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Abstract We consider the estimation of unknown parameters in the drift and diffusion coef-
ficients of a one-dimensional ergodic diffusion X when the observation Y is a discrete sampling
of X with an additive noise, at times iδ, i = 1 . . . N . Assuming that the sampling interval tends
to 0 while the total length time interval tends to infinity, we prove limit theorems for functionals
associated with the observations, based on local means of the sample. We apply these results
to obtain a contrast function. The associated minimum contrast estimators are shown to be
consistent. We provide an illustration on simulated and real data from neuronal activity.

Keywords: contrast function, diffusion process, hidden Markov models, parametric inference,
discrete time noisy observations.

1. Introduction

Statistical inference for continuous time models based on high frequency data has been
the subject of a huge number of recent papers. On one hand, continuous time stochastic
processes are increasingly used for modelling purposes. On the other hand, such kind of
data is now commonly available in various fields of applications whether in finance or in
biology and medicine.

Among continuous time models, one-dimensional diffusion processes have received a
lot of attention. In particular, diffusion models have been introduced in the studies of
neuronal activity (see e.g. Ditlevsen and Lansky (2005), Höpfner and Brodda (2006) and
the references given in these papers). More precisely, let (Xt) be given by the stochastic
differential equation:

dXt = b(Xt, κ)dt + σ(Xt, λ)dBt, X0 = η (1.1)

with B a standard Wiener process and η a random variable independent of B, and
b(., κ), σ(., λ) real valued functions, defined on R, depending on unknown parameters
(κ, λ) ∈ R

d1 × R
d2 . Suppose that, for some positive sampling interval δ, a sample
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2 B. Favetto

(Xiδ, i ≤ N) is observed and that is required to estimate θ = (κ, λ). As the exact likeli-
hood of such observation is generally intractable, other methods have been developped to
obtain explicit estimators : minimum contrast estimators, estimating equations, simula-
tion based methods, . . . See e.g. Florens-Zmirou (1989), Yoshida (1992), Kessler (1997),
Bibby and Sørensen (1995), Sørensen (2009), Genon-Catalot (1990), Genon-Catalot and
Jacod (1993), Pedersen (1995b), Pedersen (1995a), Äıt-Sahalia (2002).

More recenty, especially in the case of high frequency data, other kinds of observations
have been investigated among which the case of noisy observations. Suppose that, instead
of observing exactly Xiδ, the observation at time iδ is given by

Yiδ = Xiδ + ρεiδ (1.2)

with (εiδ, i ≥ 0) a sequence of i.i.d. random variables, satisfying E(εiδ) = 0, E((εiδ)
2) = 1,

independent of the process (Xt). This kind of model takes into account measurement
errors or, in the case of financial data, the so-called microstructure noise (see e.g Zhang
et al. (2005), Jacod et al. (2009)). It provides a model fitted to data which show non
Markovian features.

The exact likelihood of (Yiδ, i ≤ N) given by (1.1)-(1.2) is generally intractable except
for few models (essentially for Gaussian diffusions with additive Gaussian noise, see e.g.
Cappé et al. (2005), Pedersen (1994), Favetto and Samson (2009)). For data within a
fixed length-time interval (δ = δN = 1

N , NδN = 1), estimation for a general diffusion
with additive Gaussian noise is investigated in Gloter and Jacod (2001). The authors use
a contrast method. Only diffusion coefficient parameters can be consistently estimated
in this case.

In this paper, we study observations given by (1.1)-(1.2) where δ = δN → 0 while
NδN → ∞, under ergodic properties for the hidden diffusion X and propose consistent
estimators of both the drift and diffusion coefficient parameters (κ, λ). The noise distri-
bution is unknown, the variance ρ2 of the noise term may be known or unknown and we
assume either that ρ is fixed or that ρ = ρN → 0.

Our starting idea is to reduce the influence of the noise by splitting the sample into
sub-samples and taking empirical means of the sub-samples. More precisely, we split the
sample into p blocks of size k, with N = pk, where p = pN and k = kN tend to infinity
with N . Then, setting ∆N = pNδN where pN and δN are chosen such that ∆N → 0, we
build the empirical mean of the jth block:

Y j
• = Xj

• + ρNεj
•, j = 0, 1 . . . kN − 1, (1.3)

where, for Z = Y,X, ε,

Zj
• =

1

pN

pN−1
∑

i=0

Zj∆N+iδN
. (1.4)

Thus, ∆N defines a coarser sampling interval than δN , still tending to 0 while NδN =

kN∆N → ∞. The empirical mean Xj
• is close to the mean X̄j = 1

∆N

∫ (j+1)∆N

j∆N
Xsds of

X over [j∆N , (j +1)∆N ], which, in turn, is close to Xj∆N
. The variance of εj

• is reduced
by a factor 1

pN
.
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Parameter estimation for noisy diffusion process 3

Our statistical procedure is based on the kN− sample (Y j
• , j = 0 . . . kN −1) and follows

a scheme analogous to the one in Gloter (2006). We study the differences Y j
• − Xj∆N

(Proposition 3.2) and prove a regression type relation for the Y j
• ’s (Proposition 3.3)

which is the basement of the statistical applications. These results allow us to prove limit
theorems for the variation and the quadratic variation of (Y j

• ) (Theorems 4.1 and 4.2).
We precise the adequate calibration of δN and pN for the limit theorems to hold. Then
we introduce two different contrasts: according to the rates of pN , δN , the noise variance
has or has not to be taken into account. We set δN = p−α

N , with 1 < α ≤ 2. For α = 2
and ρN = ρ, the value ρ2 appears in the contrast definition. In each case, we prove the
consistency of the associated minimum contrast estimators. As could be expected, we
have to deal with two-rate contrasts, which indicate that drift parameters estimators
must have rate

√
kN∆N , while diffusion coefficient parameters estimators must have rate√

kN . The study of the asymptotic distributions of the minimum contrast estimators is
postponed to a further paper. Estimators are implemented on simulated data and on real
data of neuronal activities provided by Idoux et al. (2006).

The paper is organised as follows. In Section 2, we give our notations and assumptions
on the model. Section 3 is devoted to the small sample properties of the empirical means
sample (Y j

• ) and Section 4 to uniform convergence in probability results. In Section 5, we
introduce the contrasts and prove the consistency of the estimators. We also deal with
the case ρN = ρ unknown and prove that ρ2 can be replaced by an estimator in the
contrast formula.

Section 6 is devoted to examples and numerical results. For several models of hid-
den diffusions, we implement our estimators on simulated data for different choices of
(N, δN , pN ) and of the noise level. We illustrate the estimation method on the set of
neuronal data for one model of diffusion with estimated noise level. Section 7 contains
some concluding remarks. Proofs are gathered in Section 8, and some auxiliary results
are recalled in the Appendix.

2. Assumptions and Notations

Consider the one-dimensional stochastic differential equation

dXt = b(Xt, κ0)dt + σ(Xt, λ0)dBt, X0 = η (2.1)

where B is a standard Brownian motion and η is a real valued random variable inde-
pendent of B. The functions b(x, κ) and σ(x, λ) are respectively defined on R × Θ1 and
R×Θ2 where Θ1 (resp. Θ2) is a compact convex subset of R

d1 (resp. R
d2). For simplicity

of notations, in proofs, we assume that d1 = d2 = 1. We denote by θ0 = (κ0, λ0) the true

value of the parameter and assume that θ0 ∈
◦
Θ where Θ = Θ1 × Θ2.

From now on, we set b(x) = b(x, κ0) and σ(x) = σ(x, λ0) and make classical assump-
tions on functions b and σ ensuring that (2.1) admits an unique strong solution (Xt)t≥0,
defined on a probability space (Ω,F , P), and that this solution is positive recurrent on
R.
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4 B. Favetto

(A1) Functions b and σ belong to C2(R), σ(x) > 0 for all x, and there exists c > 0 such
that for all x ∈ R:

|b(x)| + |b′(x)| + |b′′(x)| ≤ c(1 + |x|),
σ(x) + |σ′(x)| + |σ′′(x)| ≤ c(1 + |x|).

(A2) For x0 ∈ R, let s(x) = exp(−2
∫ x

x0

b(u)
σ2(u)du) denote the scale density and m(x) =

1
σ2(x)s(x) the speed density. Assume

∫

−∞ s(x)dx =
∫ +∞

s(x)dx = ∞ and
∫ +∞
−∞ m(x)dx =

M < ∞.
(A3) Let ν0(dx) = 1

M m(x)dx. For all k > 0, ν0 admits a finite moment of order k.
(A4) For all k > 0, supt≥0 E(|Xt|k) < ∞.
(A5) The common distribution of the random variables εiδN

admits a 8th order moment,
and is symmetric. We set m1 = E(|εiδN

|),m4 = E((εiδN
)4),m8 = E((εiδN

)8).

(B1) ρN = ρ > 0.
(B2) ρN → 0 when N → ∞.

Assumption (A1) implies that (1.1) admits a unique strong solution on R. Under
(A1) and (A2), ν0 is the unique invariant probability of (2.1) and (Xt) satisfies the
classical ergodic theorem (see e.g. Rogers and Williams (2000))

∀f ∈ L1(dν0),
1

T

∫ T

0

f(Xs)ds −→
T→∞

ν0(f) a.s.

Moreover, under Assumption (A1), for all k ≥ 1, there exists a constant c(k) such that,
for all t ≥ 0:

E

(

sup
s∈[t,t+1]

|Xs|k
∣

∣

∣

∣

∣

Gt

)

≤ c(k)(1 + |Xt|k). (2.2)

where Gt = σ(Bs, s ≤ t; η). (See e.g Gloter (2000)).
Furthermore, Assumptions (A1)-(A3) imply (A4) if η has distribution ν0 or η is

deterministic (for the latter case, see Gloter (2006), Proposition 3).
Below, we first assume that the noise level ρN is known and discuss later the case where

ρN is unknown. We distinguish the two cases (B1)-(B2) which yield different results.
Assumption (B2) corresponds, for example, to the case ρNεiδN

= V(i+1)δN
− ViδN

, with

(Vt) a Brownian motion independent of η and (Bt). Here, ρN =
√

δN .
We divide observations into kN blocks of size pN and set ∆N = pNδN . Since Xj∆N

is
unobserved, we build the local means (1.3). Notice that

E((εj
•)

2) =
1

pN
, E((εj

•)
4) =

3

p2
N

+
m4 − 3

p3
N

, E((εj
•)

8) ≤ c

(

1

p4
N

+
m8

p7
N

)

.

for c a universal constant (the last inequality is obtained using the Rosenthal inequality
(see Hall and Heyde (1980) p.23)). Define the σ-fields

GN
j = Gj∆N

= σ(Bs, s ≤ j∆N ; η), HN
j = GN

j ∨ AN
j ,

AN
j = σ(εk∆N+iδN

, i ≤ pN − 1, k ≤ j − 1) = σ(εlδN
, l ≤ j∆N − δN )

(2.3)
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Parameter estimation for noisy diffusion process 5

For 0 ≤ j ≤ kN − 1, the random variable Y j
• is HN

j+1 measurable. We introduce, for
further use, a condition on functions g : R × Θ −→ R:

(C1) The function g is the restriction of a function defined on R × O with O an open
neighbourhood of Θ and

∃c > 0,∀x ∈ R sup
θ∈Θ

|g(x, θ)| ≤ c(1 + |x|).

We need the following statistical assumptions ((A6) is the usual identifiability condi-
tion for this problem):

(A6)
σ(x, λ) = σ(x, λ0) ν0 almost everywhere implies λ = λ0,
b(x, κ) = b(x, κ0) ν0 almost everywhere implies κ = κ0.

(A7) Functions b, σ, σ−1, ∂xb, ∂κb, ∂xσ, ∂λσ, ∂2
xxb, ∂2

κκb, ∂2
xκb, ∂xxσ, ∂2

λλσ and ∂2
xλσ exist,

are continuous and satisfy Condition (C1), where ∂ denotes the partial derivative.

3. Small sample properties of the local means sample

The following random variables appear in the expansions below:

ζj+1,N =
1

pN

pN−1
∑

i=0

∫ (j+1)∆N

j∆N+iδN

dBs, ζ ′j+2,N =
1

pN

pN−1
∑

i=0

∫ (j+1)∆N+iδN

(j+1)∆N

dBs, (3.1)

ξ′j+1,N =
1

∆
3/2
N

∫ (j+2)∆N

(j+1)∆N

((j + 2)∆N − s)dBs, (3.2)

ξ′i+1,j,N =
1

δ
3/2
N

∫ j∆N+(i+2)δN

j∆N+(i+1)δN

(j∆N + (i + 2)δN − s)dBs. (3.3)

Some basic properties of these random variables are summarized in Lemma 8.1 and A.4
in the Appendix.

Proposition 3.1. Let X̄j = ∆−1
N

∫ (j+1)∆N

j∆N
Xsds. Under Assumption (A1), we have

X̄j − Xj
• =

√

δN

(

1

pN

pN−1
∑

i=0

σ(Xj∆N+iδN
)ξ′i,j,N

)

+ ej,N

with (see (2.3))

|E(ej,N |HN
j )| ≤ δNC(1 + |Xj∆N

|), E(e2
j,N |HN

j ) ≤ δ2
NC(1 + |Xj∆N

|4).
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6 B. Favetto

The following proposition precises the local asymptotic behaviour of the observation
blocks, by a first order comparison between Y j

• and Xj∆N
. It can be compared to Propo-

sition 2.2 in Gloter (2000).

Proposition 3.2. Under (A1), we have for j ≤ kN − 1,

Y j
• − Xj∆N

= σ(Xj∆N
)
√

∆Nξ′j,N + e′j,N + ρNεj
• (3.4)

with |E(e′j,N |HN
j )| ≤ c∆N (1 + |Xj∆N

|) and

E(e′j,N
2|HN

j ) ≤ c∆2
N (1 + |Xj∆N

|4), E(e′j,N
4|HN

j ) ≤ c∆3
N (1 + |Xj∆N

|4).
If moreover (A5) holds, for k ≤ 8, there exists c > 0 such that, for j ≤ kN − 1:

E
(

|Y j
• − Xj∆N

|k
∣

∣HN
j

)

≤ C
(

∆
k/2
N (1 + |Xj∆N

|k) + ρk
NE

(

|εj
•|k

)

)

. (3.5)

We deduce

Corollary 3.1. Assume (A1) and (A5), and consider f : R
2 × Θ → R such that

f, ∂xf, ∂2
xxf satisfy (C1). Then, there exists c > 0 such that, for all j ≥ 0 and for all

θ ∈ Θ:
∣

∣

∣E

(

f(Y j
• , θ) − f(Xj∆N

, θ)
∣

∣

∣HN
j

)∣

∣

∣ ≤ c(∆N (1 + |Xj∆N
|2) + ρ2

N

√

E((εj
•)4)) (3.6)

and for l = 1, 2

E

(

(f(Y j
• , θ) − f(Xj∆N

, θ))2l
∣

∣

∣
HN

j

)

≤ c(1 + |Xj∆N
|2l + ρ2l

NE((εj
•)2l))

×(∆l
N (1 + |Xj∆N

|2l) + ρ2l
N

√

E((εj
•)4l)).

(3.7)

The following proposition is essential for the limit theorems of Section 4 and for the
statistical application.

Proposition 3.3. Under Assumptions (A1) and (A5), we have

Y j+1
• − Y j

• − ∆Nb(Y j
• ) = σ(Xj∆N

)(ζj+1,N + ζ ′j+2,N ) + τj,N + ρN (εj+1
• − εj

•)

where τj,N is HN
j+2 mesurable, and there exists a constant c such that

|E(τj,N |HN
j )| ≤ c∆N (∆N (1 + |Xj∆N

|3) + ρ2
N

√

E((εj
•)4)),

E(τ2
j,N |HN

j ) + |E(τj,Nζj+1,N |HN
j )| + |E(τj,Nζ ′j+2,N |HN

j )| ≤
c∆N (1 + |Xj∆N

|2 + ρ2
NE((εj

•)
2))(∆N (1 + |Xj∆N

|4) + ρ2
N

√

E((εj
•)4)),

E(τ4
j,N |HN

j ) ≤ c(1 + |Xj∆N
|4 + ρ4

NE((εj
•)

4))(∆4
N (1 + |Xj∆N

|4) + ρ4
N

√

E((εj
•)8)).

Note that, for i = 1, 2, ρ2i
N

√

E((εj
•)4i) = O(

ρ2i
N

pi
N

).
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Parameter estimation for noisy diffusion process 7

Remark: In Gloter (2000), Theorem 2.3., it is proved that (see Proposition 3.1)

X̄j+1 − X̄j − ∆Nb(X̄j) =
√

∆Nσ(Xj∆N
)(ξj,N + ξ′j+1,N ) + τ̄j,N

where τ̄j,N satisfies |E(τ̄j,N |GN
j )| ≤ c∆2

N (1 + |Xj∆N
|3). In Proposition 3.3, additionnal

terms due to the noise appear.

4. Uniform convergence in probability results

In this section, f : R × Θ → R denotes a C2 function, such that f , ∂xf , ∂2
xxf and ∂θf

satisfy (C1). The estimation results of Section 5 rely on the following statements.

Proposition 4.1. Under Assumptions (A1)-(A5) and (B1) or (B2), we have

ν̄N (f(., θ)) =
1

kN

kN−1
∑

j=0

f(Y j
• , θ) −→ ν0(f(., θ)) (4.1)

uniformly in θ, in probability, as N → ∞, with δN → 0, pN → ∞, kN → ∞ , ∆N =
pNδN → 0 and NδN = kN∆N → ∞.

The next theorem precises the variation of the process (Y j
• ).

Theorem 4.1. Under Assumptions (A1)-(A5), (B1) or (B2), with δN = p−α
N , α ∈

(1, 2], (∆N = p1−α
N ) we have

ĪN (f(., θ)) =
1

kN∆N

kN−2
∑

j=1

f(Y j−1
• , θ)(Y j+1

• − Y j
• − ∆Nb(Y j−1

• ))
P−→ 0 (4.2)

uniformly in θ, as N → ∞, with δN → 0, pN → ∞, kN → ∞, ∆N → 0 and NδN → ∞.

The following result deals with the quadratic variation of Y j
• .

Theorem 4.2. Assume (A1)-(A5).

1. If δN = p−α
N with α ∈ (1, 2) (∆N = p1−α

N ) and (B1) (ρN = ρ > 0), then

Q̄N (f(., θ)) =
1

kN∆N

kN−2
∑

j=1

f(Y j−1
• , θ)(Y j+1

• − Y j
• )2

P−→ 2

3
ν0(f(., θ)σ2), (4.3)

2. If δN = p−2
N (∆N = 1

pN
) and (B1) (ρN = ρ > 0), then

Q̄N (f(., θ))
P−→ 2

3
ν0(f(., θ)σ2) + 2ρ2ν0(f(., θ)), (4.4)
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8 B. Favetto

3. If δN = p−α
N , α ∈ (1, 2] with (B2) (ρN → 0), then

Q̄N (f(., θ))
P−→ 2

3
ν0(f(., θ)σ2), (4.5)

where all the convergences in probability are uniform in θ ∈ Θ, as N → ∞, with δN → 0,
pN → ∞, kN → ∞, ∆N → 0 and NδN → ∞.

The proofs of these two last theorems are based on the results of Proposition 3.3 and
Lemma A.3 in the Appendix. Theorems 4.1 and 4.2 can be compared to the following
classical results:

1

kN∆N

kN−1
∑

j=0

f(Xj∆N
, θ)(X(j+1)∆N

− Xj∆N
− ∆Nb(Xj∆N

)) = oP (1), (4.6)

1

kN∆N

kN−1
∑

j=0

f(Xj∆N
, θ)(X(j+1)∆N

− Xj∆N
)2 = ν0(f(., θ)σ2) + oP (1). (4.7)

Theorem 4.1 gives the analogous result as (4.6), under the condition δN = p−α
N , α ∈ (1, 2]

and provided that we introduce a lag to avoid correlation terms of order ∆N (if no lag, the
limit is not 0, see for instance Gloter (2006)). Theorem 4.2 underestimates ν0(f(., θ)σ2)
because the variance of ζj+1,N + ζ ′j+2,N (see Proposition 3.3) is equivalent to 2

3∆N and

not to ∆N . Moreover, for ρN = ρ and δN = p−2
N , an additional bias appears due to the

noise.

5. Statistical estimation by contrast minimization

5.1. Definition of the contrasts

Let c(., λ) = σ2(., λ) and define

EN (θ) =

kN−2
∑

j=1

{

3

2∆N

(Y j+1
• − Y j

• − ∆Nb(Y j−1
• , κ))2

c(Y j−1
• , λ)

+ log(c(Y j−1
• , λ))

}

. (5.1)

When ρN = ρ is fixed ((B1)) and δN = p−α
N with α ∈ (1, 2], let cN,ρ(x, λ) = c(x, λ) +

3∆
2−α
α−1

N ρ2 and define

Eρ
N (θ) =

kN−2
∑

j=1

{

3

2∆N

(Y j+1
• − Y j

• − ∆Nb(Y j−1
• , κ))2

cN,ρ(Y
j−1
• , λ)

+ log(cN,ρ(Y
j−1
• , λ))

}

(5.2)

We have limN→∞ cN,ρ(x, λ) = cρ(x, λ) with cρ(x, λ) = c(x, λ) if 1 < α < 2 and cρ(x, λ) =
c(x, λ) + 3ρ2 if α = 2.
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Parameter estimation for noisy diffusion process 9

Let θ̂N and θ̂ρ
N be the associated minimum contrast estimators, defined as any solution

of
θ̂N = arginf

θ∈Θ
EN (θ) and θ̂ρ

N = arginf
θ∈Θ

Eρ
N (θ). (5.3)

Theorem 5.1. Assume (A1)-(A7), and consider θ̂N and θ̂ρ
N defined by (5.3).

1. If (B1) or (B2) holds, with δN = p−α
N , α ∈ (1, 2), the estimator θ̂N is consistent:

θ̂N → θ0 in Pθ0
probability.

2. If (B1) holds, with δN = p−α
N , α ∈ (1, 2], the estimator θ̂ρ

N is consistent.

Note that point 1 does not require the knowledge of ρN .

5.2. Estimation with unknown observation noise level under (B1)

Assuming (B1) with unknown ρ, we consider the estimator ρ̂2
N = 1

2N

∑N−1
i=0 (Y(i+1)δN

−
YiδN

)2, which is the half of the quadratic variation of the observations.

Lemma 5.1. Assume (A1)-(A5) and (B1). Then we have ρ̂2
N

P−→ ρ2, when N → ∞,

with δN → 0 and NδN → ∞. If, moreover, Nδ2
N → 0,

√
N(ρ̂2

N − ρ2)
L−→ N (0, 3ρ4).

The minimum contrast estimator θ̂ρ̂N

N based on the constrast E ρ̂N

N (θ) satisfies:

Corollary 5.1. Assume (A1)-(A7), (B1) and δN = p−α
N with α ∈ (1, 2]. The estima-

tor θ̂ρ̂N

N is consistent.

5.3. Link with the case of noisy observations of integrated
diffusions

Consider (Vt) a standard Brownian motion independent of (Xt) and suppose that obser-
vations are

YiδN
= XiδN

+ ρ(V(i+1)δN
− ViδN

).

Setting ρN = ρ
√

δN , εiδN
= (Vj∆N+(i+1)δN

− Vj∆N+iδN
)/
√

δN , we are in case (B2) and

Y j
• = Xj

• +
ρ

pN
(V(j+1)∆N

− Vj∆N
).

This kind of observations can be compared with noisy observations of integrated diffusions
(see e.g. Baltazar-Larios and Sørensen (2009)). Indeed, consider

{

dXt = b(Xt, κ0)dt + σ(Xt, λ0)dBt

dZt = Xtdt + ǫdVt
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10 B. Favetto

and suppose that we want to estimate θ0 from discrete observations (Zj∆N
). We have

∆−1
N (Z(j+1)∆N

− Zj∆N
) = X̄j +

ǫ

∆N

∫ (j+1)∆N

j∆N

dVt.

This relation may be compared to Y j
• = Xj

• + ρNεj
• where εj

• is a N (0, p−1
N ) random

variable if we set ρN = ǫ√
δN

. As Xj
• and X̄j have similar properties, we can use the

previous contrasts with (Y j
• ) replaced by ∆−1

N (Z(j+1)∆N
−Zj∆N

) to estimate θ0 provided
that ǫ = ǫN is such that ǫN√

δN
= O(1).

6. Examples

In this section, simulation results are given for several examples of diffusion models on
simulated data. For the Ornstein-Uhlenbeck model, an implementation on real neuronal
data is proposed.

6.1. The Ornstein-Uhlenbeck process (simulation)

The hidden diffusion solves
dXt = κXtdt + λdBt (6.1)

with κ < 0 and λ > 0, and X0 is deterministic or follows the stationary distribution of
X. We assume ρN = ρ > 0 and consider several distributions for the noise.

In this model, we can compute explicitly the estimator θ̂N by minimizing the contrast.
With the expressions of ∂κEN (θ) and ∂λEN (θ), we find

λ̂2
N =

3

2kN∆N

kN−2
∑

j=1

(Y j+1
• − Y j

• − ∆N κ̂NY j−1
• )2 − 3ρ21{α=2};

κ̂N =
1

∆N

∑kN−2
j=1 Y j−1

• (Y j+1
• − Y j

• )
∑kN−2

j=1 (Y j−1
• )2

.

We can replace λ̂2
N by

λ̃2
N =

3

2kN∆N

kN−2
∑

j=1

(Y j+1
• − Y j

• )2, as λ̂2
n − λ̃2

N = oP (1).

In Tables 1-5, the common distribution of εiδ is N (0, 1) and Table 6 presents some

results with different distributions. Tables 1, 2 and 3 give mean and variance of θ̂N for
different values of δ, α and N . The values of the parameters are κ0 = −1, λ0 = 1, ρ2 = 0.5.
We have used 500 replications, and we give the empirical mean and standard deviation
in parenthesis.
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Parameter estimation for noisy diffusion process 11

N = 5000, δ = 0.01 (Nδ = 50, Nδ2 = 0.5) κ0 = −1, λ0 = 1, ρ2 = 0.5

α = 1.17(p = 50, k = 100) α = 1.5(p = 22, k = 227) α = 2(p = 10, k = 500)

κ̂N (102 Var) -0.58 (1.53) -0.76 (2.75) -0.82 (3.26)

λ̂2
N (102 Var) 0.76 (1.19) 1.07 (1.25) 0.86 (2.61)

Table 1. Influence of the size of blocks on the estimators, Ornstein-Uhlenbeck model. (N = 5000
observations, δ = 0.01, 500 replications) κ0 = −1, λ0 = 1, ρ2 = 0.5

N = 20000, δ = 0.005 (Nδ = 100, Nδ2 = 0.5) κ0 = −1, λ0 = 1, ρ2 = 0.5

α = 1.35(p = 50, k = 400) α = 1.5(p = 34, k = 588) α = 2(p = 14, k = 1428)

κ̂N (102 Var) -0.74 (1.08) -0.81 (1.47) -0.87 (1.51)

λ̂2
N (103 Var) 0.95 (3.87) 1.05 (3.88) 0.92 (11.07)

Table 2. Influence of the size of blocks on the estimators, Ornstein-Uhlenbeck model. (N = 20000
observations, δ = 0.005, 500 replications) κ0 = −1, λ0 = 1, ρ2 = 0.5

N = 100000, δ = 0.001 (Nδ = 100, Nδ2 = 0.1) κ0 = −1, λ0 = 1, ρ2 = 0.5

α = 1.3(p = 200, k = 500) α = 1.5(p = 100, k = 1000) α = 2(p = 32, k = 3125)

κ̂N (102 Var) -0.81 (1.36) -0.89 (1.49) -0.96 (1.95)

λ̂2
N (103 Var) 0.90 (2.74) 1.02 (1.99) 0.92 (3.85)

Table 3. Influence of the size of blocks on the estimators, Ornstein-Uhlenbeck model. (N = 100000
observations, δ = 0.001, 500 replications) κ0 = −1, λ0 = 1, ρ2 = 0.5

First, we remark that the empirical variance is bigger in the case α = 2 than in the
other cases. The parameter κ0 is always underestimated, but the estimation of κ0 is
clearly improved as N grows, and δ is close to 0. The estimation of λ0 is better in Table
2 than in Table 1, and rather close in Tables 2 and 3. The variance decreases strongly in
the case α = 2.

In Table 4, we study the influence of the noise on the estimators, in the case α = 3
2 .

We use 500 replications, with δ = 0.001 and N = 105, and we give the empirical mean
and standard deviation in parenthesis.

N = 105, δ = 10−3, α = 1.5, κ0 = −1, λ0 = 1
ρ2 = 0.1 ρ2 = 1 ρ2 = 2 ρ2 = 5

κ̂N (102 Var) -0.91 (1.49) -0.89 (1.50) -0.86 (1.75) -0.83 (1.52)

λ̂2
N

(103 Var) 0.96 (1.71) 1.17 (2.92) 1.47 (4.33) 2.37 (13.42)

Table 4. Influence of the observation noise variance on the estimators, Ornstein-Uhlenbeck model.
(500 replications, N = 105, δ = 0.001, α = 3

2
)

A strong bias appears for λ̂N when ρ2 is bigger than 1, whereas there are no significant
changes in the estimation of the drift parameter κ0. The empirical variances for the
estimation of λ0 also increases: the presence of noise in the observations contaminates
the estimation of the diffusion coefficient in this case.

In Table 5, we study in Table 5 the influence of the value of the diffusion coefficient on
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12 B. Favetto

the estimators, in the case α = 3
2 . We use 500 replications, with δ = 0.001 and N = 105,

and we give the empirical mean and standard deviation in parenthesis.

N = 105, δ = 10−3, α = 1.5, κ0 = −1, ρ2 = 1
λ2
0

= 0.1 λ2
0

= 0.5 λ2
0

= 1 λ2
0

= 2
κ̂N (102 Var) -0.81 (1.48) -0.87 (1.54) -0.90 (1.64) -0.89 (1.62)

λ̂2
N

(103 Var) 0.23 (0.12) 0.58 (0.78) 1.01 (1.95) 2.01 (6.93)

Table 5. Influence of the diffusion coefficient on the estimators, Ornstein-Uhlenbeck model. (500
replications, N = 105, δ = 0.001, α = 3

2
)

The smallest value of λ2
0 is overestimated by λ̂2

N , and this result confirms the ones of
Table 4 about high levels of noise. For the other values of λ2

0, no bias is observed.
We finally study in Table 6 the influence of the distribution of the errors on the

estimators. We choose in this case α = 3
2 , κ0 = −1, λ0 = 1, ρ2 = 0.5 . We use 500

replications, with δ = 0.001 and N = 105, and we give the empirical mean and standard
deviation in parenthesis. We make the appropriate corrections on the distributions of εiδ

to have unitary variance.

N = 105, δ = 10−3, α = 1.5, κ0 = −1, λ0 = 1, ρ2 = 0.5

N (0, 1) Laplace(0, 1√
2
) Uniform(−

√
3,

√
3) Logistic(0,

√
3

π
)

κ̂N (102 Var) -0.89 (1.65) -0.90 (1.52) -0.87 (1.53) -0.89 (1.65)

λ̂2
N

(103 Var) 1.02 (2.11) 1.02 (2.18) 1.31 (3.45) 1.02 (2.10)

Table 6. Influence of the distribution of the noise on the estimation, Ornstein-Uhlenbeck model.
(N = 105 observations, δ = 0.0001, α = 3

2
)

We observe that, except in the case of a Uniform distribution, the estimators give
results close to the Gaussian case. For the case εiδ ∼ Uniform(−

√
3,
√

3), a significant
positive bias is observed, and the variance is bigger in this case than in the case of
Gaussian distribution.

These simulations stress two facts : first, the value α = 3
2 for the local mean size pa-

rameter appears as a good compromise, with a bias in the estimation of κ lower than the
bias observed for values of α close to 1, and an empirican variance on simulations lower
than the variance observed for α = 2. The second remark is about the number of observa-
tions: for N = 5000 observations, κ is underestimated, for all the values of α considered.
Then, the context of high frequency data requires a large number of observations, with
a very small discretization step, to be taken into consideration.

6.2. Comparison with a discretely observed Ornstein-Uhlenbeck
process

In this section, we are interested in the comparison, on simulated datasets, of our method
with the methods based on the direct observation of the diffusion at discrete time (see e.g.
Genon-Catalot (1990) and Kessler (1997)). To compare the quality of the noise reduction
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Parameter estimation for noisy diffusion process 13

and its influence to the estimation of the parameters, we compare the results for discrete
observations with noise, based on the minimization of the contrast built on the (Y j

• ) with
those obtained for the discrete observations without noise, based on the minimization of
the contrast built on the (XiδN

). In both cases the same datasets of N observations
with a δN -step of discretization are considered. The hidden diffusion (Xt) is an Ornstein-
Uhlenbeck process (6.1). We compare the estimators based on the discrete observations
(XiδN

) with the estimator based on (Yti
) with Yti

= Xti
+ ρεti

, ti = iδN . The results
based on the direct observations are given in Table 7, and we refer to Tables 1, 2 and 3
for the results based on noisy observations.

α = 1.5, κ0 = −1, λ0 = 1, no noise
N = 5.103, δ = 10−2 N = 2.104, δ = 5.10−3 N = 105, δ = 10−3

κ̂N (Var) -1.04 (0.21) -1.02 (0.13) -1.01 (0.14)

λ̂2
N

(Var) 0.99 (1.98 × 10−2) 0.99 (9.80 × 10−3) 1.00 (4.30 × 10−3)

Table 7. Parameter estimation with direct observations of the Ornstein-Uhlenbeck model, for several
numbers of observations. (500 replications, α = 1.5, κ0 = −1, λ0 = 1, ρ2 = 0.5)

The estimation of κ0 is better for a direct observation of the diffusion, but in this case,
the whole set of N observations is taken into account, whereas the size of the set of local

means is kN = Nδ
1
α

N .

6.3. The Ornstein-Uhlenbeck process (neuronal data)

Diffusion-based model has been introduced in the 90’s in the field of neuronal studies.
The Ornstein-Uhlenbeck diffusion is classical (see e.g. Ditlevsen and Lansky (2005) ), and
the estimation of the parameters has been studied in Ditlevsen and Ditlevsen (2007), for
example, when the diffusion is assumed to be observed directly.

Let us consider the stochastic differential equation

dZt = (−Zt

τ
+ κ)dt + λdBt, X0 = x. (6.2)

Assume that the observations are at discrete time t0 < · · · < tN and that they are
given by

Yti
= Zti

+ ρεti

where (εti
) is a sequence of independent N (0, 1) random variables and ρ is supposed to

be known (or preliminary estimated).
Minimum contrast estimators of τ, κ, λ are given by:

(

− 1
kN

∑kN−2
j=1 Y j−1

• 1

− 1
kN

∑kN−2
j=1 (Y j−1

• )2 1
kN

∑kN−2
j=1 Y j−1

•

)

(

τ̂−1
N

κ̂N

)

=

(

1
kN∆N

∑kN−2
j=1 (Y j+1

• − Y j
• )

− 1
kN∆N

∑kN−2
j=1 Y j−1

• (Y j+1
• − Y j

• )

)

and

λ̂2
N =

3

2kN∆N

kN−2
∑

j=1

(Y j+1
• − Y j

• − ∆N (−Y j−1
•
τ̂N

+ κ̂N ))2.
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14 B. Favetto

The dataset used for this study has be formerly presented in Idoux et al. (2006). An
example is given in Figure 3.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−58

−56

−54

−52

−50

−48

−46

Figure 1. The neuronal dataset (N = 35000 observations, δ = 0.02 × 10−2 seconds).

In this dataset, we have δ = 0.02 (10−2 seconds), N = 35000 observations, tN = Nδ =
700 (10−2 seconds). We estimate ρ2 with:

ρ̂2
N =

1

2N

N−1
∑

i=0

(Yti+1
− Yti

)2.

We have for this dataset ρ̂2
N = 0.0014.

Then we compute the estimators (τ̂N , κ̂N , λ̂2
N ) with different choices of p. Results are

presented in Table 8.

p = 23(α = 1.25) p = 14(α = 1.5) p = 7(α = 2)
τ̂N (10−2 seconds) 13.52 5.85 4.67
κ̂N (102 mV/ sec) -3.87 -8.95 -11.23

λ̂2
N

1.94 1.78 1.10

Table 8. Parameter estimation for neuronal data (with measurement error).

Due to the low level of noise, we also provide the estimators corresponding to a direct
observation of the discretized diffusion in Table 9.

τ̃N (10−2 seconds) κ̃N (102 mV/ sec) λ̃2
N

N = 35000, δ = 0.0002 40 -1.31 0.14

Table 9. Parameter estimation for neuronal data (without measurement error).
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Parameter estimation for noisy diffusion process 15

The results presented in Table 8 and 9 are rather different, but the mean of the
stationary distribution µ = τκ is well estimed. Indeed, we find

• µ̂N = τ̂N κ̂N = −52.28mV for the estimator based on the noisy observations model,
• µ̃N = τ̃N κ̃N = −52.45mV for the estimator based on the direct observations.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−58

−56

−54

−52

−50

−48

−46

Figure 2. The observations with the estimated mean µ̂N .

However, the estimated values of τ and λ2 are significantly different, and τ̂ increases
with the size p of the blocks.

6.4. The Cox-Ingersoll-Ross process

Consider the one-dimensional diffusion process (Cox-Ingersoll-Ross process), solution of

dXt = (κXt + κ′)dt + λ
√

XtdBt, X0 = η, (6.3)

with κ < 0, κ′ ∈ R and λ > 0, and η a positive random variable independent of (Bt)/
We assume that the observations at time t0 < · · · < tN are given by

Yti
= Xti

exp(εti
)

where (εti
) is a sequence of independent N (0, ρ2) random variables. Hence the noise is

multiplicative, and the observations remain positive.
We consider Uti

= log(Yti
) to have real valued observations.

The process Zt = log(Xt) solves the stochastic differential equation

dZt = (κ + (κ′ − λ2

2
) exp(−Zt))dt + λ exp(−Zt

2
)dBt.
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16 B. Favetto

Figure 3. An example of Cox-Ingersoll-Ross process observed with a mutliplicative noise.

We set κ′′ = κ′ − λ2

2 .

In this case, the scale density is s(x) = exp
(

− 2κ
λ2 ex − 2κ′′

λ2 x
)

and the speed density

is m(x) = 1
λ2 exp

((

2κ′′

λ2 + 1
)

x + 2κ
λ2 ex

)

. Provided κ < 0 and 2κ′′

λ2 + 1 > 0, Assumptions

(A2), (A3) are ensured, and (A4) holds with η ∼ ν0. However, Assumption (A1) does

not holds, but θ̂N is explicit, and the consistence can be proved directly.

Explicit expressions for the estimator θ̂N = (κ̂N , κ̂′′
N , λ̂2

N ) are derived: (κ̂N , κ̂′′
N ) is

solution of the system
(

∆N

∑kN−2

j=1
exp(Y j−1

• ) ∆NkN

∆NkN ∆N

∑kN−2

j=1
exp(−Y

j−1
• )

)

(

κ̂N

κ̂′′
N

)

=

(

∑kN−2

j=1
exp(Y j−1

• )(Y j+1
• − Y

j
• )

∑kN−2

j=1
(Y j+1

• − Y
j
• )

)

and

λ̂2
N =

3

2kN∆N

kN−2
∑

j=1

exp(Y j−1
• )(Y j+1

• − Y j
• − ∆N (κ̂N + κ̂′′

N exp(−Y j−1
• )))2.

Recall that the following explicit expressions for the estimator θ̃N = (κ̃N , κ̃′
N , λ̃2

N )
when the diffusion (Xt) is directly observed (Kessler (1997)):
(

∆N

∑kN−2
j=1 Xj∆N

∆NkN

∆NkN ∆N

∑kN−2
j=1

1
Xj∆N

)

(

κ̃N

κ̃′
N

)

=

(

∑kN−2
j=1 (X(j+1)∆N

− Xj∆N
)

∑kN−2
j=1

1
Xj∆N

(X(j+1)∆N
− Xj∆N

)

)
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Parameter estimation for noisy diffusion process 17

and

λ̃2
N =

1

kN∆N

kN−2
∑

j=1

1

Xj∆N

(X(j+1)∆N
− Xj∆N

− ∆N (κ̃NXj∆N
+ κ̃′

N ))2.

Simulation results are presented in Table 10 (with noise) and Table 11 (directly ob-
served). For this study, N = 500 trajectories are simulated with parameters κ0 =
−2, κ′

0 = 3, λ0 = 4, ρ2 = 0.5, and then κ′′
0 = 1. Due to the simulation study for the

Ornstein-Uhlenbeck process, the value α = 3
2 as local mean size parameter.

κ0 = −2, κ′′
0

= 1, λ0 = 4, ρ2 = 0.5, α = 1.5
N = 5.103, δ = 10−2 N = 2.104, δ = 5.10−3 N = 105, δ = 10−3

κ̂N (102 Var ) -1.43 (6.28) -1.56 (3.14) -1.78 (3.37)
κ̂′′

N
(102 Var) 0.99 (4.57) 1.03 (2.12) 1.13 (2.44)

λ̂2
N

(102 Var) 4.23 (37.61) 4.35 (15.15) 4.40 (8.15)

Table 10.

Parameter estimation for the Cox-Ingersoll-Ross process with a multiplicative noise for different values
of α. (500 replications, κ0 = −2, κ′′

0
= 1, λ0 = 4, ρ2 = 0.5, α = 3

2
)

In Table 10, we observe that κ′′
0 = 1 is well estimated, whereas the estimation of κ0 is

negatively biased. The empirical variance, for κ̂N and κ̂′′
N decreases between N = 5000

and N = 20000 observations, but there is no significative improvement between N =
20000 and N = 100000 observations. For the diffusion parameter λ0, the estimator λ̂N

is positively biased, with a variance decreasing as the number of observations grows.
These results can be compared with the case of direct observations, given in Table 11.

κ0 = −2, κ′
0

= 3, λ0 = 4, α = 1.5
N = 5.103, δ = 10−2 N = 2.104, δ = 5.10−3 N = 105, δ = 10−3

κ̂N (102 Var ) -2.04 (11.03) -2.03 (6.65) -2.46 (53.45)
κ̂′

N
(102 Var) 3.02 (13.47) 3.03 (8.17) 3.45 (65.44)

λ̂2
N

(102 Var) 4.11 (0.95) 4.05 (0.20) 4.01 (0.36)

Table 11. Parameter estimation for the Cox-Ingersoll-Ross process with direct observations for
different values of α. (500 replications, κ0 = −2, κ′

0
= 3, λ0 = 4, ρ2 = 0.5, α = 3

2

Notice that there is no bias in the estimation of κ0 and κ′
0 for N = 5000 and N = 20000,

contrary to the noisy case. Moreover, the estimation of λ2
0 is more accurate, with a lower

empirical variance for λ̂2
N .

6.5. The hyperbolic diffusion

Consider the one dimensional diffusion process solution of

dXt = κXtdt + λ
√

1 + X2
t dBt, X0 = η ∈ R, (6.4)

where η is a random variable independent of (Bt), κ < 0 and λ > 0. In this case, the

model is positive recurrent if |κ| + λ2

2 > 0, and in this case, its stationary distribution
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18 B. Favetto

has density

ν(x) ∝ 1

(1 + x2)1+
|κ|

λ2

.

If X0 = η has distribution ν0(x)dx, then,
√

1 + 2κ
λ2 η has Student distribution which can

be easily simulated. Even if η0 has only a finite number of finite moments, and (A4)

does not holds, for 2(1 + |κ|
λ2 ) > k + 1, ν0 has a finite moment of order k.

Now we consider

G(x) =

∫ x

0

dx

λ
√

1 + x2
=

1

λ
arg sinh(x).

By the Ito formula, Zt = G(Xt) satisfies

dZt = β(Zt)dt + dBt

with

β(z) = −
(

κ

λ
+

λ

2

)

tanh(λz).

Sample paths of this diffusion can be simulated exactly with the retrospective exact
simulation algorithms proposed in Beskos et al. (2006).

We can compute explicitly the estimator θ̂N = (κ̂N , λ̂2
N ) in this case:

κ̂N =
1

∆N

∑kN−2
j=1

Y j−1
•

1+(Y j−1
• )2

(Y j+1
• − Y j

• )

∑kN−2
j=1

(Y j−1
• )2

1+(Y j−1
• )2

and

λ̂2
N =

3

2kN∆N

kN−2
∑

j=1

(Y j+1
• − Y j

• − ∆N κ̂NY j−1
• )2

1 + (Y j−1
• )2

.

Some simulation results are given in Tables 12 and 13, with different distributions
for the observation noise. In the different cases, N = 500 replications are made, and
the empirical mean is given with the associated standard deviation in parenthesis. We
consider for the values of the parameters: κ0 = −1, λ0 = 1, ρ2 = 0.5.

α = 3

2
, κ0 = −1, λ0 = 1, ρ2 = 0.5, ε ∼ N (0, 1)

N = 5.103, δ = 10−2(p = 22) N = 2.104, δ = 5.10−3(p = 34) N = 105, δ = 10−3(p = 100)
κ̂N (Var) -0.75 (0.21) -0.82 (0.16) -0.90 (0.17)

λ̂2
N

(Var) 1.14 (0.14) 1.11 (0.08) 1.07 (0.06)

Table 12. Parameter estimation for the hyperbolic diffusion, with a Gaussian noise, for different
values of N . (500 replications, α = 3

2
, κ0 = −1, λ0 = 1, ρ2 = 0.5)

A negative bias is observed in the estimation of κ0, whereas a positive one appears
in the estimation of λ2

0. For the two different noise distributions, empirical means and
variances are very close in this model.
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α = 3

2
, κ0 = −1, λ0 = 1, ρ2 = 0.5, ε ∼Laplace(0, 1√

2
)

N = 5.103, δ = 10−2(p = 22) N = 2.104, δ = 5.10−3(p = 34) N = 105, δ = 10−3(p = 100)
κ̂N (Var) -0.74 (0.21) -0.82 (0.16) -0.89 (0.18)

λ̂2
N

(Var) 1.15 (0.15) 1.12 (0.09) 1.08 (0.07)

Table 13. Parameter estimation for the hyperbolic diffusion, with a Laplace noise, for different values
of N . (500 replications, α = 3

2
, κ0 = −1, λ0 = 1, ρ2 = 0.5)

7. Concluding remarks

The contrasts presented in this work give associated estimators for parameters involved
in a non-Markovian setting: one-dimensional diffusions observed with a noise. The con-
sistency of these minimum contrast estimators is illustrated on several simulations, and
the estimated values are close to the values obtained for a direct observation of the dif-
fusion. The importance of the sampling rate of local means, depending on the choice of
α, appears in the case α = 2 with ρN = ρ, where the variance of the observation noise
ρ2 appears in the limit theorem for the quadratic variation. The asymptotic normality is
studied in a companion paper.
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8. Proofs

It is useful to introduce the intervals Ij,k,N := Ij,k = [j∆N + kδN , j∆N + (k + 1)δN ), for
k = 0, . . . , pN − 1, j = 0, . . . , kN − 1, which satisfy for all j, if k 6= k′ Ij,k ∩ Ij,k′ = ∅ and
for j 6= j′ and all k, k′, Ij,k ∩ Ij′,k′ = ∅.

Lemma 8.1. The random variables ζj+1,N and ζ ′j+1,N are G(j+1)∆N
measurable, ζ ′j+2,N

is independent of G(j+1)∆N
, and the following holds:

ζj+1,N =
1

pN

pN−1
∑

k=0

(k + 1)

∫

Ij,k

dBs, ζ ′j+2,N =
1

pN

pN−1
∑

k=0

(pN − 1 − k)

∫

Ij+1,k

dBs. (8.1)
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Moreover, we have

E(ζj,N |GN
j ) = 0, E(ζ ′j+1,N |GN

j ) = 0, E(ζj+1,Nζ ′j+1,N |GN
j ) =

∆N

6

(

1 − 1

p2
N

)

,

E((ζj+1,N )2|GN
j ) = ∆N

(

1

3
+

1

2pN
+

1

6p2
N

)

, E((ζ ′j+1,N )2|GN
j ) = ∆N

(

1

3
− 1

2pN
+

1

6p2
N

)

.

Proof of Lemma 8.1 Using (3.1), we can rearrange terms to exhibit non-overlapping
intervals, hence conditionally independent variables, and obtain (8.1). Afterwards, the
proof is achieved by elementary computations.

2

Proof of Proposition 3.1 First, note that, as (Xt, t ≥ 0) and (εkδN
) are independent,

for l = 1, 2,
E(el

j,N |Hj,N ) = E(el
j,N |Gj,N ).

Thus we study the expectations given Gj,N . Using ∆N = pNδN yields

Rj,N = X̄j − Xj
• =

1

pN

pN−1
∑

k=0

1

δN

∫

Ij,k

(Xs − Xj∆N+kδN
)ds.

By the Fubini theorem, we get

Rj,N =
√

δN

(

1

pN

pN−1
∑

k=0

σ(Xj∆N+kδN
)ξ′k,j,N

)

+ ej,N

where ej,N = αj,N + βj,N , with

αj,N =
1

pN

pN−1
∑

k=0

1

δN

∫

Ij,k

(j∆N + (k + 1)δN − s)(σ(Xs) − σ(Xj∆N+kδN
))dBs

and

βj,N =
1

pN

pN−1
∑

k=0

1

δN

∫

Ij,k

∫ s

j∆N+iδN

b(Xu)duds.

Under Assumption (A1), we have |βj,N | ≤ cδN (1 + sups∈[j∆N ,(j+1)∆N ] |Xs|). And for all
p ≥ 0, by (2.2),

E(|βj,N |p|GN
j ) ≤ cδp

N (1 + |Xj∆N
|p).

Also E(αj,N |GN
j ) = 0, so we get |E(ej,N |GN

j )| ≤ δNc(1 + |Xj∆N
|). Furthermore, we get

with the Jensen inequality, the Ito isometry and the Fubini theorem

E
(

(αj,N )2
∣

∣GN
j

)

≤ c
1

pN

pN−1
∑

k=0

∫

Ij,k

E((σ(Xs) − σ(Xj∆N+kδN
))2|GN

j )ds.
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With Proposition A.1 in the Appendix, it comes E
(

|αj,N |2
∣

∣GN
j

)

≤ Cδ2
N (1 + |Xj∆N

|4).
This implies the result. 2

Proof of Proposition 3.2 We have

Y j
• − Xj∆N

= Xj
• − X̄j + X̄j − Xj∆N

+ ρNεj
•,

where ε•j is independent of HN
j . Proposition 2.2 in Gloter (2000) states that, using the

random variables (3.2),

X̄j − Xj∆N
= σ(Xj∆N

)
√

∆Nξ′j,N + ēj,N

with |E(ēj,N |HN
j )| = |E(ēj,N |GN

j )| ≤ c∆N (1 + |Xj∆N
|) and E(ē2

j,N |HN
j ) = E(ē2

j,N |GN
j ) ≤

c∆2
N (1 + |X4

j∆N
|). With Proposition 3.1, setting e′j,N = ej,N + ēj,N , we get the first part

of Proposition 3.2. Now we need to prove that, for some c > 0

E

(

|rj,N |k
∣

∣

∣HN
j

)

= E

(

|rj,N |k
∣

∣

∣GN
j

)

≤ c(1 + |Xj∆N
|k) (8.2)

where

rj,N =
1

pN

pN−1
∑

i=0

σ(Xj∆N+iδN
)ξ′i,j,N

and ξ′i,j,N is defined in (3.3). With elementary computations on conditional expectation,
we get (see notation (2.3))

E

(

|rj,N |k
∣

∣

∣GN
j

)

≤ 1

pN

pN−1
∑

i=0

E(|σ(Xj∆N+iδN
)|kE(|ξ′i,j,N |k|Gj∆N+iδN

)|GN
j ).

As ξ′i,j,N is independent of Gj∆N+iδN
,

E

(

|rj,N |k
∣

∣

∣GN
j

)

≤ c
1

pN

pN−1
∑

i=0

E(1 + |Xj∆N+iδN
|k|GN

j )

which implies (8.2). Finally, E(|εj
•|k|HN

j ) = E(|εj
•|k) because εj

• is independent of HN
j . 2

Proof of Corollary 3.1 We have, with Taylor’s formula (order two):

Dj := f(Y j
• , θ) − f(Xj∆N

, θ) = ∂xf(Xj∆N
, θ)(Y j

• − Xj∆N
) +

1

2
∂2

xxf(Z, θ)(Y j
• − Xj∆N

)2

with Z ∈ (Y j
• ,Xj∆N

). Then, with the Cauchy Schwarz inequality, using that the deriva-
tives satisfy (C1), and Proposition 3.2, there exists a constant c > 0 such that, for all
θ ∈ Θ,

|E(Dj |HN
j )| ≤ c(1 + |Xj∆N

|)|E(e′j,N |HN
j )|

+c(1 + |Xj∆N
| + ρN

√

E((εj
•)2))

√

E((Y j
• − Xj∆N

)4|HN
j )

≤ c∆N (1 + |Xj∆N
|2)

+c(1 + |Xj∆N
| + ρN

√

E((εj
•)2))

×(∆N (1 + |Xj∆N
|2) + ρ2

N

√

E((εj
•)4)).
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With Taylor’s formula (order one), there exists a random variable Z̃ ∈ (Y j
• ,Xj∆N

) and

a constant c > 0 independent of θ such that D2
j = (∂xf(Z̃, θ))2(Y j

• − Xj∆N
)2 and

D2
j ≤ c(1 + sup

s∈[j∆N ,(j+1)∆N ]

[Xs|2 + ρ2
N |εj

•|2)(Y j
• − Xj∆N

)2.

Using the Cauchy-Schwarz inequality and condition (C1),

E(D2
j |HN

j ) ≤ c(1 + |Xj∆N
|2 + ρ2

NE((εj
•)

2))(∆N (1 + |Xj∆N
|2) + ρ2

N

√

E((εj
•)4)).

Analogously, D4
j = (∂xf(Z̃, θ))4(Y j

• − Xj∆N
)4 and

D4
j ≤ c(1 + sup

s∈[j∆N ,(j+1)∆N ]

[Xs|4 + ρ4
N |εj

•|4)(Y j
• − Xj∆N

)4,

with c independent of θ. Using the Cauchy-Schwarz inequality, it comes

E(D4
j |HN

j ) ≤ c(1 + |Xj∆N
|4 + ρ4

NE((εj
•)

4))(∆2
N (1 + |Xj∆N

|4) + ρ4
N

√

E((εj
•)8)).

2

Proof of Proposition 3.3 In this proof, we study all conditional expectation given
GN

j as they are identical to conditional expectations given HN
j in all the terms involved

below. We have
Y j+1
• − Y j

• = Xj+1
• − Xj

• + ρN (εj+1
• − εj

•).

Setting Cj = Xj+1
• − Xj

• and rearranging terms yields

Cj =
1

pN

pN−1
∑

k=0

(X(j+1)∆N+kδN
− Xj∆N+kδN

)

=
1

pN

pN−1
∑

k=0

pN−1
∑

l=0

∫

Ij,k+l

dXs

=
1

pN

pN−1
∑

k=0

(k + 1)

∫

Ij,k

dXs +
1

pN

pN−1
∑

k=0

(pN − k − 1)

∫

Ij+1,k

dXs.

We use
∫

Ij,k

dXs = b(Xj∆N+kδN
)δN +

∫

Ij,k

(b(Xs) − b(Xj∆N+kδN
))ds

+σ(Xj∆N+kδN
)

∫

Ij,k

dBs +

∫

Ij,k

(σ(Xs) − σ(Xj∆N+kδN
))dBs.

By splitting ∆N into ∆N = (k + 1)δN + (pN − k − 1)δN for all k, we get (see notation
3.1)

Y j+1
• − Y j

• − ∆Nb(Y j
• ) = Cj − ∆Nb(Y j

• ) + ρN (εj+1
• − εj

•)
= σ(Xj∆N

)(ζj+1,N + ζ ′j+2,N ) + τj,N + ρN (εj+1
• − εj

•)
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where τj,N =
∑4

ℓ=1 τ
(ℓ)
j,N and for ℓ = 1, . . . , 4, τ

(ℓ)
j,N = r

(ℓ)
j,N + s

(ℓ)
j,N with

r
(1)
j,N =

1

pN

pN−1
∑

k=0

(k + 1)δN (b(Xj∆N+kδN
) − b(Y j

• )), (8.3)

s
(1)
j,N =

1

pN

pN−1
∑

k=0

(pN − k − 1)δN (b(X(j+1)∆N+kδN
) − b(Y j

• )), (8.4)

r
(2)
j,N =

1

pN

pN−1
∑

k=0

(k + 1)σ(Xj∆N+kδN
)

∫

Ij,k

dBs − σ(Xj∆N
)ζj+1,N , (8.5)

s
(2)
j,N =

1

pN

pN−1
∑

k=0

(pN − k − 1)σ(X(j+1)∆N+kδN
)

∫

Ij+1,k

dBs − σ(Xj∆N
)ζ ′j+2,N ,(8.6)

r
(3)
j,N =

1

pN

pN−1
∑

k=0

(k + 1)

∫

Ij,k

(b(Xs) − b(Xj∆N+kδN
))ds, (8.7)

s
(3)
j,N =

1

pN

pN−1
∑

k=0

(pN − k − 1)

∫

Ij+1,k

(b(Xs) − b(X(j+1)∆N+kδN
))ds, (8.8)

r
(4)
j,N =

1

pN

pN−1
∑

k=0

(k + 1)

∫

Ij,k

(σ(Xs) − σ(Xj∆N+kδN
))dBs, (8.9)

s
(4)
j,N =

1

pN

pN−1
∑

k=0

(pN − k − 1)

∫

Ij+1,k

(σ(Xs) − σ(X(j+1)∆N+kδN
))dBs. (8.10)

We mainly treat the terms r
(ℓ)
j,N because the others are analogous. We have E(r

(ℓ)
j,N |GN

j ) = 0

and E(s
(ℓ)
j,N |GN

j ) = 0 for ℓ = 2, 4. Next,

|E(r
(1)
j,N |GN

j )| ≤ 1

pN

pN−1
∑

k=0

(k + 1)δN |E(b(Xj∆N+kδN
) − b(Y j

• )|GN
j )|

We use, for k = 0 . . . pN − 1 and s ∈ Ij,k, the inequality

|E(b(Xs) − b(Xj∆N+kδN
)|GN

j )| ≤ c∆N (1 + |Xj∆N
|3).

With (3.6), it comes |E(r
(1)
j,N |GN

j )| ≤ c∆N (∆N (1+ |Xj∆N
|2)+ρ2

N

√

E((εj
•)4)). Then, with

the Fubini theorem, we derive |E(τ
(3)
j,N |GN

j )| ≤ c∆2
N (1 + |Xj∆N

|3). Hence

|E(τj,N |GN
j )| ≤ c∆N (∆N (1 + |Xj∆N

|3) + ρ2
N

√

E((εj
•)4)).

Now we deal with E((r
(1)
j,N )2|GN

j ). With Proposition 3.1 and the Cauchy-Schwarz inequal-
ity, it comes

E((b(Y j
• )−b(Xj∆N

))2|GN
j ) ≤ c(1+|Xj∆N

|2+ρ2
NE((εj

•)
2))(∆N (1+|Xj∆N

|2)+ρ2
N

√

E((εj
•)4)).
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Applying the Cauchy-Schwarz inequality, and after elementary computations, we obtain

E((r
(1)
j,N )2|GN

j ) ≤ c∆2
N (1 + |Xj∆N

|2 + ρ2
NE((εj

•)
2))(∆N (1 + |Xj∆N

|2) + ρ2
N

√

E((εj
•)4)).

With analogous techniques, we have

E((τ
(3)
j,N )2|GN

j ) ≤ c∆2
N sup

s∈[j∆N ,(j+2)∆N ]

E((b(Xs) − b(Xj∆N
))2|GN

j )

≤ c∆3
N (1 + |Xj∆N

|4).

Using Lemma 8.1, we obtain

r
(2)
j,N =

1

pN

pN−1
∑

k=0

(k + 1)(σ(Xj∆N+kδN
) − σ(Xj∆N

))

∫

Ij,k

dBs,

s
(2)
j,N =

1

pN

pN−1
∑

k=0

(pN − k − 1)(σ(X(j+1)∆N+kδN
) − σ(Xj∆N

))

∫

Ij+1,k

dBs.

Thus r
(2)
j,N =

∫ (j+1)∆N

j∆N
f(s)dBs with

f(s) =
1

pN

pN−1
∑

k=0

(k + 1)(σ(Xj∆N+kδN
) − σ(Xj∆N

))1Ij,k
(s) (8.11)

With the Ito isometry and the Fubini theorem, we have

E((r
(2)
j,N )2|GN

j ) =
1

p2
N

pN−1
∑

k=0

(k + 1)2δNE((σ(Xj∆N+kδN
) − σ(Xj∆N

))2|GN
j )

≤ c∆2
N (1 + |Xj∆N

|4)

We use similar techniques with r
(4)
j,N and s

(4)
j,N to obtain

E((τ
(2)
j,N )2 + (τ

(4)
j,N )2|GN

j ) ≤ c∆2
N (1 + |Xj∆N

|4).

Collecting terms, we get the bound for E(τ2
j,N |GN

j ).
Now, using (8.3), (3.1), Lemma 8.1 and the Cauchy Schwarz inequality we have

|E(r
(1)
j,Nζj+1,N |GN

j )| ≤ c∆
3
2

N

√

E((b(Xj∆N+kδN
) − b(Y j

• ))2|GN
j ).

Corollary 3.1 implies

|E(r
(1)
j,Nζj+1,N |GN

j )| ≤ c∆
3
2

N (1+|Xj∆N
|+ρN

√

E((εj
•)2))(

√

∆N (1+|Xj∆N
|)+ρN (E((εj

•)
4))

1
4 ).

The same inequality holds for E(r
(1)
j,Nζ ′j+2,N |GN

j ), E(s
(1)
j,Nζj+1,N |GN

j ) and E(s
(1)
j,Nζ ′j+2,N |GN

j ).
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We can write ζj+1,N =
∫ (j+1)∆N

j∆N
g(s)dBs with g(s) = 1

pN

∑pN−1
l=0 (l + 1)1Ij,l

(s). Using

(8.11) and Corollary 3.1, we obtain

|E(r
(2)
j,Nζj+1,N |GN

j )| ≤ 1

p2
N

pN−1
∑

k=0

(k + 1)2δN |E(σ(Xj∆N+kδN
) − σ(Xj∆N

)|GN
j )|

≤ c∆N (1 + |Xj∆N
| + ρ2

NE((εj
•)

2))(∆N (1 + |Xj∆N
|2) + ρ2

N

√

E((εj
•)4)).

The same inequality holds for |E(r
(2)
j,Nζ ′j+2,N |GN

j )|.
For r

(3)
j,N (see (8.7)), we use the Cauchy Schwarz inequality:

|E(r
(3)
j,Nζj+1,N |GN

j )| ≤ 1

p2
N

pN−1
∑

k,l=0

(k + 1)(l + 1)δ
3/2
N E

(

sup
s∈Ij,k

(b(Xs) − b(Xj∆N+kδN
))2

∣

∣

∣

∣

∣

GN
j

)
1
2

.

Hence
|E(r

(3)
j,Nζj+1,N |GN

j )| ≤ c∆2
N (1 + |Xj∆N

|2).

Furthermore E(r
(3)
j,Nζ ′j+2,N |GN

j ) = 0.
With the Fubini theorem and the Ito isometry, we have

E(r
(4)
j,Nζj+1,N |GN

j ) =
1

p2
N

pN−1
∑

k=0

(k + 1)2
∫

Ij,k

E(σ(Xs) − σ(Xj∆N+kδN
)|GN

j )ds

Introducing Lf = σ2

2 f ′′ + bf ′ yields

σ(Xs) − σ(Xj∆N+kδN
) =

∫ s

j∆N+kδN

Lσ(Xu)du +
1

2

∫ s

j∆N+kδN

σ(Xu)σ′(Xu)dBu.

Therefore, |E(σ(Xs) − σ(Xj∆N+kδN
)|GN

j )| ≤ c∆N (1 + |Xj∆N
|4) which implies

|E(r
(4)
j,Nζj+1,N |GN

j )| ≤ c∆2
N (1 + |Xj∆N

|4).

Furthermore E(r
(4)
j,Nζ ′j+2,N |GN

j ) = 0. The terms containing s
(3)
j,N and s

(4)
j,N are treated

analogously. This gives the bound for |E(τj,Nζj+1,N |GN
j )| and |E(τj,Nζ ′j+2,N |GN

j )|.
Finally, we have to bound the fourth order conditional moment of τj,N . We only study

the terms r
(2)
j,N and r

(1)
j,N . Using (8.11), the Burkholder - Davies - Gundy inequality and

Proposition A.1, we have

E((r
(2)
j,N )4|GN

j ) ≤ cE





(

∫ (j+1)∆N

j∆N

f(s)2ds

)2
∣

∣

∣

∣

∣

∣

GN
j





≤ c∆2
NE( sup

s∈[j∆N ,(j+1)∆N ]

(σ(Xs) − σ(Xj∆N
))4|GN

j ) ≤ c∆4
N (1 + |Xj∆N

|4).
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With similar computations, we derive E((τ
(2)
j,N )4 + (τ

(4)
j,N )4|GN

j ) ≤ c∆4
N (1 + |Xj∆N

|4).
Using Proposition 3.1, we get

E((r
(1)
j,N )4|GN

j ) ≤ c
δ4
N

pN

pN−1
∑

k=0

(k + 1)4E((b(Y j
• ) − b(Xj∆N+kδN

))4|GN
j )

≤ c(1 + |Xj∆N
|4 + ρ4

NE((εj
•)

4))(∆6
N (1 + |Xj∆N

|4) + ρ4
N

√

E((εj
•)8)).

Analogously, using Proposition A.1, E((r
(3)
j,N )4|GN

j ) ≤ c∆6
N (1 + |Xj∆N

|4). Finally, we get

the bound for E(τ4
j,N |GN

j ).
2

Proof of Proposition 4.1 By Lemma A.2, it is enough to prove the L1 convergence to
zero of

sup
θ∈Θ

1

kN

kn−1
∑

j=0

|f(Y j
• , θ) − f(Xj∆N

, θ)|.

By Taylor expansion and condition (C1) we derive the bound

Aj := sup
θ∈Θ

|f(Y j
• , θ) − f(Xj∆N

, θ)| ≤ c(1 + |Xj∆N
| + |Y j

• |)|Y j
• − Xj∆N

|.

Hence, the Cauchy Schwarz inequality and Assumption (A2) imply

E
(

Aj |HN
j

)

≤ c(1 + |Xj∆N
| + ρN

√

E((εj
•)2))

√

E

(

|Y j
• − Xj∆N

|2
∣

∣

∣
HN

j

)

.

Then, with (3.5), Assumptions (A5) and (B1), and E((εj
•)2) = 1

pN
, the result holds. 2

Proof of Theorem 4.1 We have

ĪN (f(., θ)) = ĨN (f(., θ)) +
1

kN∆N

kN−2
∑

j=1

f(Y j−1
• , θ)∆N (b(Y j

• ) − b(Y j−1
• )),

where ĨN (f(., θ)) = 1
kN∆N

∑kN−2
j=1 V N

j (θ) with V N
j (θ) = f(Y j−1

• , θ)(Y j+1
• −Y j

• −∆Nb(Y j
• )).

We only need to prove that ĨN (f(., θ)) → 0 in probability, uniformly in θ ∈ Θ, as the
second term is oP (1), uniformly in θ. As V N

j (θ) is HN
j+2-measurable, we split the sum

into three parts

kN−2
∑

j=1

Vj,N (θ) =
∑

1≤3j≤kN−2

V3j,N (θ) +
∑

1≤3j+1≤kN−2

V3j+1,N (θ) +
∑

1≤3j+2≤kN−2

V3j+2,N (θ).

We treat only the sum with indexes multiples of 3 and set:

V N
3j (θ) = v

(1)
3j,N (θ) + v

(2)
3j,N (θ) + v

(3)
3j,N (θ)
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where
v
(1)
3j,N (θ) = f(Y 3j−1

• , θ)σ(X3j∆N
)(ζ3j+1,N + ζ ′3j+2,N ),

v
(2)
3j,N (θ) = f(Y 3j−1

• , θ)ρN (ε3j+1
• − ε3j

• ),

v
(3)
3j,N (θ) = f(Y 3j−1

• , θ)τ3j,N .

In order to prove the pointwise convergence in θ to zero, we use Lemma A.3. As Y 3j−1
• ,X3j∆N

are HN
3j-measurables and ε3j+1

• − ε3j
• is independent of HN

3j , we have E(v
(1)
3j,N (θ)|HN

3j) = 0

and E(v
(2)
3j,N (θ)|HN

3j) = 0. By Proposition 3.3,

|E(τ3j,N |HN
3j)| ≤ c∆N (1+ |X3j∆N

|2 + ρ2
NE((ε3j

• )2))(∆N (1+ |X3j∆N
|4)+ ρ2

N

√

E((ε3j
• )4)).

Using (A4), this implies 1
kN∆N

∑

1≤3j≤kN−2 E(v
(3)
3j,N (θ)|HN

3j) = oP (1). We also have to
verify for ℓ = 1, 2, 3,

1

(kN∆N )2

kN−2
∑

j=1

E((v
(ℓ)
3j,N (θ))2|HN

3j) = oP (1).

For ℓ = 1, we have

1

(kN∆N )2

∑

1≤3j≤kN−2

E((v
(1)
3j,N )2(θ)|HN

3j)

=
1

(kN∆N )2

∑

1≤3j≤kN−2

f(Y 3j−1
• , θ)2σ(X3j∆N

)2E

(

(

ζ3j+1,N + ζ ′3j+2,N

)2
∣

∣

∣HN
3j

)

≤ 1

NδN

2

kN

∑

1≤3j≤kN−2

f(Y 3j−1
• , θ)2σ(X3j∆N

)2 = oP (1).

For ℓ = 2,

1

(kN∆N )2

∑

1≤3j≤kN−2

E((v
(2)
3j,N )2(θ)|HN

3j) =
1

(kN∆N )2

∑

1≤3j≤kN−2

f(Y 3j−1
• , θ)2ρ2

NE((ε3j+1
• − ε3j

• )2)

=
2ρ2

N

NδNpN∆N

1

kN

∑

1≤3j≤kN−2

f(Y 3j−1
• , θ)2.

As pN∆N = p2−α
N , with 1 < α ≤ 2, the above term is oP (1).

For ℓ = 3,

1

(kN∆N )2

kN−2
∑

j=1

E((v
(3)
3j,N )2(θ)|HN

3j) =
1

kN

1

kN

kN−2
∑

j=1

fθ(Y
3j−1
• )2

1

∆2
N

E(τ2
j,N |HN

3j) = oP (1),

using that, by Proposition 3.3, ∆−2
N E(τ2

j,N |HN
j ) is OP (1).
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To obtain uniformity in θ, we shall use Proposition A.2 and evaluate supN∈N E(supθ∈Θ |∂θ ĨN (fθ)|).
To study

∂θ ĨN (fθ) =
1

kN∆N

kN−2
∑

j=1

∂θV
N
j (θ),

we use the same method, split the sum in three parts, and define:

S
(ℓ)
N (θ) =

1

kN∆N

∑

1≤3j≤kN−2

v
(ℓ)
3j,N (θ).

The sum for ℓ = 3 is the simplest. With assumption (C1) for ∂θf , we deduce

E(sup
θ∈Θ

|∂θv
(3)
3j,N (θ)||HN

3j) ≤ c(1 + |Y 3j−1
• |)

√

E(τ2
3j,N |HN

3j).

With the Cauchy Schwarz inequality, we have

E(sup
θ∈Θ

|∂θv
(3)
3j,N (θ)||HN

3j) ≤ c
√

∆N (1 + |Y 3j−1
• |)(1 + |X3j∆N

| + ρN

√

E((ε3j
• )2))

×(
√

∆N (1 + |X3j∆N
|2) + ρN

(

E

(

(

ε3j
•

)4
))

1
4

)

and with Lemma A.2 and (A4)-(A5), this implies supN∈N E(supθ∈Θ |∂θS
(3)
N (θ)|) < ∞.

We cannot use the same method to study S
(ℓ)
N (θ), ℓ = 1, 2. Instead, we use Theorem

20 in Appendix 1 of Ibragimov and Has′minskĭı (1979): it is enough to show that, for
ℓ = 1, 2, there exists two constants M ≥ 0 and ǫ > 0 such that:

∀θ ∈ Θ,∀N ∈ N, E(|S(ℓ)
N |2+ǫ) ≤ M

and ∀θ, θ′ ∈ Θ,∀N ∈ N, DN (θ, θ′) ≤ M |θ − θ′|2+ǫ (8.12)

where DN (θ, θ′) = E(|S(ℓ)
N (θ) − S

(ℓ)
N (θ′)|2+ǫ).

For ℓ = 1, using the Rosenthal inequality for martingales, we get, for any ǫ > 0:

E(|S(1)
N (θ)|2+ǫ) ≤ 1

(kN∆N )2+ǫ
E







∣

∣

∣

∣

∣

∣

∑

1≤3j≤kN−2

E

(

(v
(1)
3j,N (θ))2

∣

∣

∣
HN

3j

)

∣

∣

∣

∣

∣

∣

1+ ǫ
2







+
1

(kN∆N )2+ǫ

∑

1≤3j≤kN−2

E(|v(1)
3j,N (θ)|2+ǫ)

Then it comes:

E







∣

∣

∣

∣

∣

∣

∑

1≤3j≤kN−2

E

(

(v
(1)
3j,N (θ))2

∣

∣

∣HN
3j

)

∣

∣

∣

∣

∣

∣

1+ ǫ
2






≤ k

ǫ
2

N

∑

1≤3j≤kN−2

E

(

∣

∣

∣E

(

(v
(1)
3j,N (θ))2

∣

∣

∣HN
3j

) ∣

∣

∣

1+ ǫ
2

)
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With E((ζ3j+1,N + ζ ′3j+2,N )2|HN
3j) = ∆N

(

1 − 1
3

(

p2
N−1

p2
N

))

, Assumption (A5) and (C1),

we derive

sup
j,N

E

(

∣

∣

∣
E

(

(v
(1)
3j,N (θ))2

∣

∣

∣
HN

3j

)∣

∣

∣

1+ ǫ
2

)

≤ c∆
1+ ǫ

2

N and sup
j,N

E

(

∣

∣

∣
v
(1)
3j,N (θ)

∣

∣

∣

2+ǫ
)

≤ c∆
1+ ǫ

2

N .

Hence

E

(

∣

∣

∣
S

(1)
N (θ)

∣

∣

∣

2+ǫ
)

≤ c

(

1

(kN∆N )1+
ǫ
2

+
1

(kN∆N )1+
ǫ
2

1

k
ǫ
2

N

)

.

The study of DN (θ, θ′) is analogous, so (8.12) holds. This implies S
(1)
N (θ) = oP (1) uni-

formly in θ.

We use similar tools for S
(2)
N . With the Rosenthal inequality, we have

E(|S(2)
N (θ)|2+ǫ) ≤ 1

(kN∆N )2+ǫ
E







∣

∣

∣

∣

∣

∣

∑

1≤3j≤kN−2

E

(

(v
(2)
3j,N (θ))2

∣

∣

∣HN
3j

)

∣

∣

∣

∣

∣

∣

1+ ǫ
2







+
1

(kN∆N )2+ǫ

∑

1≤3j≤kN−2

E(|v(2)
3j,N (θ)|2+ǫ).

Hence, with E

(

(v
(2)
3j,N (θ))2

∣

∣

∣HN
3j

)

= 2ρ2
Nf(Y 3j−1

• , θ)2σ(X3j∆N
)2E((ε3j

• )2) and E((ε3j
• )2) =

1
pN

, and ∆N = p1−α
N , we obtain (8.12). Finally ĨN (fθ) = oP (1), uniformly in θ. 2

Proof of Theorem 4.2 Let Wj,N (θ) = f(Y j−1
• , θ)(Y j+1

• −Y j
• )2. By Proposition 3.3, we

have Wj,N (θ) =
∑6

i=1 w
(i)
j,N (θ) with

w
(1)
j,N (θ) = f(Y j−1

• , θ)σ(Xj∆N
)2(ζj+1,N + ζ ′j+2,N )2

w
(2)
j,N (θ) = f(Y j−1

• , θ)ρ2
N (εj+1

• − εj
•)

2

w
(3)
j,N (θ) = f(Y j−1

• , θ)(∆Nb(Y j
• ) + τj,N )2

w
(4)
j,N (θ) = f(Y j−1

• , θ)2σ(Xj∆N
)(ζj+1,N + ζ ′j+2,N )ρN (εj+1

• − εj
•)

w
(5)
j,N (θ) = f(Y j−1

• , θ)2σ(Xj∆N
)(ζj+1,N + ζ ′j+2,N )(∆Nb(Y j

• ) + τj,N )

w
(6)
j,N (θ) = f(Y j−1

• , θ)2ρN (εj+1
• − εj

•)(∆Nb(Y j
• ) + τj,N ),

where we recall that Y j−1
• ,Xj∆N

are HN
j -measurable and εj+1

• − εj
• is independent of

HN
j . Therefore, splitting again into three parts, we consider, for ℓ = 0, 1, 2,

T
(i)
ℓ,N (θ) =

1

kN∆N

∑

1≤3j+ℓ≤kN−2

w
(i)
3j+ℓ,N (θ) for i = 1, . . . , 6.

We start by studying T
(1)
0,N (θ):

E(w
(1)
3j,N (θ)|HN

3j) = f(Y 3j−1
• , θ)σ(X3j∆N

)2∆N

(

1 − 1

3

(

p2
N − 1

p2
N

))
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and

E((w
(1)
3j,N (θ))2|HN

3j) = 3f(Y 3j−1
• , θ)2σ(X3j∆N

)4∆2
N

(

2

3
+

1

3p2
N

)2

.

Applying Lemma A.3 with Lemma A.2, we get, for all θ, T
(1)
0,N (θ) = 1

3× 2
3ν0(f(., θ)σ2)+

oP (1). Thus

T
(1)
0,N (θ) + T

(1)
1,N (θ) + T

(1)
2,N (θ) =

2

3
ν0(f(., θ)σ2) + oP (1).

Then, we study T
(2)
0,N (θ):

E(w
(2)
3j,N (θ)|HN

3j) = f(Y 3j−1
• , θ)ρ2

NE((ε3j+1
• − ε3j

• )2)

= 2f(Y 3j−1
• , θ)ρ2

Np−1
N

and
E((w

(2)
3j,N (θ))4|HN

3j) = f(Y 3j−1
• , θ)2ρ4

NE((ε3j+1
• − ε3j

• )4)

= f(Y 3j−1
• , θ)2ρ4

N (12p−2
N (1 + o(1)))

Recall that ∆N = p1−α
N , 1 < α ≤ 2. If α < 2, with Lemma A.3, T

(2)
0,N = oP (1). But if

α = 2, i.e. ∆N = 1
pN

, and ρN = ρ, we have T
(2)
0,N (θ) = 1

3 × 2ρ2ν0(f(., θ)2) + oP (1). and

T
(2)
0,N (θ) + T

(2)
1,N (θ) + T

(2)
2,N (θ) = 2ρ2ν0(f(., θ)2) + oP (1).

We easily deduce from Proposition 3.3, Lemma A.3 and Lemma A.2 that T
(3)
0,N (θ) = oP (1).

For T
(4)
0,N (θ), we have

E(w
(4)
3j,N (θ)|HN

3j) = 2f(Y 3j−1
• , θ)σ(X3j∆N

)ρNE((ζ3j+1,N + ζ ′3j+2,N )(ε3j+1
• − ε3j

• )|HN
3j)

Given HN
3j , the random variables (ζ3j+1,N + ζ ′3j+2,N ) and (ε3j+1

• − ε3j
• ) are independent,

so E(w
(4)
3j,N (θ)|HN

3j) = 0. Furthermore

E((w
(4)
3j,N (θ))2|HN

3j) = 4f(Y 3j−1
• , θ)2σ(X3j∆N

)2ρ2
NE((ζ3j+1,N + ζ ′3j+2,N )2(ε3j+1

• − ε3j
• )2|HN

3j)

= 8f(Y 3j−1
• , θ)2σ(X3j∆N

)2ρ2
N∆N

(

2

3
+

1

3p2
N

)

1

pN
.

Then, with Proposition 3.3, Lemma A.3 and Lemma A.2, T
(4)
0,N (θ) = oP (1).

We have

E(w
(5)
3j,N (θ)|HN

3j) = 2f(Y 3j−1
• , θ)σ(X3j∆N

)E((ζ3j+1,N + ζ ′3j+2,N )(∆Nb(Y 3j
• ) + τ3j,N )|HN

3j).

With the Cauchy Schwarz inequality,

|E(w
(5)
3j,N (θ)|HN

3j)| ≤ c|f(Y 3j−1
• , θ)|σ(X3j∆N

)
√

∆N

√

E((∆Nb(Y 3j
• ) + τ3j,N )2|HN

3j)

≤ c|f(Y 3j−1
• , θ)|σ(X3j∆N

)
√

∆N

√

∆2
NE(b(Y 3j

• )2|HN
j ) + E(τ2

3j,N |HN
3j).
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Moreover, with the Cauchy Schwarz inequality,

E((w
(5)
3j,N (θ))2|HN

3j) = 4f(Y 3j−1
• , θ)2σ(X3j∆N

)2E((ζ3j+1,N + ζ ′3j+2,N )2(∆Nb(Y 3j
• ) + τ3j,N )2|HN

3j)

≤ cf(Y 3j−1
• , θ)2σ(X3j∆N

)2∆2
N

√

E((∆Nb(Y 3j
• ) + τ3j,N )4|HN

3j).

Then, with Proposition 3.3, Lemma A.3 and Lemma A.2 T
(5)
0,N = oP (1).

With some straightforward computations, T
(6)
3j,N = oP (1).

We prove now uniformity in θ in these convergences, using Proposition A.2. For

w
(1)
j,N (θ), we get

E



sup
θ∈Θ

∣

∣

∣

∣

∣

∣

1

kN∆N

kN−2
∑

j=1

∂θw
(1)
j,N (θ)

∣

∣

∣

∣

∣

∣



 < ∞

with
E

(

σ(Xj∆N
)2(ζj+1,N + ζ ′j+2,N )2

∣

∣HN
j

)

≤ c∆Nσ(Xj∆N
)2.

With similar arguments for w
(i)
j,N (θ), i = 2 . . . 6, we derive uniformity in θ.

2

Proof of Lemma 5.1 We have ρ̂2
N − ρ2 = a1,N + a2,N + a3,N where

a1,N =
ρ2

2N

N−1
∑

i=0

{(ε(i+1)δN
− εiδN

)2 − 2}, a2,N =
1

2N

N−1
∑

i=0

(X(i+1)δN
− XiδN

)2,

a3,N =
ρ

N

N−1
∑

i=0

(X(i+1)δN
− XiδN

)(ε(i+1)δN
− εiδN

).

With the usual law of large numbers, a1,N = oP (1). With Proposition A.1,

E(a2,N ) ≤ cδN (1 + sup
t≥0

E(X2
t )) = δNO(1), E((a2,N )2) ≤ cδN

N
.

Hence ρ̂N − ρ2 = oP (1). Moreover,
√

Na2,N =
√

NδNOP (1) and
√

Na3,N =
√

δNOP (1)

tend to 0 as N → ∞ for Nδ2
N = o(1). To study the main term, let us set ui = ρ2

√
N

(ε2
iδN

−
1 − ε(i−1)δN

εiδN
) so that

√
Na1,N =

∑N−1
i=1 ui + oP (1). With

E(ui|εℓδN
, ℓ ≤ i − 1) = 0,

N−1
∑

i=1

E(u2
i |εℓδN

, ℓ ≤ i − 1) = 3ρ4 + oP (1),

E(u4
i |εℓδN

, ℓ ≤ i − 1) = oP (1),

we conclude by the Central Limit Theorem for martingale arrays. 2

Proof of Theorem 5.1. For this proof, recall that b(.) = b(., κ0), c(.) = c(., λ0) denote
the drift and diffusion coefficients at the true value θ0. Developping EN (θ) (see (5.1))
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yields:

EN (θ) = kN

{

3

2
Q̄N (

1

c(., λ)
) + ν̄N (log(c(., λ)))

}

+3kN∆N

{

1

2
ν̄N

(

b(., κ)2 − 2b(., κ)b(., κ0)

c(., λ)

)

− ĪN

(

b(., κ)

c(., λ)

)}

.

Proposition 4.1, Theorem 4.1 and Theorem 4.2 imply that EN (θ) is the sum of two

terms with different rates of convergence. Therefore, to prove consistency of θ̂N , we must
proceed in two steps as in Kessler (1997) and Gloter (2006). It is enough to prove that,
first,

1

kN
EN (θ) −→

N→∞
ν0

(

c(., λ0)

c(., λ)
+ log(c(., λ))

)

(8.13)

in probability, uniformly in θ. This will ensure the convergence of λ̂N to λ0. Second, we
prove that

1

kN∆N
(EN (κ, λ) − EN (κ0, λ)) −→

N→∞

3

2
ν0

(

(b(., κ) − b(., κ0)
2

c(., λ)

)

(8.14)

in probability, uniformly in θ.
Using Theorem 4.1, Theorem 4.2 and Proposition 4.1, with ∆N → 0 we obtain (8.13)

and (8.14).
For the second case, we have ‖cN,ρ(., λ) − cρ(., λ)‖∞ = 0 if α = 2, and

‖cN,ρ(., λ) − cρ(., λ)‖∞ ≤ 3∆
2−α
α−1

N ρ2 if α ∈ (1, 2).

Then, cN,ρ converges uniformly (in (x, λ)) to cρ. Moreover, by Assumption (A7), c−1

satisfies (C1). Thus

|cN,ρ(x, λ)−1 − cρ(x, λ)−1| ≤ c‖cN,ρ(., λ) − cρ(., λ)‖∞(1 + |x|4)

and
| log(cN,ρ(x, λ)) − log(cρ(x, λ))| ≤ c‖cN,ρ(., λ) − cρ(., λ)‖∞(1 + |x|2).

The end of the proof is identical, replacing EN by Eρ
N and c by cρ in the limits (8.13)-

(8.14).2
Proof of Corollary 5.1. As formerly, we evaluate

‖cN,ρ̂N
(., λ) − cρ(., λ)‖∞ ≤ 3∆

2−α
α−1

N |ρ2 − ρ̂2
N |.

We conclude using Lemma 5.1. 2
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Appendix

The following lemma can be found in Gloter (2006), and precises a result from Kessler
(1997) :

Lemma A.2. Assume (A1)-(A3). Let f ∈ C1(R×O), where O is an open neighbour-
hood of Θ, satisfy

sup
θ∈Θ

{|f(x, θ)| + |∂xf(x, θ)| + |∂θf(x, θ)|} ≤ C(1 + |x|)

then:

1

kN

kN−1
∑

j=0

f(Xj∆N
, θ) −→

kN→∞
ν0(f(., θ)) (A.15)

uniformly in θ, in probability.
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The following proposition can be found in Gloter (2000) and Gloter (2006), and the
numerical constant c may varies.

Proposition A.1. Assume (A1) and let f ∈ C1(R) satisfy:

∃γ ≥ 0,∃c > 0,∀x ∈ R|f ′(x)| ≤ c(1 + |x|).

Then for all integer k ≥ 1, there exists c > 0 such that, for all j ≥ 0:

E

(

sup
s∈[j∆N ,(j+1)∆N ]

|f(Xs) − f(Xj∆N
)|k|GN

j

)

≤ c∆
k
2

N (1 + |Xj∆N
|1+k)

In particular, with f(x) = x, we have:

E

(

sup
s∈[j∆N ,(j+1)∆N ]

|Xs − Xj∆N
|k

∣

∣

∣

∣

∣

GN
j

)

≤ c∆
k/2
N (1 + |Xj∆N

|k).

We also recall the following lemma which is given in Genon-Catalot and Jacod (1993),
setting GN

j = Gj∆N

Lemma A.3. Let χN
j , U be random variables, with χN

j being GN
j -measurable. The

following two conditions:

∑kN−1
j=0 E(χN

j |GN
j−1)

P→ U,
∑kN−1

j=0 E((χN
j )2|GN

j−1)
P→ 0

imply
∑kN−1

j=0 χN
j

P→ U .

The following proposition is given in Gloter (2006), to obtain convergences in proba-
bility uniformly in θ.

Proposition A.2. Let Sn(ω, θ) be a sequence of measurable real valued functions de-
fined on Ω×Θ where (Ω,F , P) is a probability space, and Θ is product of compact intervals
of R

d1 × R
d2 . We assume that Sn(., θ) converges to zero in probability for all θ ∈ Θ and

that there exists an open neigbourhood of Θ on which Sn(ω, .) is continuously differen-
tiable for all ω ∈ Ω. Furthermore, we suppose that supn∈N E(supθ∈Θ |∇θSn(θ)|) < ∞.
Then

Sn(θ) → 0

uniformly in θ, in probability.
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Lemma A.4. The random variables ξj,N and ξ′j+1,N are independent and gaussian; ξj,N

is GN
j+1 measurable and independent of GN

j ; ξ′j+1,N is GN
j+2 measurable and independent

of GN
j+1. We will use the following expectations:

E(ξj,N |GN
j ) = E(ξ′j+1,N |GN

j ) = 0,

E(ξ2
j,N |GN

j ) = E(ξ′2j+1,N |GN
j ) = 1

3 ,

E((ξ2
j,N − 1

3 )2|GN
j ) = E((ξ′2j+1,N − 1

3 )2|GN
j ) = 2

9 ,

E((ξ2
j,N − 1

3 )ξ′j,N |GN
j ) = E((ξ′2j+1,N − 1

3 )ξ′j,N |GN
j ) = 0,

E(ξj,Nξ′j,N |GN
j ) = 1

6 .

This lemma, based on elementary computations, is mentioned in Gloter (2000).

imsart-bj ver. 2009/12/15 file: Partie1Bernoulli.tex date: June 21, 2010


