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Abstract

Let B be a fractional Brownian motion with Hurst parameter H = 1/6. It is known
that the symmetric Stratonovich-style Riemann sums for [ g(B(s))dB(s) do not, in
general, converge in probability. We show, however, that they do converge in law in the
Skorohod space of cadlag functions. Moreover, we show that the resulting stochastic
integral satisfies a change of variable formula with a correction term that is an ordinary
1t6 integral with respect to a Brownian motion that is independent of B.

AMS subject classifications: Primary 60H05; secondary 60G15, 60G18, 60J05.
Keywords and phrases: Stochastic integration; Stratonovich integral; fractional
Brownian motion; weak convergence; Malliavin calculus.

1 Introduction

The Stratonovich integral of X with respect to Y, denoted fot X(s) odY(s), can be defined
as the limit in probability, if it exists, of

> MR ) v, ), (L)

tj<t

as the mesh of the partition {t;} goes to zero. Typically, we regard (L.1) as a process in t,
and require that it converges uniformly on compacts in probability (ucp).

*Supported in part by the (french) ANR grant ‘Exploration des Chemins Rugueux’.
fSupported by DFG research center Matheon project E2.
fSupported in part by NSA grant H98230-09-1-0079.



This is closely related to the so-called symmetric integral, denoted by fo s)d°Y (s),
which is the ucp limit, if it exists, of

PX(s)+ X(s+e)

; (Y(s+¢) — Y(s))ds, (1.2)

as € — 0. The symmetric integral is an example of the regularization procedure, introduced
by Russo and Vallois, and on which there is a wide body of literature. For further details
on stochastic calculus via regularization, see the excellent survey article [I3] and the many
references therein.

A special case of interest that has received considerable attention in the literature is
when Y = B¥, a fractional Brownian motion with Hurst parameter H. It has been
shown independently in [2] and [5] that when Y = B¥ and X = g(B) for a sufficiently
differentiable function g(z), the symmetric integral exists for all H > 1/6. Moreover, in this
case, the symmetric integral satisfies the classical Stratonovich change of variable formula,

mBH@»-wBHm»+1AgﬂBH@»d%#%ﬁ.

However, when H = 1/6, the symmetric integral does not, in general, exist. Specifically,
in [2] and [5], it is shown that does not converge in probability when Y = B¢ and
X = (BY%)2 It can be similarly shown that, in this case, also fails to converge in
probability.

This brings us naturally to the notion which is the focus of this paper: the weak
Stratonovich integral, which is the limit in law, if it exists, of . We focus exclusively
on the case Y = BYS. For simplicity, we omit the superscript and write B = BY6. Our
integrands shall take the form g(B(t)), for ¢ € C*°(R), and we shall work only with the
uniformly spaced partition, ¢; = j/n. In this case, becomes

[nt]

Lo But) §:g IETTEIING

VR

where | x| denotes the greatest integer less than or equal to x, and AB; = B(t;)—B(t;—1). We
show that the processes I,,(g, B) converge in law in Dg|0, 00), the Skorohod space of cadlag
functions from [0, 00) to R. We let fot g(B(s))dB(s) denote a process with this limiting law,
and refer to this as the weak Stratonovich integral.

The weak Stratonovich integral with respect to B does not satisfy the classical
Stratonovich change of variable formula. Rather, we show that it satisfies a change of
variable formula with a correction term that is a classical It6 integral. Namely,

oB(O) =9 BO)+ [ BB - [ BB 19

where [B] is what we call the signed cubic variation of B. That is, [B] is the limit in law of
the sequence of processes V,,(B,t) = ZW’J AB?. Tt is shown in [I1] that [B] = W, where
W is a standard Brownian motion, 1ndependent of B, and k ~ 2.322. (See - for the exact
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definition of x.) The correction term in (1.3)) is then a standard It6 integral with respect to
Brownian motion.

Our precise results are actually somewhat stronger than this, in that we prove the joint
convergence of the processes B, V,,(B), and I,,(g, B). (See Theorem [2.12]) We also discuss
the joint convergence of multiple sequences of Riemann sums for different integrands. (See
Theorem and Remark [2.14])

The work in this paper is a natural follow-up to [I] and [9]. There, analogous results
were proven for BY/# in the context of midpoint-style Riemann sums. The results in [I] and
[9] were proven through different methods, and in the present work, we combine the two
approaches to prove our main results.

Finally, let us stress the fact that, as a byproduct of the proof of , we show in the
present paper that

] - :
n_l/ZZg(B(tj1))h3(n1/6ABj)—>—é/ g”’(B(s))ds+/ g(B(s)) d[B]s,

0 0

in the sense of finite-dimensional distributions on [0, 00), where h3(z) = x* — 3z denotes the
third Hermite polynomial. (See more precisely Theorem below. Also see Theorem )
From our point of view, this result has also its own interest, and should be compared with
the recent results obtained in [7, 8], concerning the weighted Hermite variations of fractional
Brownian motion.

2 Notation, preliminaries, and main result

Let B = BY% be a fractional Brownian motion with Hurst parameter H = 1/6. That is, B
is a centered Gaussian process, indexed by ¢ > 0, such that

R(s,t) = E[B(s)B(t)] = %(tm PRV BTSNV

Note that E|B(t) — B(s)|*> = |t — s|'/3. For compactness of notation, we will sometimes
write B; instead of B(t). Given a positive integer n, let At =n~! and t; = t;,, = jAt. We
shall frequently have occasion to deal with the quantity §;, = 6; = (B(t;—1) + B(t;))/2.
In estimating this and similar quantities, we shall adopt the notation r, = r V 1, which
is typically applied to nonnegative integers r. We shall also make use of the Hermite
polynomials, o
_(_1\n 22 % 2?2

hn(x) = (—1)"e e (e ). (2.1)
Note that the first few Hermite polynomials are ho(z) = 1, hy(z) = x, he(z) = 2> — 1, and
hs(z) = 23 — 3x. The following orthogonality property is well-known: if U and V are jointly
normal with E(U) = E(V) =0 and F(U?) = E(V?) = 1, then

Q(E[UV])? ifp=q,

. (2.2)
0 otherwise.

E[hp(U>hq(V)] = {



If X is a cadlag process, we write X (t—) = limg; X (s) and AX(t) = X (¢) — X (t—). The
step function approximation to X will be denoted by X,,(t) = X (|nt]/n), where |-] is the
greatest integer function. In this case, AX,,(¢;,) = X (t;) — X (t;_1). We shall frequently use
the shorthand notation AX; = AX;, = AX,(t;,). For simplicity, positive integer powers
of AXj; shall be written w1th0ut parentheses, so that AXF = (AX;)F

The discrete p-th variation of X is defined as

it
VI(X, 1) =) [AX),

j=1
and the discrete signed p-th variation of X is

[nt]
VIE(X ) =) |AX [P sgn(AX;).

j=1
For the discrete signed cubic variation, we shall omit the superscript, so that

[nt]

V(X 1) = V(X t) = ZAX3 (2.3)

When we omit the index ¢, we mean to refer to the entire process. So, for example,
Vo(X) =V, (X, ) refers to the cadlag process which maps t — V,,(X, ).
Let {p(r)}rez be the sequence defined by

1
p(r) = S (Ir + 11 4 fr = 112 = 2| 7%). (2:4)

Note that Y, [p(r)] < co and E[AB;AB;] = n~'3p(i — j) for all i,j € N. Let x > 0 be
defined by

K=6Y p(r) Z(|r + 13 4 | — 1|3 = 2|r|V/?)? ~ 5.391, (2.5)

rez TEZ

and let W be a standard Brownian motion, defined on the same probability space as B, and
independent of B. Define [B]; = kW (t). We shall refer to the process [B] as the signed
cubic variation of B. The use of this term is justified by Theorem [2.11}

A function ¢ : R? — R has polynomial growth if there exist positive constants K and r
such that |g(x)| < K(1 + |z|") for all z € R If k is a nonnegative integer, we shall say
that a function g has polynomial growth of order k if g € C*(R?) and there exist positive
constants K and r such that |0%g(z)| < K(1 + |z|") for all z € R? and all |a| < k. (Here,
a € N& = (NU {0})¢ is a multi-index, and we adopt the standard multi-index notation:
0; = 0/0xj, 0* =0 --- 05, and |a| = a1 + -+ + ag.)

Given g : R — R and a stochastic process { X (¢) : t > 0}, the Stratonovich Riemann sum

will be denoted by
[nt]
L(g, X, 1) = Zg g(X( D ax,
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The phrase “uniformly on compacts in probability” will be abbreviated “ucp.” If X,, and Y,,
are cadlag processes, we shall write X,, = Y, or X,,(t) = Y,,(t) to mean that X,, —Y,, — 0
ucp. In the proofs in this paper, C' shall denote a positive, finite constant that may change
value from line to line.

2.1 Conditions for relative compactness

The Skorohod space of cadlag functions from [0, 00) to R? is denoted by Dga[0,00). Note
that Dga[0,00) and (Dg[0,00))? are not the same. In particular, the map (x,y) — = +y
is continuous from Dg:2[0,00) to Dg[0,00), but it is not continuous from (Dg[0,0))? to
Dgl0, 00). Convergence in Dga[0,00) implies convergence in (Dg[0,00))?, but the converse
is not true.

Note that if the sequences {X,(LI)}, ce {Xéd)} are all relatively compact in Dg[0, 00),
then the sequence of d-tuples {(Xr(f), . ,X,(Ld))} is relatively compact in (Dg[0,00))% Tt
may not, however, be relatively compact in Dga[0, 00). We will therefore need the following
well-known result. (For more details, see Section 2.1 of [I] and the references therein.)

Lemma 2.1. Suppose {(XT(ZI),...,X,(Ld))};?f:1 is relatively compact in (Dg|0,00))4. If, for
each j > 2, the sequence {X,S”};’le converges in law in Dg[0,00) to a continuous process,
then {(XT(LI), . ,X,Sd))};’f:l is relatively compact in Dyal0, 00).

Our primary criterion for relative compactness is the following moment condition, which
is a special case of Corollary 2.2 in [I].

Theorem 2.2. Let {X,} be a sequence of processes in Dga[0,00). Let q(x) = |z| A 1.
Suppose that for each T > 0, there exists v > 0, § > 0, C > 0, and 6 > 1 such that
sup,, E[| X, (T)]"] < oo and
0
nt| — |ns
B0 - X,()) < o ) (2.6

for allm and all 0 < s <t <T. Then {X,} is relatively compact.

Of course, a sequence {X,} converges in law in Dga[0,00) to a process X if {X,} is
relatively compact and X,, — X in the sense of finite-dimensional distributions on [0, c0).
We shall also need the analogous theorem for convergence in probability, which is Lemma
A2.1 in [3]. Note that if z : [0,00) — R? is continuous, then z,, — z in Dga[0,00) if and
only if z,, — x uniformly on compacts.

Lemma 2.3. Let {X,,}, X be processes with sample paths in Dga|0,00) defined on the same
probability space. Suppose that {X,} is relatively compact in Dgal0,00) and that for a dense
set H C [0,00), X,(t) — X (t) in probability for allt € H. Then X, — X in probability in
Drgal0,00). In particular, if X is continuous, then X,, — X ucp.

We will also need the following lemma, which is easily proved using the Prohorov metric.



Lemma 2.4. Let (E,r) be a complete and separable metric space. Let X,, be a sequence of
E-valued random variables and suppose, for each k, there exists a sequence { X, r}>2, such
that limsup,,_, . E[r(Xn, Xux)] < 0k, where 0, — 0 as k — oo. Suppose also that for each
k, there exists Yj such that X, — Yj in law as n — oo. Then there exists X such that
X, — X inlaw and Y, — X n law.

2.2 Elements of Malliavin calculus

In the sequel, we will need some elements of Malliavin calculus that we collect here. The
reader is referred to [6] or [10] for any unexplained notion discussed in this section.

We denote by X = {X(¢) : ¢ € H} an isonormal Gaussian process over §), a real and
separable Hilbert space. By definition, X is a centered Gaussian family indexed by the
elements of $ and such that, for every o, 1 € 6,

EX (o)X ()] = (¢, ¥)s-

We denote by $H®7 and $H®, respectively, the tensor space and the symmetric tensor space
of order ¢ > 1. Let . be the set of cylindrical functionals F' of the form

F=f(X(e1), ... X(en)), (2.7)

where n > 1, ¢; € $ and the function f € C*°(R") is such that its partial derivatives have
polynomial growth. The Malliavin derivative DF of a functional F' of the form (2.7) is the
square integrable $)-valued random variable defined as

(X (1), .-, X(n)) i

In particular, DX (¢) = ¢ for every ¢ € §. By iteration, one can define the mth derivative
D™F (which is an element of L*(Q2, §°™)) for every m > 2, giving

Oy

mp_ N~ 0"
D"F= 3 Gl (Ko X(e)on @ @

----- im

As usual, for m > 1, D™? denotes the closure of .’ with respect to the norm || - ||, 2, defined
by the relation
|17, = EF? + ) E|D'F[ge..
i=1

The Malliavin derivative D satisfies the following chain rule: if f : R® — R is in C} (that
is, the collection of continuously differentiable functions with a bounded derivative) and if
{F;}i=1...n is a vector of elements of D'? then f(Fy,...,F,) € D"? and

Df(F F):zn:af(F F,)DF, (2.8)
1y---rdn Gx, 1y---r4n i .

=1



This formula can be extended to higher order derivatives as
D"f(Fy,....F) =Y C, Xn: 8k—f(ﬂ o, B)DV"F, ®---@D"F;,, (2.9)
) ) ‘ ~_ 81‘1‘1 . ] ) ) 1 k)

where P, is the set of vectors v = (vy,...,v;) € N¥ such that £ > 1, v; < --- < v, and
v1+- -+ v, = m. The constants C, can be written explicitly as C, = m!(H?:1 m;!(j1)™)

where m; = [{{ v, = j}|.

Remark 2.5. In (2.9), a ® b denotes the symmetrization of the tensor product a ®b. Recall

that, in general, the symmetrization of a function f of m variables is the function fdeﬁned
by

~ 1
f(tl,...,tm) = % Z f(tg(l),...,to(m)), (2.10)
U€6m
where &,,, denotes the set of all permutations of {1,...,m}.

We denote by I the adjoint of the operator D, also called the divergence operator. A
random element u € L%*(€), $) belongs to the domain of I, noted Dom(I), if and only if it
satisfies

|E(DF,u)s| < c,VEF? forany F € .,

where ¢, is a constant depending only on u. If w € Dom(/), then the random variable I (u)
is defined by the duality relationship (customarily called “integration by parts formula”):

E[FI(u)] = E(DF,u)sg, (2.11)

which holds for every F' € D2,
For every n > 1, let 'H,, be the nth Wiener chaos of X, that is, the closed linear subspace

of L? generated by the random variables {h,(X(p)) : ¢ € 9,|p|lg = 1}, where h,, is the
Hermite polynomial defined by ({2.1]). The mapping

Ln(9®") = hn(X () (2.12)

provides a linear isometry between the symmetric tensor product $H®" (equipped with the
modified norm \/%H - |[gen) and H,,. The following duality formula holds:

E[FL(f)] = E{D"F, f)sn. (2.13)

for any element f € $®" and any random variable F' € D™2. We will also need the following
particular case of the classical product formula between multiple integrals: if ¢, € $ and
m,n > 1, then

L (™ I (") = > " r! (T) <:) Iy nar (%) @ @) (o )T (2.14)
r=0

Finally, we mention that the Gaussian space generated by B = B¢ can be identified
with an isonormal Gaussian process of the type B = {B(h) : h € $}, where the real and

7



separable Hilbert space ) is defined as follows: (i) denote by & the set of all R-valued step
functions on [0, 00), (ii) define $) as the Hilbert space obtained by closing & with respect to
the scalar product

1
(Lo Lp.a))s = E[B(s)B(t)] = 5(751/3 + 10— [t —s['V?).

In particular, note that B(t) = B(1j4). To end up, let us stress that the mth derivative
D™ (with respect to B) verifies the Leibniz rule. That is, for any F,G € D™? such that
FG € D™2, we have

Dyl o, (FG) =Y DJE)DITNG), te0.T), i=1...m (215
where the sum runs over all subsets J of {t1,...,t,}, with |J| denoting the cardinality of .J.

Note that we may also write this as

m

DM(FG) =Y (7;) (DFF) &(D" Q). (2.16)

k=0

2.3 Expansions and Gaussian estimates

A key tool of ours will be the following version of Taylor’s theorem with remainder.

Theorem 2.6. Let k be a nonnegative integer. If g € C*(R?), then

I b_“) + Ry(a,b),

la|<k
where
(b—
(a,b) =k Z %) / (1 —w)*[0%g(a +u(b —a)) — 0%g(a)] du
lal=k
if k > 1, and Ro(a,b) = g(b) — g(a). In particular, Ry(a,b) =3, _; ha(a,b)(b— a)*, where
he is a continuous function with hy(a,a) =0 for all a. Moreover,
[Ri(a,b)] < (K V1) Y Ma|(b—a)],
|a|=k
where M, = sup{|0“g(a + u(b—a)) — 0%g(a)| : 0 <u < 1}.

The following related expansion theorem is a slight modification of Corollary 4.2 in [IJ.
Theorem 2.7. Recall the Hermite polynomials hy,(z) from (2.1). Let k be a nonnegative
integer. Suppose ¢ : R — R is measurable and has polynomial growth with constants K and
r. Suppose f € CKTL(R?) has polynomial growth of order k + 1, with constants K and r. Let

e R and Y € R be jointly normal with mean zero. Suppose that EY? =1 and Ef? <v
for some v > 0. Definen € R by n; = E[§;Y]. Then

BIF©e()] = 3 —n* B0 (O] Elhe(V oY) + R,

laf <k

where |R| < CK|n|**1 and C depends only on K,r, v, k, and d.

8



Proof. Although this theorem is very similar to Corollary 4.2 in [I], we provide here another
proof by means of Malliavin calculus.

Observe first that, without loss of generality, we can assume that §; = X (v;), 1 =1,...,d,
and Y = X (vgy1), where X is an isonormal process over § = R and where vy, ..., v441
are some adequate vectors belonging in §). Since ¢ has polynomial growth, we can expand
it in terms of Hermite polynomials, that is ¢ = > 2 c.h,. Thanks to (2.2), note that
qleg = E[o(Y)hy(Y)]. We set

k [e9)
Pr = Z chg and ¢ = Z Cqhyg-
q=0 g=k+1

Of course, we have

We obtain

%E[w(Y)hq(Y)]E[f(ﬁ)f (4] by @1

= > L B ) D€, ] by ETD)

D E[so(Y)hqwnE[m | T o

Since the map ® : {1,...,d}? — {a € N&: |a| = ¢} defined by (® (i, ...,44)); = [{€: i = j}|
is a surjection with |®~!(a)| = ¢!/al, this gives

HGEE Z Z (V)] B[0* f(£)In”

Ial q

3 ﬁEwmm Blo" f(©)l”

|al<k

On the other hand, the identity , combined with the fact that each monomial z" can
be expanded in terms of the first n Hermite polynomials, implies that E[Y1%g,(Y)] = 0 for
all |a| < k. Now, let U = £ — Y and define g : RY — R by g(x) = E[f(U + 2Y)@(Y)].
Since ¢ (and, consequently, also ¢) and f have polynomial growth, and all derivatives of f
up to order k + 1 have polynomial growth, we may differentiate under the expectation and
conclude that g € C**1(R%). Hence, by Taylor’s theorem (more specifically, by the version



of Taylor’s theorem which appears as Theorem 2.13 in [I]), and the fact that U and Y are

independent,

=D B UNEY g(Y)] + R =R,

where
M dk+1)/2

k!
and M = sup{|0%g(un)| : 0 <u < 1,|a| =k + 1}. Note that

|R| < Dl

0%g(un) = B0 f(U +unY )Y (V)] = B0 f(€ — (1 — w)Y)Y o (Y)].

Hence,

0%g(un)| < KKE[(1+ ¢ = n(1 = w)Y )|V [*/(1 4 Y]]
< KKE[(1+2¢]" + 2 [V [")([Y [ + [y]*),

Since |n|? < vd, this completes the proof. O
The following special case will be used multiple times.
Corollary 2.8. Let X1, ..., X, be jointly normal, each with mean zero and variance bounded

by v > 0. Let n; = E[X;X;]. If f € CYR™1) has polynomial growth of order 1 with

constants K and r, then

|E[f<X17 S 7Xn—1)X2H S OKU3 1?35( ’77371|7

where 0 = (EX2)'/? and C depends only on r, v, and n.

Proof. Apply Theorem 2.7 with k£ = 0.

Finally, the following covariance estimates will be critical.

(2.17)

Lemma 2.9. Recall the notation 5; = (B(tj—1) + B(t;))/2 and ry. =rV 1. For any i, 7,

(i) |[E[AB,AB;)| < CAtY3[5 — il 2,

(ii) |[E[B(t)AB))| < CA(=2/3 + | —i|;2°),
(iii) |E[BAB;)| < CALB(2/3 + |5 — i| 77/,
(iv) |E[B;AB;]| < CAtY/35723  and

(v) Chlt; — t|'* < E|B; — Bi* < Colt; — ti]V/3,

10



where C, Cy are positive, finite constants that do not depend on i or j.

Proof. (i) By symmetry, we may assume i < j. First, assume j —i > 2. Then
t; t;
E[AB;AB;] = / / 0% R(s,t) dt ds,
ti—1 Jtj1

where 0% = 0,0,. Note that for s < t, 0% R(s,t) = —(1/9)(t — s)~°/3. Hence,
|E[AB,AB;]| < CAB|t; 1 — 1|73 < OAL3|5 — i 753,

Now assume j —i < 1. By Holder’s inequality, |E[AB;AB;]| < AtY/? = AtY/3|j — i|f’/3.
(i) First note that by (i),

i J
[E[B(t)AB))] < Y |E[ABAB)|| < CAAY " |k — 5|77 < CAts,
k=1 k=1
This proves the lemma when either j = 1 or |j —i|, = 1. To complete the proof of (ii),
suppose j > 1 and |j — i| > 1. Note that if ¢ > 0 and s # ¢, then

1 1
O R(s,t) = 625_2/3 - 6|t — 5|72 sgn(t — s).

We may therefore write E[B(t;)AB;] = ftj

t]'_l

O R(t;, u) du, giving
BIBABI < A swp [9:R(,w)] < OO0+ 1) - i7",
ue tjfl,tj

which is (ii).

(iii) This follows immediately from (ii).

(iv) Note that 23;AB; = B(t;)>— B(t;_1)?. Since EB(t)? = t*/3, the mean value theorem
gives | E[3;AB;]| < C(At)t = CAtY35-2/3,

(v) Without loss of generality, we may assume i < j. The upper bound follows from

2(8; = Bi) = (B(t;) — B(t:)) + (B(tj—1) — B(ti-1)),
and the fact that E|B(t) — B(s)|?> = |t —s|'/3. For the lower bound, we first assume i < j — 1
and write
2(8; — Bi) = 2(B(tj-1) — B(t:)) + AB; + AB;.
Hence,
1
(B|8; = Bi)'? > |tj0 — ] — 5 (EIAB; + AB*)'2.
Since AB; and AB; are negatively correlated,
E|AB; + AB;|> < E|AB;|? + E|AB|* = 2AtY3.
Thus,
<E|ﬂ] . 6i|2>1/2 > Atl/ﬁ‘j . 7;|1/6 o 2_1/2At1/6 > CAt1/6|j . i‘1/6,

for some C' > 0. This completes the proof when ¢ < j — 1.
If i = j — 1, the conclusion is immediate, since 2(3; — 5;_1) = B(t;) — B(tj_2). O

11



2.4 Sextic and signed cubic variations

Theorem 2.10. For each T > 0, we have E[supy<,<p |V,2(B,t) — 15t[*] — 0 as n — oo. In
particular, VS(B,t) — 15t ucp.

Proof. Since V,%(B) is monotone, it will suffice to show that VS(B,¢) — 15t in L? for each
fixed t. Indeed, the uniform convergence will then be a direct consequence of Dini’s theorem.

We write
[nt]

VO(B,t) = 15t = Y (ABY — 15At) + 15(|nt]/n — t).
j=1
Since || nt]/n —t| < At, it will suffice to show that E| Z (AB6 15A¢)|> — 0. For this,
we compute

[nt] 2 [nt] [nt]

E|> (ABS —15At)| =Y > E[(AB} — 15At)(AB) — 15At)]
j=1 i=1 j=1
] L] (2.18)
=> ) (E[AB{ABY] — 225A1%).
=1 j5=1

By Theorem [2.7] if £,V are jointly Gaussian, standard normals, then E[¢0Y°] = 225 + R,
where |R| < C|E[¢Y]|%. Applying this with £ = At"YSAB; and Y = At~Y/SAB;, and using
Lemma (i), gives |E[ABYABY] — 225At%]| < CA#?|j — i|7"%. Substituting this into
(2.18), we have

[nt]

E|> (ABY - 15At)

J=1

2
< C|nt]At* < CtAt — 0,

which completes the proof. O
Theorem 2.11. Asn — oo, (B, V,(B)) — (B, [B]) in law in Dgz2[0,00).
1], (B,V.(B

Proof. By Theorem 10 in [I1], (B,V,(B)) — (B,kW) = (B,[B]) in law in (Dg[0,c0))?.
By Lemma [2.1] this implies (B, V,(B)) — (B, [B]) in Dg:[0, oo) O

2.5 Main result
Given g € C*°(R), choose G such that G’ = g. We then define

1

/O g(B(s))dB(s) = G(B(t)) — G(B(0)) + ﬁ/ G"(B(s)) d[B]s. (2.19)

Note that, by definition, the change of variable formula holds for all g e C*. We
shall use the shorthand notation | g(B)dB to refer to the process t fo B(s))dB(s).

Similarly, f g(B ] and [ g(B)ds shall refer to the processes ¢ — [ g(B(s)) d[B], and

te [ g(B(s)) ds respectlvely
Our main result is the following.

12



Theorem 2.12. If g € C*(R), then (B,V,(B),1.(9,B)) — (B,[B], [ g(B)dB) in law in
DRS[0,00).

We also have the following generalization concerning the joint convergence of multiple
sequences of Riemann sums.

Theorem 2.13. Fiz k > 1. Let g; € C®(R) for 1 < j < k. Let J, be the R*-valued process
whose j-th component is (J,); = I,(g5, B). Similarly, define J by J; = [ g;(B)dB. Then
(B,Vu(B), J,) — (B,[B],J) in law in Dgi+2[0, 00).

Remark 2.14. In less formal language, Theorem [2.13 states that the Riemann sums
I,(g;, B) converge jointly, and the limiting stochastic integrals are all defined in terms of the
same Brownian motion. In other words, the limiting Brownian motion remains unchanged
under changes in the integrand. In this sense, the limiting Brownian motion depends only
on B, despite being independent of B in the probabilistic sense.

The proofs of these two theorems are given in Section [5]

3 Finite-dimensional distributions

Theorem 3.1. If g € C*(R) is bounded with bounded derivatives, then

[n]
B, Vn(B), % Z Q(B(tjl));‘ g(B(tj))hg(nl/ﬁABj) N <B, [[B]],/Q(B) d[[B]]) :

in the sense of finite-dimensional distributions on [0, 00).

The rest of this section is devoted to the proof of Theorem [3.1]

3.1 Some technical lemmas

During the proof of Theorem [3.1, we will need technical results that are collected here.
Moreover, for notational convenience, we will make use of the following shorthand notation:

(5] = ]‘[tj—htj] and 8]' = 1[0’25].].
For future reference, let us note that by (2.10)),
-1
e80 QBlaa) = (Z) Z €, ® ... Q& (3.1)
T genes iqe{s,t}
{j:iy=s}=q—a
Lemma 3.2. We have

(i) |E(B(r)(B(t) — B()))| = (Lo L)l < |t — s|'/* for any r.s.t > 0;

13



[nt]

(i1) sup Z |E[B(s)ABy]| = sup Z (10,6, 0k)s| = O(1) for any fixed t,T > 0;
<s<T 0<s<T 1 n—oo
[ nt] | nt]
(111) Z |E(B(tj—1)ABy)| = Z [{€j=1,0k) & | = O(n) for any fixed t > 0;
k,j=1 k,j=1
[nt) 1 [nt) 1
(iv) ; (E[B(tp_1)AB))? + %‘ = ; (ep_ 1,(5k> + sl 0 for any fized t > 0;
Lnt) LY .
_ 3
(v) ; (E[B(tk)ABy))” — ol = ; (ks On)y — e Bt 0 for any fized t > 0.
Proof.
(i) We have
1 1
E(B(r)(B(t) — B(s))) = 5(151/3 — 513 + 5 (Js = V2 — |t —r|/3).
Using the classical inequality |[b]'/* — |a|'/3| < |b— a|'/3, the desired result follows.
(74) Observe that
1
E(B(s)ABy) = SIRVE (kl/3 — (k=13 — |k —ns|? + |k —ns — 1|1/3) .

We deduce, for any fixed s < ¢:

Lnt]
S IEBS)ABY)| < 27 +

((LTLSJ —ns+ Y2 — (ns — |ns|)/?

2n1/3
k=1
[ns] [nt]
+ Z((ns +1—k)Y3 — (ns—k)13) + Z ((k —ns)'/® — (k —ns — 1)1/3))
k=1 k=|ns]+2

1

- 5(z&1/3 + 53 4t — s|Y3) + R,

where |R,| < Cn~'/3, and C does not depend on s or t. The case where s > ¢ can be
obtained similarly. Taking the supremum over s € [0, 7] gives us (ii).

(731) is a direct consequence of (7).

(iv) We have

(E(B(ti-1)ABY)” + —‘ — (K'? = (k= 1)"/%)

X )(kl/?’ — (k= DY) Z3(kYE — (k—1)V3) + 3]

Thus, the desired convergence is immediately checked by combining the bound 0 <
k'3 — (k —1)/3 <1 with a telescoping sum argument.
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(v) The proof is very similar to the proof of (iv). O

Lemma 3.3. Let s > 1, and suppose that ¢ € C*(R®) and g1, g € C5(R) have polynomial
growth of order 6, all with constants K and r. Fiz a,b € [0,T]|. Then

[na| |nb|

sup SHPZZ\E  B(us))g1(B(tiy-1))92(Btiy-1)) I3(07°) I (67,°)) |

is finite.

Proof. Let C' denote a constant depending only on 7', s, K, and r, and whose value can
change from one line to another. Define f : R — R by

f(x) = Qb(xla cee ,:Es)gl($S+1)gg($5+2)h3(3§5+3).

Let 51 = B(U’Z>7 i = 17'--75; €s+1 = B(ti1—1>7 £s+2 - B(tlé—l)? €s+3 = n 1/6 ABH’ nd
n; = n'/SE[&AB,,]. Applying Theorem with k£ = 5, we obtain

E(¢(B(w),. ., B(us)gr(B(ti,-1))g2(B(tip-1)) I3(5;°) I5(67;°))

- %E(¢><B<ul>, ooy Bug) g1 (B(ti-1))g2(B(tiy—1))hs (08 ABi, )ha(ns ABy,))

6 . . R
= > B0 +

|a|=3

where |R| < C|
By Lemma ( ), we have |n;| <n~/ for any i < s+ 2, and |n,43| < 1. Moreover, we
have

|_na [nb] [na] [nb|
_ZZ|775+3‘— ZZ“Zl—22+1‘1/3+‘21—z2—1|1/3 2|4, —i2|1/3’ < C.
11=119=2 21 1i9=2

Therefore, by taking into account these two facts, we deduce %ZLMJ SRl < C.

11=1 i9=2

On the other hand, if a € N5™ is such that |a| = 3 with a,,3 # 0, we have

I_naj [nb]

LSS DB @)l

i1=112=1
LnaJ [nb)
<—ZZ‘|21—22+1|1/3+|21—22—1’1/3 | —22‘1/3|§C

11=11i9=1
Finally, if « € N§* is such that || = 3 with .3 = 0 then 9°f = 9% f®@hs with f : R*+*2 — R
defined by f(z) = é(x1,...,25)91(s11)g2(xs12). Hence, applying Theorem to f with
k = 2, we deduce, for i € N5™2 defined by 7; = n;,

(B0 £(&)]| = | El0° Fle)ha(n S AB, )| < Cli* < 1,
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so that

[na| |nb| \_naj [nb]
—ZZ ,\Eaa |l =~ ZZ ,\Eaa f@lmr<c.
i1=14=1 11 1ig=1
The proof of Lemma [3.3]is done. O

Lemma 3.4. Let g,h € CY(R), ¢ > 1, having bounded derivatives, and fix s,t > 0. Set
gr =1y and g = 1. Then g(B(t))h(B(s)) belongs in D** and we have

q
q a —a a —a
DU(o(BOMEEN) = X (1)a BB B 6
a=0
Proof. This follows immediately from ([2.16]). O
Lemma 3.5. Fix an integer r > 1, and some real numbers si,...,s, > 0. Suppose

p € C®(R") and g; € C*(R), j = 1,2,3,4, are bounded with bounded partial derivatives.
For iy, is,i3,i4 € N, set ®(iq,is,13,14) := @(Bgy,- .-, Bs,) H?Zl gj(BSij). Then, for any fized
a,b,c,d > 0, the following estimate is in order:

[na| |nb] |nc| |nd]

sup SN S NE (Rt i3, ia) I3(05%) I (05°) I (02°) I3 (5%)) | < oo (3.3)

= 11 lip=11i3=114=1

Proof. Using the product formula (2.14)), we have that I3(65°)I3(6°) equals
I6(65% @ 652°%) + 914 (022 @ 652)(84y, 034 ) 5 + 1812(0y ® 8:,) (8, 01y) 5 + 6(04y, 0, ) %,
As a consequence, we get

[na| [nb] |nc] |nd]
SN S B (D, iy i, i4) I (02%) I (655 I (02°) I5(62%)) |
11=119=1143=1194=1
[na] [nb] |nc] |nd]
< Z Z Z Z |E (D (i1, 2, 43, 1a) [3(0 %) [3(6%) [6(05° @ 02)) |
i1=119=1143=11i4=1
[naj [nb] |nc] |nd]
+9 Z Z Z Z |E (D (i1, in, i3, 14) I3(67%) I (62 L (022 @ 622)) | (B, 0
11=119=143=114=1
[na] [nb| |nc| |nd]
18D D D N B (R0, day s, i) Is(55°) (05 1o (01, @ 61,)) | (B 01
i1=112=113=114=1
[naj [nb] |nc] |nd]

1653 5" ST B (Bin i, is, ia) 155 I (62%)) | {81 611) sl

i1=11i9=113=114=1

=: A + 940" 1 184" + 6A["
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(1) First, we deal with the term Aﬁ”).

|na] [nb| |nc] |nd|

= 3 N D B (R, da, s, 1a) I3 (05%) I3 (05°) I (05" © 6727)) |

i1=1122=11i3=11i4=1
[na] [nb| |nc] |nd|

=D D> D D NEUD  (Rlirs i, sy ia) I3(55°) 13(55%)) L 677 © 677 o) |

11=112=11i3=11i4=1

When computing the sixth Malliavin derivative D®(® (i1, iz, 45,i4)I5(5;° ) I3(65.°)), there are
three types of terms:

(la) The first type consists in terms arising when one only differentiates ®(iq,io,3,14).
By Lemma (1), these terms are all bounded by

na| |nb] |[nc| |nd]

2 Z Z Z Z ‘E ((I) 11,12, 13, 24)[3(55?3)[3(623» ’ ’

11=112=1143=11i4=1
which is less than

[na| |nb]
cd sup sup Z Z ‘E (q)(ibi27i37i4)[3(5§3)[3<523>>’ .

i3=1,...,|nc] ia=1,...,[nd] i1=11is=1

Lemmal|3.3|shows that the terms of the first type in A§”) well agree with the desired conclusion
E)

(1b) The second type consists in terms arising when one differentiates ®(iy, is, i3, 44) and
I5(67%), but not I3(05°) (the case where one differentiates (i1, 4o, 43, 14) and I3(05°) but
not I3(5®3) is, of course, completely similar). In this case, with p defined by (2.4)), the
corresponding terms are bounded either by

(Here, &)ﬁ'l,ig,ig, i4) means a quantity having a similar form as ®(iy, is,13,74).) Therefore,

[na] [nb] |nc| [nd] 2

Cn™2 Z Z Z Z Z )E <<T>(i1, 02,13, 7;4)1(1(5%0‘)[3(5%3)) ‘ |p(is — 1),

i1=11%2=14i3=114=1 a=0

or by the same quantity with p(is — 4;) instead of p(i3 — i1). In order to get the previous
estimate we have used Lemma [3.2] (i) plus the fact that the sequence {p(r)},cz, introduced

in , is bounded. Moreover, by ([2-13) and Lemma 3.2 (i), observe that

]E (&)(il,ig,ig,i4)[a(5§a)fg(5g3))‘ - )E <<D3(&>(¢1,¢2,¢3,z4)za(5;8;a)),5?; >ﬁ®3) <Cont,

for any @ = 0,1, 2. Finally, since

[nc] [nd]
SUP Z Z p(iz —i1)| < nd SUPL Z p(r)] = Cn
..... na i3=1i4=1 i1=1,...,|na reZ

(and similarly for p(iy — i1) instead of p(iz — i1)), we deduce that the terms of the second
type in Ag") also agree with the desired conclusion ((3.3)).
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(1c) The third and last type of terms consist of those that arise when one differentiates
D (iy,19,13,14), I3(0;;) and I3(d;,). In this case, the corresponding terms can be bounded by
expressions of the type

[na] [nb] |nc| |nd] 2

OWZZZZZZMumw%@WWWM4mmw»

i1=14i9=143=11i4=1 a=0 =0

Since ‘E (5(2’1, ig,ig,i4)la(5§a)lﬁ(5§’g)>‘ is uniformly bounded in n on one hand, and

[na] [nb] |nc] 9
ZZZ‘P i3 — i1)|[p( 2—23|<nc<2\p ) —Cn

11=119=1143=1 reZ

on the other hand, we deduce that the terms of the third type in Aﬁ”) also agree with the
desired conclusion ((3.3)).

(2) Second, we focus on the term AS”. We have

[na] [nb] |nc| |nd]

=3 3NN B (D (R, i, 45, i) I (05°) I3(55%)) L 052 @ 652) ge4) | (85, 61, 5] -

i1=119=1143=11i4=1

When computing the fourth Malliavin derivative D*(® (i1, 42, 43, i) I3(5;°) I3(65?)), we have
to deal with three types of terms:

(2a) The first type consists in terms arising when one only differentiates ® (i1, io,3,14).
By Lemma [3.2| (7), these terms are all bounded by

[na| [nb| |nc| |nd]

n=>/3 Z Z Z Z ‘ ( 11,19, 13, 24)]3(523)13(523» ‘ p(i3 — ia)l,

11=112=113=114=1
which is less than

[na) |nb]
On B3 lor)| swp sup BTN |E (B, i, i) O ()|

e [nc] ia=1,...,[nd| i1=11is=1

Hence, by Lemma , we see that the terms of the first type in Ag") well agree with the
desired conclusion ({3.3]).

(2b) The second type consists in terms arising when one differentiates ® (i1, iz, i3,74) and
I3(02%) but not I3(65°) (the case where one differentiates (i1, 42, 3, i) and I3(55°) but not
13((5%’3) is completely similar). In this case, the corresponding terms can be bounded either
by

[na| |nb] |nc| |nd] 2

Cn YN TSI | B (B, i) La(05) B )| Iplis — i)l (i — i)

i1=1142=11i3=1194=1 a=0
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or by the same quantity with p(iy —i1) instead of p(i3 —i1). By Cauchy-Schwarz inequality,

we have
3+«

’E (ci(@'l,¢2,¢3,¢4)Ia(5§a>13(5g3))‘ <Con % <ot

Since moreover

Lne] [nd]
sup ZZ’pZS_Zl‘|p23—Z4’<(Z‘p ):

=1, \- aJ i3=114=1 rez

(and similarly for p(is — 1) instead of p(iz3 — 1)), we deduce that the terms of the second

type in Aé”) also agree with the desired conclusion ((3.3)).

(2¢) The third and last type of terms consist of those that arise when one differentiates
D (iy,19,13,14), I3(0;,) and I3(d;,). In this case, the corresponding terms can be bounded by
expressions of the type

[na] [nb| |nc| [nd] 2

m%ZZZZZZMMMWMW%WM

i1=1142=1173=114=1 a=0 B=0

X |p(iz — i1)|[p(iz — i3)||p(iz — ia)|.

Since is uniformly bounded in n on one hand, and

E (5<Zla i?? 7:37 24)](1(5;81)&)[6(52/6))

|na| |nb] |nc| |nd] 3
355 3t i~ s~ 0l < (St ) =
11=112=1143=114=1 rez

on the other hand, we deduce that the terms of the third type in Aén) also agree with the
desired conclusion ({3.3]).

(3) Using exactly the same strategy than in point (2), we can show as well that the terms
Aén) agree with the desired conclusion (3.3)). Details are left to the reader.

(4) Finally, let us focus on the last term, that is Afln). We have, using successively the

fact that Y, ., [p(r)]* < co and Lemma [3.3]

[na| |nb] |[nc| |nd]
=222 0 D | B (@i, i (05 1505 |1, Gl
i1=11i2=11i3=11i4=1
[na] [nb| |nc| [nd]
S S S (B 10 ki —
i1=112=11i3=11i4=1
[na] [nb)
<C sup sup Z Z {E( 21,12,13,24)]3(6®3)I3 5®3 )‘ <C.
1<iz<|nc] 1<ia< | nc| i1=1ig—1
Hence, the terms Ain) agree with the desired conclusion (3.3)) and the proof of Lemma is
now complete. O
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Lemma 3.6. Let A = (A\1,...,\p) € R™, wy, ... uy > 0, up, > 0 and suppose g, . ..

C*®(R) are bounded with bounded derivatives. Define V,, € R™ by

[
( Z gk z 1 [3 5®3)) )

so that

[nug]
Z/\k Z ge(B(tio ) (68%)  (see (3.15) below).
Then there exists C' > 0, mdependent of n, such that
sup  E((D(\,V,),6,)3) < Cn™2/3

j=1,...,|nup|
[nup )

> E((D(\V,),0,)3) < Cn7'/?
Z E((D*(\,V,),09%)5e0) < Cn~?/3

Proof. We have

(D{A, => M Z Ge(B(ti1))I3(67°)(ei1, ) 5

[nup ]

+32Akzgk (07 (61, 65 )

Hence, with p defined by (12.4)),
E((DO V), 6,)3)

[nug ]

7gm€

(3.8)

< sz/\2 > | E(G(B(tim1))gi(B(te1)) Is(07%) s (67%)) || (i1, 65) 0| | (€0-1, 67) 5|

k=1 i,0=1

[nu ]

+ 18mZA2 > |E(gr(B(tim1))gr(B(te-1) Ia(67°) L (07%)) || (61, 65 5] [ (02, 67) 5

k=1 =1

[nuy]

< Cn7? sup D B (BE-))gi(Bte1) (07 I5(57%)) |
7777 m i1

[nug |
+ On~43 Z lp(i — 9)||p(¢ — j)| by Lemma (1) and Cauchy-Schwarz

i=1

2
< Cn~23 4 O3 ( Z |p(r)|> by Lemma

reZ
< Cn72/3
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which is (3.5)). Moreover, combining the first inequality of the previous estimate with Lemma
(i¢) and Lemma [3.3] we also have

[nup)

> BUDO V), 6)3)

j=1
[nug |

<Cn™'f sup D E(G(B(ti1)) gy (B(te1) I (67°) I5(57%) )
""" zf 1
[rup 2
w3 Naas] (S ol) <o
=1,..., LnukJ e
which is (3.6). The proof of E follows the same lines, and is left to the reader. ]

3.2 Proof of Theorem [3.1]

We are now in position to prove Theorem For g : R — R, let
[nt]
G (g, B,t) : \/_Zg (nSAB;), t>0, n>1.

We recall that hs(z) = 2 — 3z, see (2.1)), and the definition (2.3)) of V,,(B,¢). In particular,
observe that

Vo(B,t) = G5 (1, B,t) + 3n Y3 B(|nt] /n). (3.9)
Our main theorem which will lead us toward the proof of Theorem [3.1] is the following.

Theorem 3.7. If g € C*®(R) is bounded with bounded dem’uatz’ves, then the sequence
(B,G,(1,B),G, (g,B)) converges to (B, [B],—(1/8) [ ¢"(B)ds+ [ g(B)d[B]) in the sense
of finite-dimensional distributions on [0, 00).

Proof. We have to prove that, for any £ 4+ m > 1 and any uy, ..., U, > 0:

(B7G7:(1aBau1>7"'7G;<1aB7uf)?G;(g7Bau€+l)a"'7G;(Q7B>u€+m))
aw 1 Ug+1 ” Ug+1
Law (B, [[B]]ul,...,[[B]]w,—g/ p (B(s))ds+/ 9(B(s))d[B],,. ...
0 0

n—oo
1

[ menass [ s

Actually, we will prove the following slightly stronger convergence. For any m > 1, any
U, ..., Uy > 0 and all bounded functions ¢y, ..., g, € C*°(R) with bounded derivatives, we
have

(B,G;(gl,B,ul), ooy G (G, B,um))



Using (2.12), observe that

[t
~(g9,B,t) = Zg t;-1))15(059). (3.11)

The proof of (3.10) is divided into several steps, and follows the methodology introduced in
[7].
Step 1.- We first prove that:
lim E (G, (g1, B,w1), ..., Gy, (gm, B, )

Tim )
~ (=5 [ parenas. g [ Base) ),

(3.12)
hmE(H o (g1, Bywa), . G;(gm,B,um)Him)

n—oo

_ i:; (Hz /0” E(¢2(B(s))) ds + 614E (/Ou gé"(B(S))dS)Q) :

For g as in the statement of the theorem, we can write, for any fixed t > 0:

[nt]

E (G, (9, B,1)) ZE (t;-0))I5(057) by (B11)

LntJ

= Z E ((D*¢(B(tj-1)),65%) ges) by

[nt]

_ZE /// )<€J 17 % by-

[nt] [nt] ]
=g P B + BB (e i0h )

_>_1 E(¢"(B(s)))ds by Lemma B3 (iv).

n—oo 8 0

Now, let us turn to the second part of (3.12)). We have
EH(G;(ghBﬂj/l)a- G (!]m,B um HRm ZE g,,B 'Lbl) )

By the product formula ([2.14)), we have

I3(85%) I3(67°) = I6(05° @ 67%) 4+ 914 (05 @ 6;.%) (65, O,
+ 1815(8; ® 03) (07, 0x) g + 6(0;, 0.
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Thus, for any fixed t > 0,

E(G, (9. B,1)%) = gle (9(B(tj-1))g(B(tr-1))15(55°) I5(6"))
- % E (g )9(B(te-1))16(65° @ 6°))
+9 Lﬁl D)9 (B(te-))1a(57% ® 6;7%)) (65, 6e) s
+18 L:Zt E (g )9(B(ti-1))12(8; @ 1)) (35, 0x)
+6 gi E (g(B(tj-1))g(B(te-1))) (0}, 01)%

= A,+B,+C,+ D,

We will estimate each of these four terms using the Malliavin integration by parts formula
(2.13). For that purpose, we use Lemma and the notation of Remark .

First, we have

[nt]
A= E ((D°lg(B(tj-1))g(B(te-1))], 07 @ 07%) e6)

(0)E @ B0 Bla) 5 B0 @ 05

& E (¢ (B(t;1))g® ) (B(ts1)))

X Z <5i1 ® ...®616,5§)3®(5§3>5®6.
i1,..,06€{j—1,k—1}
[{:ig=j—1}|=a

Actually, in the previous double sum with respect to a and i1, . . ., ig, only the following term
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is non-negligible:

Lnt)
> E(g"(B(ti-1))g" (B(tr-1))(gj-1, ;)% {ek1, k)%

k=1

[nt] 2
_E<Zg~f Ves 16, y;)
1 [nt] [nt] 1 2
3
At T

t 2
—' (/ g"(B(s)) ds) by Lemma [3.2] (iv).
n—oo 0

Indeed, the other terms in A,, are all of the form

Lnt)

> E(g“(B(t;-1)g" " (B(tx-1))){e-1,0k) H<€xi71>5yi>fm (3.13)

J,k=1

where z; and y; are for j or k. By Lemma (i), we have Zﬁf {Ej—1, 0k) 5] = O(n) as

n — oo. By Lemma F (i, 59D, 4cr, o Ty | (En120,)5] = O(n~) as n — oc. Hence,
313

the quantity in ( ) tends to zero as n — co. We have proved

Using the integration by parts formula (2.13) as well as Lemma , we have similarly
that

[nt] 4

el = Z Z( )|E (a) (]_1))9(4_a)(3(tk—1)))< ®5k 1 75;82 5§2>ﬁ®4<5ja5k>5§|

k=1 a=0
Lnt)
< Cn~43 Z (67, 0k) | Dby Lemma [3.2] (3)

k=1
L)
=CnP N (i — k) < On BN |p(r)| = O —— 0,

n—o00
Ji:k=1 reZ

with p defined by (2.4)).

Using similar computations, we also have

|Cy| < Cn™ 1/32 =CnY? ——0,

n—o0o
r=—00
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while

i)
Z E(g Ng(B(tr-1)))p*(j — k)

] k=1
[nt]A(|nt]—r)

:_Z > E(g(B(tj1),)g(B(tier1)))p (1)

re€Z j=1v(1-r)

— 0320 [ BB ds = [ BB b

reZl

the previous convergence being obtained as in the proof of (3.27) below. Finally, we have
obtained

t 1 t 2

E(G,(9,B,1)*) —— &2/ E(g*(B(s))) ds + 64E</ g"'(B(s))ds> , (3.14)
e 0 0

and the proof of (3.12) is done.

Step 2.- By Step 1, the sequence (B, G, (g1, B,u1), ..., G, (gm, B,um)) is tight in
Dg|0,00) x R™. Consider a subsequence converging in law to some limit denoted by

(B,Ggo(gl,B,ul), . ,G’go(gm,B,um))

(for convenience, we keep the same notation for this subsequence and for the sequence itself).
Recall V,,, defined in Lemma , and note that by (3.11)), we have

V= (G, (91, B,w1), ..., Gy (gms B, um)), n€NU{oo}. (3.15)
Let us also define
Wi (=5 [ e [T B .
o[ menass [T g
We have to show that, conditioned on B, the laws of V,, and W are the same.

Let A = (A1, ..., \y) denote a generic element of R™ and, for A\, up € R™, write (\, u) for
Yo Aitti- We consider the conditional characteristic function of W given B:

®(A) = E (e B) . (3.16)

Observe that ®(\) = M1 =20QN where yy := —(1/8) Jo gl (B(s))ds for k =1,....m
and @ = (gij)1<ij<m is the symmetric matrix given by

Gij = K° /OM N gi(B(s))g;(B(s)) ds.
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The point is that @ is the unique solution of the following system of PDEs (see [12]):

3}
a;\O (\) = (z,up Z )\kqpk) p=1,...,m, (3.17)

where the unknown function ¢ : R™ — C satisfies the initial condition ¢(0) = 1. Hence,
we have to show that, for every random variable £ of the form ¢ (B(s1),..., B(s,)), with
1 : R” — R belonging to Cp°(R") and sq,...,s, > 0, we have
0 AV [ i Voo
S B (09 = = [T B (gt ) as

—RQ;Ak /0 " B (0,(B(5))gu(B(s))Ee =) ds (3.18)

for all p € {1,...,m}.

Step 3.- Since (V, B) is defined as the limit in law of (V,, B) on one hand, and V,, is
bounded in L? on the other hand, note that

0 0
a3, B (€076) = lim o (7).
Let us compute ai,\pE (e"*Vni¢). We have
%E (e"MVmE) = iE(G,, (gp, B, up)e’™m¢). (3.19)
P

Moreover, see ([3.11]) and use (2.13)), for any ¢ > 0:
Lt
E(G,, (g, B, t)e™"¢) ZE (tj-1))13(85%)e*Vni¢)

3.20

= > B ((D* (a(Blt;-1))e 7€) .67 e0)

The first three Malliavin derivatives of g(B (tj—l)) AVl ¢ are respectively given by
D(g(B(t;-1))e"™>"¢)
= ¢'(B(tj1))e'M"¢ g1 +ig(B(t;1))e' ™ ED(A, V,,)
+9(B(tj1))e'™ " D,

D*(g(B(tj—1))e'™"m¢)
= ¢"(B(t;—1))e""¢ €52 + 2ig/ (B(tj-1))e'MVE DA V,,) @4
+2¢/(B(t;1))e'™" DE@ej 1 — g(B(tj1))e™e DA V,,)*
+2ig(B(t;-1))e'" DE® DA, V,,) +ig(B(t;_1))e’™ "¢ D*(\, V,,)
+g(B(t;1))e'™" D%,
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and

D*(g(B(tj-1))e'"¢)

= g"(B(t;-1))e'™¢E €93 4 3ig"(B(t;1))e'™ V¢ €52 @ D(A, V)

+ 39" (B(tj-1))e'M™ €52 @ DE = 3¢/ (B(t;-1))e"™ e DA V) ® g4

+6ig'(B(t;_1))e'™") DEQ DN\, V,) ®¢;_4

—ig(B(t;-1))e"ME DA, V) — 3g(B(t;-1))e"™") D(X, V,,)®* ® D¢
(t5-1))e"E DA V,) + g(B(t; 1)) D
+3ig(B(t;_1))e'™ D26 @ D\, V,)) + 3ig(B(t;_1))e'»" DE® D*(\, V,,)

)

- BQ(B(tjfl))eiQ’V”)f D<>‘7 Vn) é D2<)‘7 Vn>
(3.21)
Let us compute the term D3(\,V,,). Recall that

[nu ]

gr(B(te-1)) I3(657).

m

A V) =D NG (g Bouw) =D M

k=1 k=1 =

Combining the Leibniz rule (2.15) with D(Iq(f®q)) = ql, 1 (f2 V) f for any f € 9, we
have

—

m nug|
DAV, =3\ [g;:'(B(te_l))fs(é@ e2, + 91 (B(te1)) (072 B4

k=1 =1

+ 1845 (B(te—1)) 1 (80)er-1 @ 692 + 6gr(B(te_1))053 | . (3.22)

Combining relations (3.19)), (3.20)), (3.21]), and (3.22)) we obtain the following expression:

a LnU‘PJ

a/\ E( ()\,Vn)g) _ ( i\ V) f Z g/// 63 h@)%)

nup] m L”UkJ [nup)
—6E( AV”&ZZ)\]‘:Z% 9i(B(te—1))(de, 9; )—l—ZZTjn, (3.23)

=1 k=1

with
Tjn = ZZ Ak E (gp(B(tj—l))g "(B(te- 1))]3(5®3) Hmf) (01, 5j>%
+90) N Y E(gu(B(t-1))gi (Bte1)) I(57%)e" ) (er1,6;)5(66,67) 5
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[

+ ISZZAk Z gp (B(t; 1))92(B<U—1))]1(5€) HAn) §) (6¢,0; > (e-1,05) 5

k=1 /=1
+3iE (g (B(t;—1))e' M E(DN, V,), 650 5) (€5-1,0)%
+3E (g (B(t;-1)e'™" (D€, 6))5) (£5-1,0,)5,
—3E(91/3( (tj-1) inle DA, Vy), J>.26) (€j-1:05)
+6iE (g(B(tj—1))e'™" (DX, V), 8;) 5(DE, 5) )<5j—175j>5'3
+3E (g)(B(tj-1))e'M" (D¢, 67%) ge2) (€21, 6
—iE (gp(B(tj—1))e"™"E(D(N, V), 6,)%)
—3E (gp(B(t;-1)e">""(D(X, V,1),6;)5(DE, 6;) 5)
+3iE (g,(B(t;-1))e" (D (A, V), 65%) ge2) (€521, 05) 5
— 3E (gp(B(tj—1)e" " E(D(A, V), 6;) 5 (D> (N, V), 65%) g2 )
+3iE (gp(B(tj-1))e"™"" (D€, 6;) (DN, V,,), 652) o2
+3iE (gp(B(t;-1))e" " (D(X, V), 6;) 5( D3¢, 677) gy02)
+E(9p(B(t 1)) NTHDRE 657) en )

€
(&

1)
Je't
e

— Z R\, (3.24)
a=1
Assume for a moment (see Steps 4 to 8 below) that
[rup]
Z Tin — 0. (3.25)
sy n—00
By Lemma [3.2{ (iv) and since ¢/*V*), ¢ and g’ are bounded, we have
ULUPJ ‘ (_1) L”UPJ
‘ ( g Z 9 (B )(€j-1,6; >3@> - E<€Z(A’V">f X g . gZ’(B(tj—m)‘ — 0.

=1

Moreover, by Lebesgue bounded convergence, we have that

(0 x D %EJ 3 (500)) - (0 E0 [ g as) ~ o

Finally, since (B,V,,) — (B, V) in Dg[0,00) x R™, we have
i\, Vn) <_1) e 1" (A Voo) (_1) e "
Ele £ X 5 g, (B(s))ds | — Ele £ % 5 9, (B(s))ds |.
0 0

Putting these convergences together, we obtain:

iV ey [V (=1) [,
( o Z g"(B M ejo1,05)% > — E(ez< Veo) ¢ 3 /0 9, (B(s))ds). (3.26)
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Similarly, let us show that

' [nup| [nug]
0 (<0MIE S S Bty )an(Bla- (0153 )

e o (em@g x / 6p(B(5))gx(B(5)) ds) - (3.27)

We have, see (2.4) for the definition of p:

Lnup ] [nuy]

6> Y gp(B(ti—1))gr(B(te—1))(0¢, 6;)%

j=1 ¢=1

Lnup] [nug,]

_ g SN Gu(Bt-))gu(Bter))p* (¢~ j)

j=1 (=1
6 [nugk] -1 [nup ] A([nug ] —r)
== Yoo D> g(Blt)ge(Bltey). (328)
r=1—|nup] j=1v(1-r)

For each fixed integer r > 0 (the case r < 0 being similar), we have

1 [nup ] A(lnuk]—1) [nup A (Lnug | —7)
FED SRRATIURPAT TV B S SR AT ORI OR)
j=1v(1-r) j=1v(1-r)

< Cllgplloe sup  |gu(B(trrj-1)) — gr(B(tj-1))] %’ 0 by Heine’s theorem.

1< < nuy |

Hence, for all fixed r € Z,

1 [rup ] A(lnug ] —r) Up AU
- > gp(B(tj-1))gk(B(tr4j1)) —— ; 9p(B(5))gk(B(s))ds.
j=1v(1—r)

By combining a bounded convergence argument with (3.28)) (observe in particular that
K2 =6, (r) < oco), we deduce that

[nup ] [nuy]

63 S (Bl )ge (Bt 1) (006,08~ 2 / T G(B() g (B(s)) ds.

n—oo
j=1 =1

Since (B,V,) — (B, V) in Dg[0,00) x R™ we deduce that
[nup| [nug)
(Vn,g,a 3 gp<B<tj_1>>gk<B<tf_1>><5e,6»%)
j=1 ¢=1 k=1,....m

Law, (Voo,ﬁ, K? /upm% 9p(B(s))gr(B(s)) ds> in R x R x R™.
0
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By boundedness of ¢“*Vn) ¢ and g;, we have that ([3.27) follows. Putting (3.25)), (3.26)), and
(3.27)) into (3.23)), we deduce (3.18)).

Now, it remains to prove (|3.25)).

Step 4.- Study of R\ R(-s) and R(w) in (3.24). Let k € {1,2,3}. Since

Jm?

k
D 5_ Z as . 83 (B517"'7Bsr)1[0,5i1] ®”'®1[0»3ik}’
21 1k

15yl =1
with ¢ € Cg°(R"), we have ZWJ (D¢, 65%) ] < Cn=*=1/3 by Lemma (i) and (i1).
Moreover, |(g;_1,0;)g| < n7/3 by Lemma (¢). Hence, ZJLZJ \Rﬁpﬁ,l = O(n™*?) ——0
for p € {5,8,15}.

Step 5.- Study of Rj(m and R o in . We can write, using Lemma (), Cauchy-
Schwarz inequality and the deﬁmtlon of p among other things:

[nup]
> |
7=1

[nup] [nus]

ZIM\ > |E(9(B )9 (B(te-1))11(80)e" ™€) [(6e, 0,05 (€01, 0;) 5|

j=1 ‘¢=1

Lnup] [nuy]

<On 0NN pl— G <O N p(r)? = Cn P —— 0,

j=1 ¢=1 =

Concerning Rr?

i n» We can write similarly:

[nup|

> R
j=1

k=1

(B(tj—1)) gk (B(te—1))I2(672)e" ™€) | |(0¢, 6) 5| (Ee-1, 67)

Lnupj LnukJ
j=1 ¢=1

Lnup] [nuy]

<Cn B3N ot ) < Cn T BY o) = Cn Y —— .

j=1 ¢=1 reZ o
Step 6.- Study of Rjn, R]('i)w Rﬁ?, and RJ(~’12). First, let us deal with Rﬁ In

order to lighten the notation, we set &, = g,(B(tj_1))gy(B(t,—1))¢. Using I(65°) =
L(6P*)1,(6,) — 2n~Y31,(8,) and then integrating by parts through (2.11]), we get

B (¢Og1y(07%)) = B (Mg L)L (6)) — 207 P E (808 o8 (60))
_E ( iV T, (592)(DE; 4, 8¢, )
+ z)\E( iV I, (582), (D (A,Vn>,5e)5> .
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Due to Lemma (1) and Cauchy-Schwarz inequality, we have

sup sup )E <€i<)\’V">[2(5Z®2)<ng7g,5@>5§>‘ <Cn7¥3

=1,..., [nug| j=1,...,|nup ]

By (3.5) and Cauchy-Schwarz inequality, we also have

sup sup ‘E (€i<A’V">[Q(5§2)§j,Z<D<)\,Vn>,(5@)5)‘ <Cn~¥?

Hence, combined with Lemma [3.2] (i) and (i), we get:

Lnup | Lnup | [nuy]
Z [Rjo] < Z Al D2 D7 1B (@(Bt-)g (Blte)I(67)e X 6) |[{ee-a, 65
j=1 ¢=1
[nup]
< Cn~1/3 sup Z } €0—1,0 | < Cn~13 ——0.
=1,...,|nug n—0oo
Now, let us concentrate on R . Since XMVl € and g, are bounded, we have that
[y | [up |
Z ROI<C Z n) 0305) Keio1,0) s
[nup)
< Cn~Y/3 Z E((D{\V,),6;)5) by Lemma[3.2) (i)
j=1

<Cn™?? ——0 by (3.6).

Similarly,

[nup ] [nup]

Z R <337 |B (ap(Blt;1) e ™ EDN, Vi) b7) o DX, Vi), 072 g )|

L”upJ

<C Z (E (DN, V,.),6,)%) + E ((D*(\,V,, >,5§92>5®2))
j=1

<Cn ' ——0 by and .

we can write:

For R(

Jn )

[nup] [nup]

STIRI <3 E (gp(B(tj—1))e ™" (DN, V,.), ;)3 (DE, ;) 5) |
P =1

[nup

< Cn3 Z |E ((D(\,V,)),6,)2)| by Lemma [3.2 (4)

<Cn™¥* —— 0 by (3.6).

31



Step 7.- Study of RY, BT RV RV and R,

]n) ]n) ]n?

Using (|3 , and then Cauchy-Schwarz mequahty and Lemma |3.2] (7), we can write

[nup)
Z RS2
[nup] '
<3 |E(gy(B(t;1)e'™" (DA V), 65)5)] (gj-1,67)%
j=1
[nup] [nu] '
< 3Z|>\k| Z Z |E (g, Ge(B(ti1))e'MED(57%))| (i1, 05) 0] (g1, 0,)%
L”up [nu ] '
+9Z | Akl Z Z |E(g, ge(B(ti-1))e" M EL0F%)) | [(6::65) 0| (851, 0,)%
nupj [nup] [nug]
< Cn~Y 1<zS<uLEukJ Z | €i—1,0 55| +Cn~Y3 Z lZ: |p Z—j < Cn~1/6 EO'

Using the same arguments, we show that ZLMPJ ‘R(7)| —— 0 and ZLM”J ‘R (14) ’ — 0.
Differentiating two times in , we get

[nug
(D*(\, V), 67%) e = ZAk Z R (B(ti-1))1s(57°) (ei-1, 65)5,
[nug |
+6Z/\k Z G(B(ti-1)) 12(07%) (Ei-1, ;) (05, 67) 5
LnukJ

+62/\k Z gr(B(ti1))11(8:)(6:,0,)%.

Hence, using Cauchy-Schwarz inequality and Lemma [3.2| (i)-(ii), we can write

[nup]

Z |R11

L”“pJ

=7 Z B (g (B(t;-) (DA, V), 65%) ge2) | (e5-1,6)

Lnaup | [rug |

< 32 | Al Z Z |E(g,(B Vg (B(ti1))e' ™ eI (07%)) | (eim1, 6505|521, 65) s

Ln“pJ [nug]

+ 182|/\k| Z Z |E(g,(B V(B (i) ML (552)|

X |<€i_1,(5j>y)|‘<5j—175j>.6”<6i75j>~‘73|
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[nup] [nug ]

+18Z!/\k| Z Z |E(9,(B(t;-1))gk(B(ti1)) e M0 (6:) | [{ej-1, ;)5 |(6, 3,5,

L"”pJ [nup | [nug]

<Cn7 Y5 sup Z‘ez 1,0 ‘+C’n_4/3z Z}pz—]

1<i< LnukJ

[nup] |nus]

+Cn~ 5/62 Z}pz—j

<Cn Y% — 0.

n—oo

Using the same arguments, we show that ZLWM ‘R(l?’ ‘ — 0.

n—oo

Step 8.- Now, we consider the last term in (3.24]), that is R . Since Vel ¢ and g,
are bounded, we can write

[nup)] Lnup )
S RY) <C’ZE n):05)sl°)
j=1
n“pJ
<CS BUDRY.).3)3) + E(DO)-03%).

In addition we have, see (3.8)), that

[nup |

> BUDN V), 6)3)
j=1
[nup| m |nuk | |nug | [nug| [nuk]

S DI S I (H ct ) (Bt (G2

7j=1 k=1 i1=1 12=1 iz3=1 14=1

[nup] m [nug] [nug ] [nug] [n 4
+ 648m? Z Z/\4 Z Z Z (H ias 07)591(B —1))—72(522))
j=1 k=1 i1=1 12=1 i3=1 ig4=1 a=1
[nup] [nug] [nug] [nug] [nug ] 4
<czxx[ R0 30 3D 30 D MTE | IETES L)
=1 i1=1 d2=1 i3=1 iy=1 a=1
[nup | |nug | [nuk| [nuk] |nug ] L 4
1555 95 35 9 ) | (TR Gy exETmRt S
7=1 41=1 1i9=1 i3=1 i4=1 a=1 a=1

By Lemma we have that

[nuk] [nug] [nuk] [nug]

IIDIDIDY

i1=1 do=1 iz3=1 ig=1

E(Hgk tiy-1 ]3(5®3))‘ <C,
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so that

Lnup ] [nug ] [nug | [nug] [nuy]

LD IDIDIDIDD

J=1 d1=1 dp=1 i3=1 i4=1

(Hgk tiy—1)) 1367 ))‘ < Cn'?

On the other hand, by Cauchy-Schwarz inequality, we have

‘ (Hgk (ti,—1) 12(5®2)>‘§C>

so that, with p defined by ([2.4)),

[nup] [nug] [nug] [nuk| [nuk] 4

2.2, 2. 2 > 11w

=1 di1=1 d2=1 i3=1 i4=1 a=1

(i on)

[nup] [nug] [nug] [rug ] [nug]
<O BN TN T plin =) x D> el —5) % Y lplis — 3) x> |p(is — )
=1 41=1 io=1 i3=1 ig4=1
4
<o ( Slptnl) = cn
reZ
As a consequence, combining the previous estimates with (3.6)), we have shown that
[nup ]
Z R]n <On Y? ——0,
and the proof of Theorem is done. O

Theorem 3.8. If g € C>®(R) is bounded with bounded derivatives, then the sequence
(B,G/}(1,B),G/}(g,B)) converges to (B,[B],(1/8) [ ¢"(B)ds + [ g(B)d[B]) in the sense

of finite-dimensional distributions on [0, 00), where

[nt]
Gl (g,B,t) = \/_Zg s(n'/SABy), t>0, n>1.

Proof. The proof is exactly the same as the proof of Theorem , except €;_; must be
everywhere replaced ¢;, and Lemma (v) must used instead of Lemma (1v). O

Proof of Theorem [3.1. We begin by observing the following general fact. Suppose U
and V' are cadlag processes adapted to a filtration under which V' is a semimartingale.
Similarly, suppose U and V' are cadlag processes adapted to a filtration under which V' is a
semimartingale If the processes (U, V) and (U, V) have the same law, then [ U(s—)dV (s)

and fo dV( ) have the same law. This is easily seen by observing that these integrals
are the 11m1t in probability of left-endpoint Riemann sums.
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Now, let G, and G, be as defined previously in this section. Define

G‘(g,B,t):—é/o g”’(B(s))ds+/0 4(B(s)) d[B].,

60,0 = 5 [ 9" BN ds+ [ o(B6)) dLBI.
Let t = (t1,...,tq), where 0 < t; < --- < t4. Let
G, (9.B,t) = (G, (9, B 1), ..., G, (g, B,ta)),
and similarly for G, G, and G*. By Theorems , and the sequence
{(B,Va(B), G, (9, B,t), G (g9, B, )}y

is relatively compact in Dg2[0,00) x R x R?. By passing to a subsequence, we may assume
it converges in law in Dg2[0,00) x R? x R? to (B, [B], X,Y), where X,Y € R<.

By Theorems2.11|and 3.7, {(B, V,.(B), G,, (g, B, t))} is relatively compact in Dg:[0, 00) X
R?, and converges in the sense of finite-dimensional distributions to (B, [B], G~ (g, B,t)). It
follows that (B, V,,(B), G,, (g, B,t)) — (B,[B],G~ (g, B,t)) in law in Dg:[0, c0) x R?. Hence,
(B,[B],X) and (B, [B],G (g, B,t)) have the same law in Dg2[0,00) x R?. By the general
fact we observed at the beginning of the proof, (G~ (g, B),X) and (G~ (g, B),G (g, B,t))
have the same law. In particular, (G~ (g, B,t),X) and (G~ (g, B,t),G (g, B,t)) have the
same law. But this implies G~ (g, B,t) — X has the same law as the zero random variable,
which gives G~ (g, B,t) — X =0 as.

We have thus shown that X = G~ (g, B, t) a.s. Similarly, Y = G*(g, B, t) a.s. It follows
that

(B,Va(B), G: (g B),G1(9, B) — (B, [B], G (g, B),G*(g, B),

and therefore

G;(Q,B);er(g, B)) . (87 5], G~ (g, B);Gﬂg, B)) 7

<B, Vo(B),

in the sense of finite-dimensional distributions on [0, 00), which is what was to be proved. O

4 Moment bounds

The following four moment bounds are central to our proof of relative compactness in

Theorem .12

Theorem 4.1. There exists a constant C' such that

E|V,(B,t) =V, (B,s)|* < C (M)Q

for alln, s, and t.
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Proof. The calculations in the proof of Theorem 10 in [I1] show that
[nt] p<Op(LntJ_LnsJ)p7
n

Y AB
for all n, s, and t. O

j=lns|+1

Theorem 4.2. Let g € CY(R) have compact support. Fiz T > 0 and let ¢ and d be integers
such that 0 <t,<t; <T. Then

d

> 9(B)ABY

j=c+1

2

E < Cllgll? oAt [ts — ]2,

where 119|100 = [|9lloc + 119 ||, and C' depends only on T.
Proof. Note that

d
> 9(3) AB5 Z Z Eij, (4.1)
j=c+1 i=c+1 j=c+1
where By = Elg(3)ABg(3;,)AB}]. Let K = ||g|li,00, and define f : R* — R by
f(x) = K~ %g(z1)g(xe)x3. Note that f has polynomial growth of order 1 with constants
K=1andr=>5.

Let & = Bi, & = 85, & = AtYSAB, Y = At7YSAB;, and ¢(y) = 3°. Then
By = K2APE[f(€)p(Y)]. By Theorem 2.7 with & = 0, |E[f(€)¢(Y)]] < C|n|, where

E[¢;Y]. Using Lemma[2.9) we have

E

Im| < CALS(23 4 |5 — i 7

‘772| < CAtl/G —2/3
5/3

Y

Ins| < Clj —il;
Hence,

Byl = K2APPIE[F(€) (V]| < CEA AV 415 — i 7)) + AP — i °7).
Substituting this into (4.1]) gives

d 2
E| Y g(Bt;)AB)| < CK*(At"S(d—c)* + AtP(d - ¢))
Jj=c+1
< CK2APR(d — )P = CK2AY3|ty — t.|*?,
which completes the proof. O

Theorem 4.3. Let g € C*(R) have compact support. Fiz T > 0 and let ¢ and d be integers
such that 0 <t,<t; <T. Then

d

Z 9(8;)AB}

Jj=c+1

2

E < llglZcclta — tel.

where ||9llz.00 = lIgllcc + 19'lloc + llg"lloo, and C depends only on T
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Proof. Note that

d
E| Y g(8) AB3

j=c+1

Z Z Eyj, (4.2)

i=c+1 j=c+1

where Ej; = Elg(8)AB}g(8;)AB}]. Let K = ||glla,c0, and define f : R® — R by
f(x) = K~ %g(z1)g(xs)xs. Note that f has polynomial growth of order 2 with constants
K =1andr=3.

Let & = B, & = B, & = AtVOAB;, Y = At7YSAB;, and ¢(y) = y®. Then
Ey; = K*AtE[f(§)p(Y)]. By Theorem 2.7 with k = 1, E[f( Yo V)]| = mEof(€)] +
o E[0:f(€)] + R, where |R| < C(ns| + [n[*). By 2.17),if j =1 or j = 2, |E[9;f(§)]| <
C(IE[G&]] + [E[€&]]). Therefore, using |ns* < [ns] and ab] < af* + [b]%,

|Eij| < CEPAt(In] + [m|* + [ml* + |E[61&]]” + |Bl&8]).
Using Lemma [2.9] we have

|El68s]| < CAYo(i 2/3jL i,
|E[€1&5]| < CALYS~

Together with the estimates from the proof of Theorem [.2] this gives
_ —4/3 3
Byl < CRAAEPYE 4 57 4 | =il ) + At — i 777),

Substituting this into (4.2)) gives

d

> 9(B(t;))AB;

Jj=c+1

2

E < COK?*At(d —c¢) = CK?|tq — t.|,

which completes the proof. O

Theorem 4.4. Suppose g € C3(R) has compact support. Fiz T > 0 and let ¢ and d be
integers such that 0 <t. <ty <T. Then

d

> (9(8) — 9(B.)AB]

j=c+1

2

E < Ctg —to*?,

where C' depends only on g and T'.
Proof. Let Y; = ¢(3;) — ¢9(B;), and note that

d 2
> YiAB]

j=c+1

=> > Ey (4.3)

i=c+1 j=c+1

where Ey; = E[Y;AB}Y;AB?]. For fixed i,j, define f : R* — R by

f) = (g(l‘l +0iw2) — 9(1‘1)> <9($1 +0;3) — 9(1’1)> 3

Ly
g; 0; ’
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where UJ2- = E|B; — 3.)*. Note that f has polynomial growth of order 2 with constants K
and r that do not depend on ¢ or j.

Let & = Boy & = 07 (B — ), & = 07 (8 — Bo), &4 = At VSAB, Y = At-1/SAB;, and
o(y) = y*. Note that E;; = 0,0, AtE[f(&)p(Y)], so that by Lemma [2.9 .

|Eijl < OOt — o Vo] — o VB[ (€)e(Y)]]. (4.4)
By Theorem 2.7 with k = 1, E[f()p(Y)] = 3Y0_ mE[0:f(€)] + R, where |R| <
C(Ina| + |n|?). Using |ab| < |a|* + |b|* and the fact that |n;|* < |n|?, this gives

ELF(©)p(Y) |<0(§]Emf F+mu+wﬁ

By ([@2.17), for each k < 3, |E[0xf(€)]] < CY5_, | E[&€4]|. Therefore, since n; = E[¢;Y], we
have

[ELf(©)e(Y)]] < C<E[£4Y] + Y (EGY]P + !E[ék&]\z))- (4.5)

To estimate these covariances, first note that d — ¢ = n(ty — t.) < nT. Hence, At =n~ ! <

C(d — ¢)~!. Now, using Lemma 2.9

[E[&Y]] < CAMO|j — o2 < Cld — | /0)j — o 3 < Cj — o /S,
EI&Y]] < Cli— o 7Yo(j — o + |5 — il 1*?),

El&Y]| < Clj — |70 — ¢ 2 = CJj — |75,
By < Clj—al .

Similarly,
|Bl61&]| < CALVOli — o 2 < Cld — o] VOli — o] 7 < Oli — o ™/°,
|Bléaa]| < Cli— | 0i = e % = Cli — | ",
[Blstall < Clj — el 7Vo(li = e 4 15 = ily™).

Substituting these estimates into and using gives

|Ei| < CAE3(Ji — e|Y0]5 — V)5 — i
i — YO = e i — VO — T 4 i — o MO — MO — il
i — 2 = YO i =TT — TV 4 Ji — o VO] — VO] — i),

4/3

We can simplify this to

[ = | — e O — o]
+ |7/ _ C|77/6|j o C|1/6 + |’L o C|1/6|j . Z,;4/3)

Byl < CAE (i — |05 — ¢| /5] — il *
[
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Using |ab] < |a|* + |b|?, this further simplifies to

Byl < CAB (i — |35 — il + |5 — e[3lj —i| i °
i = el 0l = e O i = |0 - ).

We must now make use of (4.3)). Note that

d d d
AN N i — o =i < AR i

i=c+1 j=c+1 i=c+1
< CAR(d — )3 = Ctyg —t|¥°.

Similarly,

d d
AN N =l — il < Ot — ]

j=c+1i=c+1

Also,

d d d
AENTNT i — e O = o O < CAEE Y i — oS < O (d — )70
i=c+1 j=c+1 i=c+1
< CAR(d — )3 = Cltg — t*3,

and similarly,

d d
AN N i T = oS < Oty — L]

j=c+1i=c+1
It follows, therefore, that Z?:CH Z?:CH |Eij| < Clty — t|*3. By (4.3), this completes the
proof. O

5 Proof of main result
Lemma 5.1. If g € C*(R) has compact support, then ZJ@% 9(B;)AB? — 0 ucp.

Proof. Let X, (g,t) = thitlj 9(B))AB?. Fix T > 0 and let 0 < s < t < T be arbitrary.

Then
d

Xo(g:t) = Xulg,s) = D 9(B)ABY,

Jj=c+1

where ¢ = |ns] and d = [nt|. By Theorem

2 1/3 4/3 5/3 |nt] — |ns| 5/3
E|X0(g,t) — Xn(g,8)|> < CALB|ty — t 73 < Oty —t P = [ 2 — 20 )

n

where C' depends only on g and 7. This verifies condition (2.6) of Theorem 2.2l By
Theorem 4.2} sup,, F|X,,(9,T)> < CT*? < cco. Hence, by Theorem 2.2, {X,,(g)} is relatively
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compact in Dg[0,00). By Lemma [2.3] it will therefore suffice to show that X,,(g,¢) — 0 in
probability for each fixed t. But this follows easily by taking s = 0 above, which gives
E|X,(g,1)]*> < CAt'/3 and completes the proof. O

Lemma 5.2. If g € C%(R) has compact support, then

L

(g’ B:t) = g(B(1)) = 9(B(0)) + 5 > 9" (3)AB;.

=1
Proof. Fix a,b € R. Let = (a +b)/2 and h = (b — a)/2. By Theorem [2.6

g(b) — g(a) = (g(z + h) — 9( ) — (g(x — h) - 9(1’))

- Z Z ‘I'Rl(I h) — Ry(z, —h)
- Z ]'21] 19 ( )(b_ a) +R1(x, h) —Rl(x’_h)
=g'(x)(b—a)+ 2_149///@)(6 —a)®+ 5'249 9 (x)(b—a)® + Ry(a,b),

where Rs(a,b) = Ry(x,h) — Ry(x, —h) and

Ryi(z,h) = };—(;/01(1 — u)ﬁ[g(ﬁ)(x + uh) — g(ﬁ)(x)] du.
Similarly,
g*”;““>—yuw:g¢m+hwwﬂm»+4yw—hwwﬂm>
_ %ig 1) 25: G+ W + Ray(a,b)
:éywww—a> 4éﬂ ()b — a)* + Ry(a.)

where Ry(a,b) = R3(z,h) + R3(xz,—h) and

h5

Rs(z,h) = a0

/(Lw&w@m+um—¢wwww

Combining these two expansions gives

o) () = DI ) )0~ 0 4990 (@) 0 — )+ Roa ),

where v = (5!24)71 — (4124)~! and

Rg(a,b) = Ro(a,b) — Ry(a,b)(b— a).
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Note that Rg(a,b) = h(a,b)(b— a)®, where
ha,b)] < C sup [0z + uh) — g©()].
0<u<l1

Taking a = B(t;_1) and b = B(t;) gives

B8 = (B2 = LB L IED L s s o505
+ h(B(tj_1), B(t;))AB;}
Recall that B, (t) = B(|nt]|/n), so that

[t
g(B()) — g(B(0)) = I(¢', B.1) —izg'" (BAB? + £a(g, 1),

where

[nt| |nt|

729 (B)AB;] + Z h(B B(t;)AB] + g(B(t)) — g(Bu(t))-

It will therefore suffice to show that ¢,(g,t) — 0 ucp.
By the continuity of g and B, g(B(t),t) — g(Bn(t) |nt]/n) — 0 uniformly on compacts,
with probability one. By Lemma since g® € C'(R), WZJLTIJ g®(B;)AB? — 0 ucp. It

remains only to show that

|nt]
> h(B(tj-1), B(t;))AB) — 0 ucp. (5.1)

Fix T > 0. Let {n(k)}°, be an arbitrary sequence of positive integers. By Theorem [2.10}
we may find a subsequence {m(k)}72; and a measurable subset Q* C 2 such that P(Q2*) = 1,
t — B(t,w) is continuous for all w € Q*, and

(k)]
> ABjmy ()" — 15t (5.2)

Jj=1

as k — oo uniformly on [0, 7] for all w € Q*. Fix w € Q*. We will show that
m(k m(k
> h(BEY,w), BE™,w) A (w)° — 0,

as k — oo uniformly on [0, T], which will complete the proof.
For this, it will suffice to show that

[m(k)T] i
ST BEY w), BETY,w))|AB; i (w)® — 0,

j=1
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as k — oo. We begin by observing that, by , there exists a constant L such that
Z]Lgkm AB; iy (w)® < L for all k. Now let ¢ > 0. Since g has compact support, g is
uniformly continuous. Hence, there exists § > 0 such that |b —a| < ¢ implies |h(a,b)| < e/L
for all t. Moreover, there exists ky such that & > ko implies |AB; ) (w)| < 0 for all
1 <5< |m(k)T|. Hence, if k > ko, then

[m(k)T] i
> BEY, w), BT, w)|AB)ma)

j=1

b«lm

m(k)T
Z jmk) <€7

which completes the proof. O

Corollary 5.3. If g € C®(R) has compact support, then I,(¢', B,t) ~ X, (t), where for any
T >0,

sup sup FE|X,(t)|* < co.
n  te[0,T7]

Proof. This follows immediately from Lemma [5.2) and Theorem [4.3] O

Lemma 5.4. If g € C%(R) has compact support, then {I,(g', B)} is relatively compact in
DR [0, OO) .

Proof. Define

[nt]

5 20"

Y(t) = g(B( )) — 9(B(0))
en(t) :=I.(¢, B, t) = Y(t) — X,.(t).

Since (z,y,2) — = + y + 2z is a continuous function from Dgs[0,00) to Dg[0,00), it will
suffice to show that {(X,,Y,s,)} is relatively compact in Dgs[0, c0). By Lemma[5.2} ¢, — 0
ucp, and therefore in Dg[0, 00). Hence, by Lemma it will suffice to show that {X,} is
relatively compact in Dg[0, 00).

For this, we apply Theorem with 8 =4. Fix T >0 and let 0 < s <t < T. Let
c = |ns] and d = [nt]. Note that g(a + b)* < C(Ja|* + |b|*). Hence, since g has compact
support and, therefore, ¢" is bounded,

Elg(X,(t) — X.(s)Y] = E{Q(rlg i glll(ﬁf)AB?)T

j=c+1
d 2 d 4
<CE| Y (¢"(B) — g"(BNABE| +CE| Y ¢"(B.)AB?
j=c+1 j=c+1
d 2 d 4
<CE| > (¢"(8) —¢"(B.))AB}| +CE| >  AB!
j=c+1 j=c+1
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Since ¢”" € C3(R), we may apply Theorems and [4.1] which give

4 4/3 2 [nt] — |ns] e
Elq(X,(t) — X0 (5)"] S Cltg —t|"° + Clta — t|* < C e :
which verifies condition (2.6]) of Theorem [2.2] As above,
|nT] 2 [nT] 2
EIX,(T))” < CE| Y (¢"(8;) — ¢"(B.)AB}| +CE|)_ AB}

j=1 Jj=1

|nT] 2 [nT] 4y 1/2
<08 Y "0) - 9" 6aB| +o(E| X o )

j=1 j=1
<CT'?+CT.

Hence, sup,, F|X,,(T)|* < oco. By Theorem , {X,} is relatively compact, completing the
proof. O

Lemma 5.5. If g € C°(R) has compact support, then

[nt]
1 9" (B(t;-1)) + 9" (B(;))
I.(¢,B,t) = g(B(t)) — g(B ? 22 hy(n*/SAB;).
(0 Bu1) = 9(B0) — o(BO) + 1= . (n°05,)

Jj=1
Proof. Using the Taylor expansions in the proof of Lemma [5.2] together with Lemma [5.1],

we have ] ”
nt ntl oy 1"
3y 3 B(tj_1)) + ¢"(B(t;

J=1 J=1

By Lemma since hs(r) = 2% — 3z, it therefore suffices to show that

[nt] /// "
B(t;
_1/3 2 : + g ( ( ]))ABj — n—l/SIn(g///’ B,t) ~ 0.
Since ¢”" € C5(R), this follows from Lemma , Corollary , and Lemma . O

Proof of Theorem . We first assume that ¢ (and also G)) has compact support. By
Lemma and Theorem [3.1] we need only show that {(B,V,(B),1,(g,B))} is relatively
compact in Dgs[0,00). By Lemma [2.1] it will suffice to show that {I,(g, B)} is relatively
compact in Dg[0, 00). But this follows from Lemma completing the proof when ¢ has
compact support.

Now consider general g. Let

=, = (B,Va(B), I.(g, B)) and E = (B,[BI, [ (B

For T > 0, define ZX(t) = Z,,(¢)1 sy and Z7(¢) = Z(¢)1{z<7y. By (3.5.2) in [4], if two cadlag
functions = and y agree on the interval [0,7T), then r(x,y) < e™7, where r is the metric on
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Dga[0, 00). Hence, by Lemma [2.4} it will suffice to show that =7 — =7 in law, where 7' > 0
is fixed.

Let H : Dgs[0,00) — R be continuous and bounded, with M = sup |H(z)|. Define
X, = H(ZL) and X = H(ZT), so that it will suffice to show that X,, — X in law. For each
k > 0, choose Gy, € C%(R) with compact support such that G = G on [k, k]. Let g, = G,

:nk_(B V(B)vln(gk7B))7 Ek:<B7 HBﬂﬂfgk(B)dB)

Xy = H(ZEL,) and Yy = H(EL). Note that E[X, — X, 4| < &, where

op =2MP < sup |B(t)] > k‘) .

0<t<T

Also note that that 6, — 0 as k — oco. Since Gy has compact support, we have already
proven that X, — Y3 in law. Hence, by Lemma[2.4] it will suffice to show that ¥, — X in
law. However, it is an immediate consequence of (2.19)) that =1 — =T ucp, which completes
the proof. |

Proof of Theorem As in the proof of Theorem {(B,Vn(B), J,)} is relatively
compact. Let (B, X,Y) be any subsequential limit. By Theorem 2.11, X = kW, where
W is a standard Brownian motion, independent of B. Hence, (B, X Y) (B, [[B],Y).
Fix j € {1,...,k}. By Theorem m, (B, [B],Y;) has the same law as (B, [B], [ g;(B

Using the general fact we observed at the beginning of the proof of Theorem - together Wlth
(2.19) and the definition of [B], this implies ([ g;(B)dB,Y;) and ([ g;(B)dB, [ g;(B)dB)
have the same law. Hence, Y; = [ ¢;(B)dB as., so (B,X,Y) = (B,[B]. J). O
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