
HAL Id: hal-00493951
https://hal.science/hal-00493951

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weld pool shape identification by using Bezier surfaces
Duc Dung Doan, Franck Gabriel, Yvon Jarny, Philippe Le Masson

To cite this version:
Duc Dung Doan, Franck Gabriel, Yvon Jarny, Philippe Le Masson. Weld pool shape iden-
tification by using Bezier surfaces. Heat Transfer Engineering, 2011, 32 (9), pp.771-786.
�10.1080/01457632.2010.525415�. �hal-00493951�

https://hal.science/hal-00493951
https://hal.archives-ouvertes.fr
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This paper deals with the heat transfer analysis in a welding process: A method is developed to determine the shape of the three-dimensional 
(3-D) phase change front and to estimate the temperature field within the solid part of the work piece. The problem is formulated and solved 
as an inverse phase-change problem by using an optimization method. The direct problem is solved in the torch frame and so formulated as an 
Eulerian approach. The interface between the weld pool and the solid region is parameterized by Bezier surfaces. The most important feature 
of the presented approach is that the liquid–solid interface as well as the temperature distribution within the solid region can be obtained 
from additional temperature data available in the solid region, without considering heat transfer and fluid flow in a molten zone. The estimate 
of these thermal characteristics then allows a thermomechanical calculation of the welded joint (calculation of the deformations and residual 
stresses). The validity of the numerical solution of the inverse problem is checked by comparing the results with the direct solution of the 
problem.

INTRODUCTION

Welding is a complex process that involves many parameters

that may have important influences on the final solidification

structure and the properties of the welded joint [1]. During the

welding process, the edge of two pieces of metal are melted

and fused together. This is done using an intense local energy

source. Transmitted energy causes the fusion of metal, as well

as the creation of a molten pool usually referred to as a weld

pool. It is important to be able to control the size and shape of

the weld pool [2]. It must be small enough to be manageable

and minimize energy consumption but large enough to bond the

two pieces properly

Studies that deal with the inverse technique for the analysis of

melting and solidification processes are limited. Earlier efforts

have focused on a one-dimensional problem [3–5]. The litera-

ture includes the two-dimensional (2-D) stationary arc welding

problem in which Hsu uses transient temperature data from ther-

mocouples imbedded in the solid region to determine through
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a Newton–Raphson interpolation procedure the transient posi-

tion of the liquid–solid interface and the transient temperature

distribution in the solid region [6]. Later, it includes the two-

dimensional design problem [7–8] and the two-dimensional in-

verse geometry problem in continuous casting of metals [9].

Recently, Doan et al. have developed an original method to

identify the position and the shape of a 2-D melting pool using

the parameterization by Bezier splines [10–14].

This work focuses on the application of the inverse tech-

nique and Bezier surfaces for identifying the location of the

three-dimensional (3-D) liquid–solid interface, as well as its ap-

plication with Bezier splines in the 2-D case. Furthermore, it can

be noted that in quasi-steady state, the determination of the heat

flux crossing this interface results directly from the knowledge

of both the front location and the temperature field within the

solid region.

PROBLEM STATEMENT

The Welding Processes

The phase-change phenomenon is considered in the follow-

ing experimental conditions (Figure 1). A welding arc having
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Figure 1 Schematic diagram of welding process.

a power of sufficient intensity moves with a constant velocity

(axis x) and strikes the edge of two metal plates. A weld pool is

formed and moves at the same velocity as the welding arc.

The mathematical representation of the problem includes the

following physical processes and other general assumptions and

conditions:

1. The heat transfer between two plates during the welding pro-

cess when the welding torch moves with a constant velocity

is unsteady in a fixed coordinate system. A quasi-steady-state

problem can be achieved in a coordinate system that moves

with the heat source. Thus, a moving coordinate system is

used for the analysis of the inverse problem. This means

that the size of the weld pool under the welding arc is con-

stant while the material enters and leaves the computational

domain.

2. In quasi-steady state, to obtain the shape of the weld pool

and the temperature field in the solid domain, we formulate

and solve the heat conduction problem within the solid re-

gion by considering the melting temperature as the imposed

temperature at the liquid–solid interface.

3. The Bezier surface with its control points is used to define

the position of the liquid–solid interface. In this work, this

assumption is used in order to form the initial position of the

liquid–solid interface and to create a numerical experiment,

i.e., the temperature data at the points of measurement located

within the solid region. The location of the sensors is constant

with respect to the moving coordinate.

We first analyze the mathematical formulation of the general

3-D problem and its numerical solution with Bezier surfaces,

and then we apply the method in a 2-D case.

Modeling Equations

3-D Cases (Figure 2)

The modeling equations that determine the temperature field

within the solid region consist of the energy equation (1) with

a moving heat source along the x axis, together with adiabatic

conditions on the boundaries and a symmetric condition (2), the

condition at the top and the bottom of the work piece [Eqs. (3)

and (4)], the imposed temperature on the boundary at x = +L2,

and the specification of the melting temperature along the phase-
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Figure 2 Schematic of spatial domain.

change front (5).

ρscsu
∂Ts(x, y, z)

∂x
= ∇. [λs∇Ts(x, y, z)] (x, y, z) ∈ �S

(1)

∂Ts

∂y
= 0 at y = L y ;

∂Ts

∂x
= 0 at x = −L1 and

∂Ts

∂y
= 0 at y = 0 (2)

−λs

∂T (x, y, z0)

∂z
+ hT (x, y, z0) = hTe at z = z0 = 0

(3)

λs

∂T
(

x, y, zep

)

∂z
+ hT (x, y, zep) = hTe at z = zep = e

(4)

T = Timp at x = +L2 , T (x, y, z) = T f at (x, y, z) ∈ Ŵ

(5)

The shape Ŵ of the isothermal phase change front is un-

known. Considering a heat flux balance equation to determine

this shape is nonpracticable because no experimental data are

available to characterize the heat flux distribution lost by the

weld pool through this front. Therefore the shape of the front

will be determined using an inverse approach, which needs addi-

tional data given by the temperature measurements at M points

located in the solid region:

T (xm, ym, zm) = Y mm = 1, 2, . . . , M(x, y, z) ∈ �s (6)

Hence the inverse problem, considered of interest here, aims

for the shape Ŵ identification of the phase change front and

the estimation of the temperature field within the solid part

�sof the work piece for the modeling Eqs. (1)–(6). The main

difficulty in this kind of problem is its ill-posed nature. That

is why the measurement sensor number should be appropriate

to make an overdetermined problem, or at least equal to the

number of design variables. Thus, in general, inverse analysis

leads to optimization procedures of an objective function S(X) of
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the least-squares type built with T (xm, ym, zm ; Ŵ), the predicted

temperatures by the modeling Eqs. (1)–(5), Ŵ being fixed, and

the measured temperatures, as in Eq. (6). The inverse phase

change problem is formulated as an optimization problem; it

consists of finding Ŵ that minimizes:

S(Ŵ) =
1

M

M
∑

m=1

(

T (xm, ym, zm ; Ŵ) − Y m
)2

(7)

Then the inverse analysis is performed without solving heat

transfer and fluid flow equations in the liquid region. The idea

of the iterative algorithm is as follows:

• Step 1: Choose an initial guess of the shape Ŵand its parame-

terization by Bezier splines (see next section).

• Step 2: Compute the sensitivity of the predicted temperature

at the sensor locations with respect to the vector parameter

X of Bezier splines, defined by the coordinates of the control

points.

• Step 3: Use the Levenberg Marquardt algorithm [15] to correct

the vector parameter X.

• Step 4: Repeat the procedure until convergence is achieved.

Modeling of phase-change processes requires smooth curves

representing phase-change fronts. Al-Khadily [7] describes the

phase-change boundary with a two-dimensional coordinate sys-

tem assumed in the molten zone. Each point at the phase change

boundary is located by its radial and angular coordinates, i.e., ra-

dial distance from the keyhole center and the angular direction.

Since the interface location is just a guess, the obtained temper-

ature profile through the work piece will differ from the exact.

The exact location of the liquid–solid interface, as well as the

temperature profile, is found by use of the prediction-correction

method. Choice of the number of nodes to form the interface

plays a major role in obtaining accurate and efficient solution

of the inverse problem. However, when the shape of the phase-

change fronts is complex this number of nodes is important, i.e.,

more measurement sensors are needed. As noticed before, the

ill-posed nature of all inverse problems requires making them

overdetermined by performing an appropriate number of mea-

surements. On the other hand, it is very important to limit the

number of sensors because of commonly known difficulties with

data acquisition. Furthermore, each measurement introduces not

only variable information but also some noise. Application of

Bezier surfaces permits us to parameterize the phase change

front using a smaller number of parameters and, consequently,

reduce the number of sensors.

2-D Application (Figure 3)

Formulation of the inverse problem. When the thickness e

of the piece is weak enough, the modeling Eqs. (1)–(5), which

determine the temperature field within the solid region, reduce

to the following forms:

Γ Timp Ly

2Lx

Ωs

y
x

Figure 3 Schematic of the 2-D spatial domain.

ρscsu
∂Ts(x, y)

∂x
= ∇. [λs∇Ts(x, y)]

−
hp

S

(

Ts − Timp

)

(x, y) ∈ �s (8)

∂Ts

∂y
= 0 at y = L y, (9a)

∂Ts

∂x
= 0 at x = −L x (9b)

∂u

∂y
= 0,

∂Ts

∂y
= 0 at y = 0 (9c)

Ts = Timp at x = +L x , Ts (x, y) = T f at (x, y) ∈ Ŵ (10)

The second term in the right-hand side of Eq. (8) is used

to define the heat lost by convection and by radiation from the

upper and the lower surfaces of the work piece, where p =
2
(

2L y + e
)

and S = 2L y × e are the perimeter and the section

area of the work piece.

Additional data are given by the temperature measurements

at M points located in the solid region:

T (xm, ym) = Y mm = 1, 2, . . . , M (x, y) ∈ �sm (11)

The inverse phase change problem is formulated, as in the 3-D

cases, as an optimization problem; it consists in finding Ŵ that

minimizes

S(Ŵ) =
1

M

M
∑

m=1

(

T (xm, ym ; Ŵ) − Y m
)2

(12)

In order to optimally identify and represent the weld pool shape,

it is parameterized with the Bezier surfaces in 3-D cases and with

Bezier splines in 2-D cases.
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Parameterization of the Front Ŵ

Bezier Surfaces

Generally, the Bezier surface is formulated as follows:

P(u, v) =
m

∑

i=0

n
∑

j=0

Bm
i (u)Bn

j (v)Pi j with u ∈ [0, 1] , v ∈ [0, 1]

Bm
i (u) =

m!

i! (m − i)!
ui (1 − u)m−i

Bn
j (v) =

n!

j! (n − j)!
v j (1 − v)n− j (13)

where P(u,v) stands for any point on the Bezier surface, Pij

is the control point, m × n is the degree of Bezier surface,

N = (m + 1) × (n + 1) is the number of control point, u and

v vary in the range [0, 1], and Bn
i (u), Bn

i (v) are the Bernstein

polynomials.

The majority of weld pool interfaces can be represented by a

cubic Bezier surface (with m = 2, n = 3). Such curves applied

in the 3-D fully penetration weld pool problem are based on 12

control points P0, P1, P2, . . ., P12 (Figure 4) as presented in the

following formulation:

P (u, v) =
2

∑

i=0

3
∑

J=0

Pi j

2!

i! (2 − i)!
ui (1 − u)i

×
3!

j! (3 − j)!
v j (1 − v)3− j = P00 (1 − u)2 (1 − v)3

+ P01 (1 − u)2 3v (1 − v)2 + P02 (1 − u)2

× 3v2 (1 − v) + P03 (1 − u)2 v3

+ P102u (1 − u) (1 − v)3 + P112u (1 − u)

× 3v (1 − v)2

with u ∈ [0, 1] ; v ∈ [0, 1] (14)

P20

P21

P22

P23

P10

P02

P01

P03P00

P13

P12

P11

P20

P21

P22

P23

P10

P02

P01

P03P00

P13

P12

P11

x

yz

Figure 4 Surface of degree (2 × 3) with its 12 control points.

This means that the shape of the interface Ŵ is described by 12

control points (i.e., 36 coordinates in the 3-D case). The pro-

posed approach has a number of important advantages. First, the

application of Bezier surface of degree (2 × 3) ensures smooth-

ness of the phase change front. The next very important advan-

tage is that this application permits to limit the size of the vector

parameter X to be identified.

In practice, some coordinates of the Bezier control points

are defined by additional conditions resulting from the phys-

ical nature of the problem. In the case studied here we

have

P00y = P10y = P20y = P03y = P13y = P23y = 0.

On the other hand, by using the symmetry condition, we have

P21x = P20x , P22x = P23x , P01x = P00x , P02x = P03x , P11x =
P10x , P12x = P13x . We impose P10z = P11z = P12z = P13z .

Finally, the size of the vector parameter X is limited to

dim (X ) = 12 with

X =
[

P00x , P03x , P01y, P02y, P10x ,

× P13x , P11y, P12y, P20x , P23x , P21y, P22y

]

.

Bezier Splines

Generally, the Bezier splines are formulated as follows:

P(t) =
n

∑

i=0

Bn
i (t)Pi

Bn
i (t) = Cn

i ui (1 − t)n−i , Cn
i =

n!

i!(n − i)!
; i = 1, ..n

N = n + 1 (15)

where P(t) stands for any point on the Bezier spline, Pi is the

control point, n is the degree of Bezier spline, N = n+1 is the

number of control point, t varies in the range [0, 1], and Bn
i (t)

is the Bernstein polynomial.

The majority of weld pool interfaces can be represented by

cubic Bezier splines (with n = 3). Such curves are based on four

control points P0, P1, P2, and P3 (Figure 5) as presented in the

Γ

Timp

P0

P1
P2

P3

ytc

sensor

x

y

Figure 5 Schematic of the spatial domain. 
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Figure 6 Coupling the Matlab and Cast3M software.

following formulation:

P(t) = (1 − t)3 P0 + 3(1 − t)2t P1 + 3(1 − t)t2 P2

+ t3 P3 0 ≤ t ≤ 1 (16)

This means that the shape of the interface Ŵ is described by

four control points (i.e., eight coordinates in the 2-D case).

In practice, some coordinates of the Bezier control points are

defined by additional conditions resulting from the physical

nature of the problem. In the case studied here four coordinates

are assumed to be given; then the size of the vector parameter

X =
[

P0x , P1y, P2y, P3x

]

is limited to four.

The next step of the study consists in developing some nu-

merical experiments in order to validate the inverse approach.

We first validate the 2-D case and then the 3-D case. The opti-

mization computations are numerically performed by using the

Cast3M and Matlab software as presented in the Figure 6.

NUMERICAL RESULTS

The solution of the inverse problem is considered with simu-

lated data. Several numerical experiments have been performed

in order to:

Make the solution and convergence limits independent on com-

putational parameters.

Choose a suitable number of sensors and their locations and

simplify the experimental design procedure.

The parameters to be identified are the control point’s coor-

dinates and the overheat transfer coefficient h.

The sensitivity analysis [14] is detailed in order to analyze the

influence of the sensor locations as well as the influence of the

parameters supposed to be known, i.e., λs, ρs, c, u, Te, and yTC.

It was observed that the computed solutions are very sensitive to

the errors on these last parameters, which can provide significant

bias in the result of the identification problem. However, the

sensitivity to the coefficient h remains very weak, so we choose

to use a constant value coming from Goldak [16].

Thin Plate Case (2-D Application)

Numerical Experiment

For example, the temperature field T (x, y; Ŵ) plotted in

Figure 7 was obtained by solving the modeling Eqs.

(8)–(11) with a finite-element approximation and the following

Figure 7 Temperature field in the solid region given by numerical experiment.
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numerical values:

L x = 30 cm, L y = 5 cm, ρs = 7200 kg/m3, ρscp

= 400000 J/m3 K ,λs = 50 W/mK ,

T f = 1450◦C, Timp = 20◦C, u = 10 mm/s,

Tre f = 300 K ; ε = 0.9

h = 23.45 × ε

(

T

Tre f

)1.61

(W/m2 K )

The shape of the front is parameterized by the four following

control points P
exp

0 (−0.0067, 0), P
exp

1 (−0.0067, 0.00375),

P
exp

2 (0.0033, 0.006), and P
exp

3 (0.0033, 0.),

The vector parameters to be found are

X exp =
(

P
exp

0x , P
exp

1y , P
exp

2y , P
exp

3x

)

= (−0.0067, 0.00375, 0.006, 0.0033).

Results and Discussion—Influence of the Choice of Initial

Parameters Xini

The optimization problem may have several local min-

ima. The influence of the initial guess Xini on the com-

puted solution has to be investigated. The weld pool phys-

ical nature imposes some constraints on the initial parame-

ter values, especially on the weld pool length Longbain and

width Larbain: Longbain ≥ Larbain . Moreover, Longbain =
(P3x − P0x ) and Larbain depends on P1y and P2y. That leads

us to choose the initial parameters Xini with four control

points of a Bezier spline checking the ellipse equation curve

P (t) ≡ x2

a2 + y2

b2 = 1 with a > b, as in Figure 8. In practice,

P2y ≥ P1y , and we consider then P ini
2y

= P ini
1y

. On the other

hand, b = Max[Py(t)] = Max[(1 − t)3 P0y + 3t(1 − t)2 P1y

+3t2(1 − t)P2y + t3 P3y]; then P0y = P3y = 0 implies b =
Max[3t(1 − t)2 P1y + 3t2(1 − t)P2y], so the maximum value is

at t = 0, 5, and b = 3
8

P1y + 3
8

P2y . Therefore, the initial guess

3x

iniP
0x

iniP

1

ini

yP
2

ini

yP

x

y

b

2a

3x

iniP
0x

iniP

1

ini

yP
2

ini

yP

x

y

b

2a

Figure 8 The choice of initial guess.

is chosen in order to check the following conditions:

P ini
3x − P ini

0x = 2a then P ini
3x = −P ini

0x = a

3

8
P ini

1y +
3

8
P ini

2y = b then P ini
1y = P ini

2y =
4

3
b

a > b

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(A∗)

To facilitate the numerical procedure, the parameter coordi-

nates are defined in the range [0, 1] by a simple transformation

Pik = ‖Pik‖ / ‖Pnorm‖.

Here we have POx = ‖P0x ‖
0.008

, P1y = ‖P1y‖
0.007

, P2y = ‖P2y‖
0.007

,

P3x = ‖P3x ‖
0.008

, so the vector parameter to be found is X
exp
tr =

(0.838, 0.536, 0.857, 0.413).

The initial guess conditions (A∗) become:

P ini
3x = P ini

0x = a
0.008

, then 0 ≤ a ≤ 0.008

P ini
1y = P ini

2y = 4
3∗0.007

b = 4
0.021

b then 0 ≤ b ≤ 0.021
4

a > b

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(A∗∗)

Several tests, with different initial parameter vector (Table 1),

are carried out in order to analyze convergence for the case

using M = 100 measurement data. The sensors are located

at yT C = 7, 0 mm (Table 2), yT C = 6, 0 mm (Table 3) and

yT C = 5, 5 mm (Table 4).

The estimation error is given by εest = ‖�P‖ / ‖P‖ =
√

∑
(

P
exp

ik − Pcal
ik

)2
/

√

∑
(

P
exp

ik

)2
and Tmaxis the maximum

measured temperature.

All these initializations lead to the exact solution. But the

following results show the influence of the sensor locations on

the convergence of the optimization algorithm: The more the

sensors are close to the front, the more the measurements points

are sensitive, i.e., the solution of the identification problem is

better and the convergence is faster. In addition, it is better to

choose the configuration number 5 or number 6 (Table 1) to

initialize the calculation of optimization (Tables 2–4).

In conclusion, in the analysis of these tables, it is observed

that the most favorable cases are those where the initial form is

located within the exact form.

The parameter estimation in the favorable case number 6 with

yT C = 5, 5 mm is presented in Figure 9. The exact front and the

estimated one are plotted in Figure 10, as well as the difference

between these two fronts in Figure 11. One can note that the

maximum error is 35 µm for a weld pool length equal to 10 mm.

The relative error is then lower than 1%. After the estimation

of the weld pool shape Ŵ, knowing the temperature field within

the solid part, one can calculate the heat flux crossing Ŵ, along

the curvilinear X-coordinate (see Figure 12). It is noted that heat

flow increases from 0.04 MW m−2 to 1.02 MW m−2 and reaches

its maximum value at the head of the fusion front.

6



Table 1 Configuration between initial Ŵini (ini) and the exact front Ŵexp (exp)

Table 2 Influence of the choice of initial guesses with yT C = 7, 0 mm

Test number Xini
(

P0x , P1y , P2y , P3x

) √
S (Eq. 12) Iteration number

√
S/Tmax (%)

(Tmax = 7.3.31◦C) εest (%)

1 (0.90.80.80.9) 3.00 24 0.42 22.20

2 (0.40.80.80.4) 9.43 18 1.34 20.50

3 (0.250.60.60.25) 1.35 20 0.19 1.27

4 (0.80.40.40.8) 4.67 33 0.66 10.98

5 (0.20.40.40.2) 2.38 28 0.34 14.20

6 (0.90.60.80.65) 1.6 25 0.22 8.60
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Table 3 Influence of the choice of Initial guesses with yT C = 6, 0 mm

Test number Xini
(

P0x , P1y , P2y , P3x

) √
S Iteration number

√
S/Tmax (%)

(Tmax = 821.03◦C) εest (%)

1 (0.9 0.8 0.8 0.9) 16.68 25 2.03 17.70

2 (0.4 0.8 0.8 0.4) 2.90 22 0.35 17.80

3 (0.25 0.6 0.6 0.25) 2.32 40 0.28 13.90

4 (0.8 0.4 0.4 0.8) 8.09 39 0.99 12.40

5 (0.2 0.4 0.4 0.2) 1.37 25 0.17 2.00

6 (0.2 0.2 0.2 0.2) 0.53 24 0.06 1.16

Table 4 Influence of the choice of initial guesses with yT C = 5, 5 mm

Test number

Xini
(

P0x , P1y , P2y , P3x

) √
S Iterations number

√
S/Tmax (%)

(

Tmax = 909.24◦C
)

εest (%)

1 (0.9 0.8 0.8 0.9) 2.26 42 0.25 4.06

2 (0.4 0.8 0.8 0.4) 1.87 34 0.21 5.78

3 (0.25 0.6 0.6 0.25) 1.52 30 0.17 2.83

4 (0.8 0.4 0.4 0.8) 1.44 28 0.16 4.33

5 (0.2 0.4 0.4 0.2) 1.75 16 0.19 6.45

6 (0.2 0.2 0.2 0.2) 1.54 26 0.17 1.20

Thick Plate (3-D Application)

In this section, we consider two kinds of weld pool shape

identification: the partial penetration case and the full penetra-

tion case.

Full Penetration Case

We present here a case test representative of a TIG or

MIG/MAG welding process configuration. The liquid/solid in-

terface (fusion front) is parameterized by using a Bezier surface

of degree 2 × 3 described previously. Applying the method of

reduction of the parameters number presented previously, the

Figure 9 2-D numerical experiment—parameter estimation (test number 6

with yT C = 5, 5 mm).

Figure 10 Comparison between the exact and estimated fronts (test number 6

with yT C = 5, 5 mm).

Figure 11 Error between the exact front and the estimated one. 
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Figure 12 Heat flux crossing the fusion front according to curvilinear coordi-

nate.

fusion front can be written as:

Ŵ = Ŵ
(

P00x , P03x , P01y, P02y, P10x , P13x , P11y,

× P12y, P20x , P23x , P21y, P22y

)

The direct problem formulation is presented in Eqs. (1) to (7).

The optimization problem consists in finding Ŵ by minimiz-

ing the difference between the measured and calculated tem-

peratures. The identification problem in 3-D follows the same

process as that of the 2-D problem.

3-D Numerical Experiment (Figures 13 and 14). The

reference temperature field presented in Figures 15 and

16 is obtained using Cast 3M software with the following

data: h = 24.1Wm−2K−1, L y = 40 mm, L x = 300 mm,

e = 3 mm, ρscp = 4000000 J.m−3.K −1, λs = 50 W.m−1.K 1,

T f = 1450◦C , Timp = 20◦C , and vtorche = 10 mm.s−1.

The shape of the front is defined by a Bezier surface

with the following 12 control points: P
exp

00 (−0.006 00),

P
exp

01 (−0.006 0.006 0), P
exp

02 (0.004 0.006 0), P
exp

03 (0.004 0 0),

P
exp

10 (−0.0075 0 0.0015), P
exp

11 (−0.0075 0.006 0.0015),

P
exp

12 (0.005 0.009 0.0015), P
exp

13 (0.005 0 0.0015),

P
exp

20 (−0.009 0 0.003), P
exp

21 (−0.009 0.008 0.003),

P
exp

22 (0.0060.010.003) , and P
exp

23 (0.00600.003).

The measurement points are on the top plane (z = e) and the

bottom plane (z = 0) (Figure 13), respectively, at the distance

yed , yev of the middle plane “x0z.” With the molten zone being

more developed on the top than on the bottom plane, we take

yed = 7, 5 mm > yev = 5, 5 mm. The method also makes

it possible to use measurement points located inside the plate.

Figure 13 Sensors location.

Figure 14 3-D mesh in the full penetration case.

Here, this information was not taken into account.

Results and Discussion—Influence of the Choice of Initial

Parameters Xini. Various initial parameters are checked in order

to analyze convergence. The vector of the parameters to be

estimated is:

X =
[

P00x , P03x , P01y, P02y, P10x , P13x , P11y,

× P12y, P20x , P23x , P21y, P22y

]

X exp = [−0.006 0.004 0.006 0.006−0.0075 0.005 0.006 0.009

−0.009 0.006 0.008 0.01]

We apply the same technique concerning the choice of X ini pre-

sented in the 2-D case. We thus start the optimization calculation

with an initialization that satisfies the following conditions:

P23x − P20x = longed
bain > larged

bain

P03x − P00x = longev
bain > largev

bain

We choose a configuration for the initial parameters as follows

(Figure 17):

P23x = P13x = P03x = a; P20x = P10x = P00x = −a

P21y = P22y = P11y = P12y = P01y = P02y = 4
3
b

a > b

⎫

⎪

⎬

⎪

⎭

(B∗)

Figure 15 Temperature field within the solid domain.
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Figure 16 Temperature signals TC1 and TC2.

As in the 2-D case, to facilitate the numerical procedure,

we make the parameter coordinates in the range [0, 1] by

a simple transformation: Pi jk = ‖Pi jk‖/‖Pnorm
i jk ‖, Pi=0, jk =

‖Pi=0, jk‖/0.0065, Pi �=0, jk = ‖Pi �=0, jk‖/0.01.

The vector parameter transformed to be found is then:

X
exp
tr = [0.923 0.615 0.923 0.923 0.750.50.60.90.90.60.81]

By applying the initial conditions (B∗), we have:

P23x = P20x = P13x = P10x =
a

0.01

P21y = P22y = P11y = P12y =
4

3 ∗ 0.01
b =

4

0.03
b

P03x = P00x =
a

0.0065

P01y = P02y =
4

3 ∗ 0.0065
b =

4

0.0195
b

Figure 17 Configuration of the initial parameter choice.

Table 5 Initial parameters

Test X ini =
[

P ini
00x

, P ini
03x

, P ini
01y

, P ini
02y

, P ini
10x

, P ini
13x

, P ini
11y

,

number P ini
12y

, P ini
20x

, P ini
23x

, P ini
21y

, P ini
22y

]

1 [0.225 0.225 0.1875 0.1875 0.18 0.18 0.15 0.15 0.18 0.18 0.15 0.15]

Table 6 3-D full penetration case result

Test

number
√

S

Iteration

number

√
S/Tmax (%)

(Tmax = 1331.3◦) εest (%)

1 5.32 40 0.4 8.59

Pi jk ∈ [0, 1] then 0 < a < 0.01; 0 < b <
0.03

4

Several tests, with various vectors of initial parameters

(Table 1), are carried out in order to analyze convergence.

In the test cases presented here, we consider M = 100 mea-

surement points, both on the top and on the bottom of the plate.

This number of measurement points was found to be a satis-

factory compromise between the computing time and the set of

data required for an accurate estimation.

We present in Table 5 the initial parameters used with a =
0.0036; b = 0.00125, and in Table 6 the optimization problem

result.

We present the estimated parameters evolution of this test

case in Figures 18 and 19, the comparison between the exact

front and the estimated one in Figure 20, and the difference

between these two fronts in Figures 21 and 22.

Following the 2-D analysis result, the initial shape

(Figure 20) was selected inside the exact form. One observes in

Figures 21 and 22 a more important error in estimating the back

of welding pool at x ≈ −5mm. That result should be improved

Figure 18 Iterative estimation of parameters P00x, P 03x, P 01y, P 02y.
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Figure 19 Iterative estimation of parameters P10x, P13x, P11y, P12y.

by lengthening the measurement zone toward the back of the

welding pool.

Partial Penetration Case

We present here a case test representative of a TIG or

MIG/MAG welding process configuration. The liquid/solid in-

terface (fusion front) is parameterized by using Bezier surface

of degree 2 × 3. Applying the same method of reduction of the

parameters number presented previously, the fusion front can

be written as (Figure 23):

X = [P00x , P01x , P01z, P02x , P02z, P03x , P11x ,

× P11y, P12x , P12y, P21x , P22y

]

(N = 12)

Numerical Experiment (Figures 24–26). The reference tem-

perature field presented in Figures 27 and 28 is obtained us-

ing Cast3M software (Figure 26) with the following data:

Figure 20 Initial front (black) and exact front (gray).

Figure 21 Comparison between the exact front and the estimated one.

h = 24.1W m−2 K−1, L y = 40 mm, L x = 300 mm,

e = 3 mm, ρscp = 4000000 J.m−3.K −1, λs = 50 W.m−1.K 1,

T f = 1450◦C , Timp = 20◦C , and vtorche = 10 mm.s−1.

The shape of the front is parameterized by the following 12

control points:

P
exp

00 ≡ P
exp

10 ≡ P
exp

20 = (−0.006700)

P
exp

01 = (−0.0047 0 0.00)

P
exp

02 = (0.0013 0 0.002)

P
exp

03 ≡ P
exp

13 ≡ P
exp

23 = (0.0033 0 0.008)

P
exp

11 = (−0.0047 0.002 0.002)

P
exp

12 = (0.0013 0.004 0.002)

P
exp

21 = (−0.0067 0.005 0.008)

P
exp

22 = (0.0033 0.008 0.008)

We use two sensors, one located on the top plane (z = e) TC1

(Ytc1 = 6 mm, Z tc1 = 8 mm) and the other one located within

the work piece TC2 (Ytc2 = 5 mm, Z tc2 = 6 mm) (Figure 24).

Figure 22 The error between the exact front and the estimated one. 
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Figure 23 Bezier surface of degree (2 × 3).

Results and Discussion—Influence of the Choice of Initial

Parameters Xini. The parameters vector to be identified is:

X =
[

P00x , P01x , P01z, P02x , P02z, P03x , P11x , P11y,

× P12x , P12y, P21y, P22y

]

X exp = [−0.0067 − 0.0047 − 0.006 0.0013 − 0.006 0.0033

−0.0047 0.002 0.0013 0.004 0.005 0.008]

We apply the technique already presented in the 3-D full pen-

etration case concerning the choice of the initial values of the

parameters: The constraint to be respected is that the weld pool

length must be higher or equal to its width. The initial parame-

ters must in addition satisfy the following conditions:

P23x = P13x = P03x = a; P00x = P10x = P20x = −a

P21y = P22y = 4
3
b

P01z = P02z = 4
3
c

a > b, e > c(e = platethickness)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(C∗)

This configuration is presented in Figure 28.

Parameter normalization is carried out in order to put them

in the interval [0, 1]:

P00x =
‖P00x‖
0.01

, P01x =
‖P01x‖
0.005

, P11x =
‖P11x‖
0.005

,

Figure 24 Sensor location in 3-D partial penetration case.

Figure 25 3-D mesh corresponding to partial penetration case.

P03x =
‖P03x‖
0.005

, P02x =
‖P02x‖
0.005

, P12x =
‖P12x‖
0.005

P11y =
∥

∥P11y

∥

∥

0.005
, P12y =

∥

∥P12y

∥

∥

0.005
, P21y =

∥

∥P21y

∥

∥

0.01
,

P22y =
∥

∥P22y

∥

∥

0.01
P01z =

‖P01z‖
0.008

, P02z =
‖P02z‖
0.008

By applying the initial conditions C∗ we have:

P23x = P13x = P03x =
a

0.005
; P00x = P10x = P20x =

a

0.01

P21y = P22y =
4

3∗0.01
b =

4

0.03
b;

P11y = P12y =
4

3∗0.005
b=

4

0.015
b;

Figure 26 Temperature field within the solid domain.
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Figure 27 Temperature signals TC1 and TC2.

P01z = P02z =
4

3∗0.008
c =

4

0.024
ca > b,

e > c, 0 < a0.01; 0 < b <
0.015

4
; 0 < c < 0.006

As in the preceding study, we choose a number of measurement

points allowing a good compromise between the computing time

and the quantity of sufficient information for the estimation: 51

measurement points coming from the temperature signal TC1

and 51 measurement points from TC2 (Figure 24).

Table 7 points out the used initial parameters vector and

Table 8 summarizes the estimation results.

Figures 29 to 31 describe the parameters evolution during

the estimate. Figure 32 shows a comparison between the exact

and estimated fusion fronts. Lastly, the difference between these

two fronts is presented in Figure 33.

Figure 28 Initial parameter choice configuration.

Table 7 Initial parameters vector

Test X ini =
[

P ini
00x , P ini

01x , P ini
01z , P ini

02x , P ini
02z , P ini

03x , P ini
11x ,

number P ini
11y , P ini

12x , P ini
12y , P ini

21y , P ini
22y

]

1 [0.150.30.2250.30.2250.30.30.520.30.520.260.26]

Table 8 Estimation results of a 3-D partial penetration case

Test

number
√

S

Iteration

number

√
S/Tmax (%)

(Tmax = 932◦C) εest (%)

1 8.973 35 0.96 11.92

Figure 29 Iterative estimation of parameters P00x, P01x, P01z, P02x.

Figure 30 Iterative estimation of parameters P02z, P03x, P11x, P11y.
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Figure 31 Iterative estimation of parameters P02z, P03x, P11x, P11y.

Figure 32 Initial front (black) and exact front (gray).

Figure 33 Comparison between the exact and estimated fronts.

Figure 34 Error between estimated and exact fronts.

In the same way as in the 2-D and 3-D full penetration cases,

the initial form (Figure 32) was selected inside the exact form.

One observes in Figures 33 and 34 a more important error in

estimating the back of the weld pool shape at x ≈ −7mm. This

result should be corrected by lengthening the zone of measure-

ment toward the back of the weld pool.

CONCLUSIONS

This paper discussed the development and the validation of

a numerical method to identify the shape of the phase-change

front in a quasi-steady-state welding process. The problem is

formulated as an inverse geometry problem and it is solved

iteratively by minimizing a standard least-squares criterion. Fast

convergence is achieved by modeling the unknown shape of the

interface with Bezier surfaces (3-D) or Bezier splines (2-D). The

main advantage of this approach is due to the small number of

parameter values to be identified, which consequently reduces

the amount of required additional measurement data.

It is shown that temperature measurements available only in

the solid region of the work piece to be welded are sufficient to

estimate the shape of the front, without considering heat transfer

and fluid flow in the molten zone, which simplifies considerably

the modeling of the welding process. Moreover, after estimation

of the shape, the method gives directly the heat flux density

that enters into the solid region through this shape. Finally, the

method is sufficiently general to be applied to a great variety

of welding processes: tungsten inert gas (TIG), metal inert gas

(MIG), metal active gas (MAG), laser or electron beam, or

hybrid welding processes.

NOMENCLATURE

a, b, c dimensions of the fusion zone

Bm
i (u) Bezier function
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Bn
j (v) Bezier function

c specific heat capacity, J kg−1 K−1

Cn
i Bezier function

e thickness of the work piece, m

h overall heat transfer coefficient, W m−2 K−1

L1 dimension behind the fusion zone, m

L2 dimension in front of the fusion zone, m

Lx Ly dimensions of the domain, m

m measurement point

M number of points of measurement

p perimeter of the specimen, m

Pxxx parameter of the Bezier surface

Pi, Pij parameter of the Bezier spline

P(u,v) function of the Bezier surface

P(t) function of the Bezier spline

S(T) objective function

S(Ŵ) objective function

S section of the specimen, m2

T temperature, K

Ts temperature within the solid domain, K

Te exterior temperature, K

Timp imposed temperature, K

Tf melting temperature, K

u, v Bezier variables

u torch velocity, m s−1

x, y, z spatial variables, m

Ym temperature measurement at sensors location, K

Greek Symbols

ε emissivity of the specimen

εest estimation error

λs thermal conductivity of the solid, W m−1 K−1

ρs density of the solid, kg m−3

Ŵ liquid–solid interface

�s solid domain

Subscripts

calc calculated data

est estimated value

exp experimental data

l liquid phase

ref reference

s solid phase

TC thermocouple
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