesicle exhibits a fast motion inside the TNT (41.5nm/s on 
average), and a slow motion (around 10nm/s) in the cell. From [10]  
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