N

HAL

open science

Markov concurrent processes
Samy Abbes

» To cite this version:

‘ Samy Abbes. Markov concurrent processes. 2010. hal-00493927

HAL Id: hal-00493927
https://hal.science/hal-00493927

Preprint submitted on 21 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00493927
https://hal.archives-ouvertes.fr

Markov Concurrent Processes

Samy Abbes*

Abstract

We introduce a model for probabilistic systems with concurrency. The
system is distributed over two local sites. Global trajectories of the sys-
tem are composed of local trajectories glued along synchronizing points.
Global trajectories are thus given as partial orders of events, and not as
paths. As a consequence, time appears as a dynamic partial order, con-
trasting with the universal chain of integers we are used to. It is surprising
to see how natural it is to adapt mathematical techniques for processes to
this new conception of time.

The probabilistic model has two features: first, it is Markov, in a sense
convenient for concurrent systems; and second, the local components have
maximal independence, beside their synchronization constraints. We con-
struct such systems and characterize them by finitely many real parame-
ters, that are the analogous to the transition matrix for discrete Markov
chains. This construction appears as a generalization of the “synchroniza-
tion of Markov chains” developed in an earlier collaboration.

Introduction

This paper introduces a class of probabilistic processes intended to model con-
current systems, and characterizes them by a finite number of parameters.
“Probabilistic process” is not to be taken here in the usual sense of a sequence
of random variables, and that is certainly the most unusual part of these “pro-
cesses”.

To model a system evolving through time, nothing is more natural than to
consider a sequence of random variables, each one taken its values among the
possible states of the system, at least when time is discrete. This approach
however brings some issues in case the system is distributed over several inter-
acting sites. Considering a new state space defined as the product of several
local state spaces, and then a process on the new state space, immediately
comes in mind. By this way however, the interaction of the different sites is
not clearly apparent. Furthermore, and maybe more important, a unique time
line evolving synchronously for all sites does not render any kind of concurrency
between sites. One would have to consider additional conditions, for instance,
equaling elementary sequences of transitions like ab = ba. One would then natu-
rally enter the field of random walks on algebraic structures such as semigroups.
Here, concurrency of parallel actions is obtained a posteriori, by equaling some
sequences of actions, the interleaving of which is considered as irrelevant.
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The approach we consider in this paper is based on a treatment of concur-
rency in a more structural way. A system is distributed over several sites. On
each site a local process evolves in the usual way, and is thus rendered as a
sequence of random variables taking values in the local state space. The inter-
action of sites is taken into account by considering that local state spaces share
some common values, so that local processes are forced to synchronize on these
values. Local processes are otherwise totally asynchronous. Although local tra-
jectories can be seen as sequences of local states, and thus unfolded as infinite
paths in a regular tree, the global trajectories are not paths anymore. Each
global trajectory is instead correctly represented as a partial order of events,
resulting of the gluing of different local trajectories along synchronizing states.

This paper presents some results for such models in the case where concur-
rency is non trivial, but still kept to its simplest expression, namely, the case of
a system with only two sites. It will be demonstrated that this case already con-
tains interesting mathematical issues and original features that are completely
absent from the traditional theory of probabilistic processes.

In the classical theory of probabilistic processes, the class of Markov pro-
cesses has demonstrated its importance, both from the practical and from the
theoretical viewpoints. The model is acclaimed because of the many systems
it can faithfully model, by still allowing analytical treatment. For us, having
defined generalized probabilistic processes for two sites, with partial orders for
trajectories as a main feature, our next task will be to particularize to Markov
generalized processes. Unlike in the case of usual Markov chains, describing
generalized Markov processes by a complete set of parameters, analogous to the
transition matrix, is a non trivial task, that will occupy us next. We will then
come to a related construction proposed earlier, and that can be seen as the
synchronization of Markov chains [3]. Finally, we will end the paper with a
discussion for future work, and how our work is related to other theories, in
particular with the theory of random walks in random environments. We will
also discuss some strange feature and consequences of a partially ordered time.
Although it might appears strange at first sight, it is actually quite intuitive
that a distributed state space implies a distributed time as well. For a discus-
sion on other related work, and in particular for a comparison with the model
of probabilistic automata, the reader is referred to the discussion found in [3].

The paper is organized as follows. In Section 1 we introduce the general
framework for the model, including a general definition of a probabilistic pro-
cess with 2 components and no ordered clock. The two next section, Sections 2
and 3, respectively deal with the Markov property and with the local inde-
pendence property (LIP). Section 4 is devoted to the construction and to the
characterization of Markov concurrent processes with the LIP. Finally, Section 5
discusses research perspectives on the one hand, and provides elements for an
understanding of a “partially ordered time”. An Appendix quickly reviews some
background on conditional expectation and conditional independence.



1 Probabilistic 2-Components Processes

1.1 General Framework

We consider a system distributed over two sites, named 1 and 2. We refer to
the parts of the system related to each site as to the local systems, having local
states, the evolution of which gives rise to two local processes. We refer to each
site by the superscript 1 or 2: for i = 1,2, we note S* the finite set of local states
of site i, we use 2’ to denote a generic element of S*. We use symbols such as
st or (x;) ; to denote sequences of local states. Such sequences can be finite or
infinite. If it is infinite, we call the sequence a local trajectory. We denote
by € the sets of local trajectories.

The two local state sets S* and S? are intended to have a non empty inter-
section, otherwise the theory has little interest. We put Q = S* N .S2. Elements
of Q) are called common states or shared states.

Given a sequence (z;); of elements in a set S, with finitely many of infinitely
many index j, and given a subset A C S, the A-sequence induced by (z;);
is defined as the sequence, finite or infinite, of elements of A encountered by
the sequence (x;);, in their order of appearance. In particular, given two local
trajectories (z1)n>0 and (22),>0, we will say that they synchronize if the
two @Q-sequences they induce are equal. Such a pair of two synchronizing local
trajectories will be called a global trajectory. More generally, we define a
partial trajectory as a pair ((x]l)J,(x?)j), where (z}); and (z7); are two
finite or infinite sequences of states such that the two Q-sequences they induce
coincide.

Partial trajectories are ordered component by component: if s = (s!,s?)
and t = (t',t?) are two partial trajectories, we define s < t if s! < ¢! and
52 < t2, where the order on sequences of states is the usual prefix order on
words. The resulting binary relation on partial trajectories is a partial order,
which maximal elements are exactly the global trajectories defined earlier. The
set of global trajectories is denoted by €.

Given any partial trajectory s = (s!, s?), the subtrajectories of s are those
partial trajectories ¢t such that ¢ < s. Observe that not any prefix ¢ of s is a
subtrajectory; since ¢ could very well not be a partial trajectory itself.

Given a partial trajectory (s',s?), we denote by (y;); the Q-sequence in-
duced by both sequences s! and s2. It can be finite or infinite, even empty. We
refer to (y;); as to the @-sequence induced by (s', s?).

The following notion will be useful: we call global state any pair (z!,2?) €
S1 x 52, Observe that partial trajectories of the global system are not defined
as sequences of global states.

Some typology about partial trajectories: we say that (s', s?) is finite if both
s! and s? are finite sequences of states. In that case, we define

A(s',5?) = (at,2%) € §* x 57 (1)

as the pair of last states of the two sequences s' and s2. It is to be understood
as the current global state “after” execution of the finite trajectory (s!,s?),
although time does not have the usual signification we are used to, in particular
because there is no canonical totally ordered clock at the scale of the system.
We introduce the somewhat unusual notion of length for partial trajectories.



We denote by 7 the set
T = (NU{oo}) x (NU {o0}).

The set 7 is partially ordered component by component, with the natural order
on each component. If s = (s!,5?) is any partial trajectory, the length of s is
defined by

|s| = (|s',[s*]) € T

where |s!| and |s?| denote the length, finite or infinite, of sequences. In a
first approach, lengths can be thought of as time instants—the fact that this
approach is too rough is discussed in § 5.1—it becomes then quite clear that
time is only partially ordered, and not totally ordered.

There is a concatenation operation defined on partial trajectories. If s =
(s',5?) and t = (t!,t?) are two partial trajectories, and if s is a finite trajectory,

then the component wise concatenation, denoted by s -t and defined by
s-t=(s'-t!,s%-t%)

is obviously a partial trajectory. If (t!,¢?) is furthermore a global trajectory,
then s-t is a global trajectory as well. There is an obvious addition on lengths
defined above, compatible with concatenation, in the sense that |s-t| = |s| + [¢].
If the left member is kept fixed, the concatenation defines an application

bt s-t, (2)

which is a bijection from the set of global trajectories onto the set of global
trajectories that have s as a prefix.

1.2 Generalized Probabilistic Processes

Although time has been abstracted from the framework, the notion of trajectory
is still present; this is all we need to introduce a probabilistic layer. Recall that
Q denotes the set of global trajectories defined above. The set € is defined as a
subset of the product Q' x Q2, where QF = (S%)N is the set of local trajectories
on site i, for i = 1,2. If F° denotes the Borel o-algebra on ), we denote by §
the o-algebra on Q defined as the restriction of F' ® 2 on subsets of Q. It is
clear that € itself is ' ® §2-measurable as a subset of Q! x 2, and this justifies
that we refer to § as to the Borel o-algebra on Q.

Definition 1.1. A 2-components probabilistic process is given by the fol-
lowing data: two state sets S' and S?, usually with a nonempty intersection,
and a probability measure P on the induced space (2, F) of trajectories.

Letw® = (X;)jzo be the sequence describing the local trajectories, fori =1,2.
The initial distribution of a given 2-components probabilistic process is defined
as the probability distribution 1 on S' x 82 given by

V(z' 2?) € ' x §? p(at,2?) =P(X; = 2", X§ =2?).

This definition is a natural extension of the general definition of a proba-
bilistic process in discrete time over a single state set ([4]). In the following,
we will refer to such “classical” processes as to sequential probabilistic processes.



Sequential processes contrast with the 2-components probabilistic processes, be-
cause of the concurrency feature of the later.

Observe that, for each finite trajectory s, the mapping ®, defined in Eq. (2)
is not only a bijection, but is also bi-measurable. Next, a 2-components proba-
bilistic process being given with the notations of Def. 1.1, introduce the symbol
T s to denote the set of global trajectories ¢t such that s < ¢. Assume that
P(1 s) > 0. Considering first the conditional probability P(-| T s) on T s, and
then its image on ) by the inverse of ®4 defines a probability measure on 2,
that we denote by P, , and characterized by

L
B(T s)

for every finite trajectory t. Intuitively, probability P; represents the evolution
of the process “after” execution of s.

Po(1t) = P(T (s-1)),

So far, a general model of a distributed system over two sites with syn-
chronization has been defined. Interaction between sites is rendered by the
synchronization constraint. Except for synchronization, local components have
their processes evolving asynchronously from one another. A general notion of
probabilistic process on top of such systems has been introduced, to be partic-
ularized to Markov systems now.

2 The Markov Property and Some Consequences]

Markov chains, and more precisely homogeneous Markov chains, as a class of
sequential probabilistic processes, can be defined in different equivalent ways.
One of them is the following: the evolution of the chain after a finite trajectory,
seen as a function of the finite trajectory, actually only depends on the last
state of the trajectory—and not on the previous values, nor on the length of the
chain. This definition departs from another popular one, involving the initial
distribution of the chain and a transition matrix.

For 2-components probabilistic processes, it is suitable to extend the former
formulation rather than the later; since there is no obvious analogous to the
transition matrix in our case. It will then be our task to discover what the
analogous of the transition matrix is. However this is postponed to Section 3,
where the Markov property will be mixed with yet another ingredient, closely
related to concurrency. The treatment we give of the Markov property in the
present section is necessary, but is rather an adaptation of the usual Markov
property in the concurrent framework; while the core interaction of concurrency
and probability is a topic orthogonal to the Markov property, and devoted to
next section.

2.1 Markov 2-Components Processes

The following definition formalizes the intuitive idea “the future only depends
on the present”, in our setting where no global clock is available.



Definition 2.1. A 2-components probabilistic process defined by a probability
measure P on (Q,F) is said to be Markov if for any two finite trajectories s
and t with P(1 8) > 0 and P(1 ¢) > 0,

V(s) =7(t) = Ps =Py, 3)

using the notations previously introduced with ~y(*) defined in (1) and P, defined
in (2).

Since Py describes the probabilistic evolution of the process “after” finite
trajectory s, and if v(s) is understood as the current global state of the system
after s, the definition renders the intuitive idea of a Markov behaviour. Con-
structing Markov 2-components probabilistic process is a task that we postpone
for now; we temporarily ask the reader to believe they exist, so that it is worth
studying them.

Assume some Markov 2-components probabilistic process P is defined on
(€2,F). Then, for every global state x = (2, 22) € S! x S? such that there exists
a finite trajectory s with v(s) = x and P(T s) > 0, the probability measure P
only depends on x. We define thus P, as the probability measure

P, =Py, for any s such that P(T s) > 0 and v(s) = z. (4)

We refer to probability P, as to the probability starting from z. A global state
x such that y(s) = x for some finite trajectory s satisfying P(T s) > 0 is said
to be reachable. More generally, if u is a probability measure on the finite set
of global states, the support of which only contains reachable global states, we
put

Bu= ulx)P,

the index x ranging over the support of u, defining thus a probability measure
over (£2,5). In particular, if ¢ = d, is the Dirac measure on z, then P, =P, .

2.2 Stopping Times and the (Strong) Markov Property

In classical probability theory, stopping times are one of the basic tool to study
random time specifications. Loosely speaking, we define stopping times in our
framework as “random lengths”. Recall from Section 1.1 that lengths of partial
trajectories range over the partially ordered set 7 = (NU {o0}) x (N U {o0}).

Definition 2.2. With Q0 denoting as above the space of global trajectories, let
T:Q — T be a given mapping. For each w € €, we denote by wr the prefix
of w of length T(w). We say that T' is a stopping time if the two following
properties are satisfied:

1. The prefix wr is a sub-trajectory of w, for P-almost every w € €);
2. For P-almost every w and W' in Q, we have:

wr <w' = T(w) =T(W),

In this case, we also define the shift operator 01 associated with T as the
mapping O : Q@ — Q such that w = wy - Op(w) for P-almost every w € Q. In
other words, Or(w) is the tail of w after its prefix wr .



The operational tool to use and study a stopping time 7' is really the random
prefix wy . Moreover, defining wr is equivalent to defining T'; so that we might
often define a stopping time by specifying directly wp rather than T'.

Remark. If, in Def. 2.2, Q denotes the space of infinite sequences on a set .S, and
if 7 denotes the set NU {co}, then the definition reduces to that of stopping times in
the classical sense [4] adapted to the natural filtration. This is at least an argument
in favor of Def. 2.2 as a proper generalization of the classical notion of stopping time.

Definitions 2.1 and 2.2 are variants of definitions previously introduced in [1]
in the framework of probabilistic event structures. The point of view is quite dif-
ferent here, in particular next section cannot be developed in the general model
of probabilistic event structures. Nevertheless, the Strong Markov Property
shown in [1] is valid with the following formulation: for any stopping time T,
and for any h : 2 — R non negative and measurable function,

E(ho8r|§r) = Eqyw,)(h), P-almost surely, (5)

where: E denotes the mathematical expectation with respect to IP; [E, denotes
the expectation with respect to P, , defined in (4); 07 is the shift operator
associated with T, as in Def. 2.2; and finally §r is the o-algebra associated
with 7', and defined by

VACF, AcFr <= Yw,w' cQ, wcA wr<uw = cA (6)

Note that the relation (5) is an equality between random variables, with the
same formal expression than the Strong Markov found in classical references [6].
This is meant to underline the similarity with classical Markov processes, and
also thought as a convenient tool to adapt proofs and results to our new context
by taking benefit from the formal analogy. We illustrate the later point by
proving for Markov 2-components probabilistic processes a result well-known for
Markov chains, introducing by this way the notion of recurrent and transient
global state. We first define return times.

Remark. For sequential processes, a weak Markov property is usually first stated
for constant times; the strong Markov property is then stated for stopping times, letting
the weak property appear as a particular case of the strong property. In our case, only
the strong property is given. This is because constant times have no meaning for us;
this point is further discussed in § 5.1.

Definition 2.3. Let x € S' xS? be a global state. For any trajectory w € €2, de-
fine a set of finite prefives of w by N(w) ={v <w : y(v) =z and (1,1) < |v|}.
Then define the return time to = as the stopping time T such that

o, if N(w) =0,

Vw e Q, =
“ “r {ian(w), otherwise.

Considering the successive returns in a given set, the question is to determine
the probability of returning in it infinitely often. To formalize the problem, we
introduce the successive return times to x as the following sequence (1},),>0 of
stopping times:

00, if T, (w) = o0,
T,(w)+Tobr (w), otherwise.

To = (0,0), Thi1(w) = {



In the previous expression, recall that 6r, is the shift operator associated
with 75, , so that 07, (w) is merely the tail of w after the prefix wr, . Observe that
Ty = T, and that T},(w) is the n'! return of w in x. We say that a trajectory
w € Q has infinite return in z if all return times T),(w) are finite, for n > 1.

Proposition 2.1. For any reachable state x € S* x S2, the set of trajectories
that return infinitely often in x either has P, -probability O or 1. The probability
is 1 if and only if P,(T is finite) = 1, where T is the return time to x. Using
the Markov chains terminology [6], we will say that:

e z is recurrent if the P, -probability of infinitely many returns in x is 1;

e z is transient if the P, -probability of infinitely many returns in x is 0.

Proof of Proposition 2.1. The proof is borrowed from [6]. For any measurable
subset H, we denote by 1y the characteristic function of H. We compute
as follows, using the o-algebra Fr defined in (6) and the usual properties of
conditional expectation:

Pm(Tn < OO) = Pw(Tnfl +To eTn71 < OO)

=E, (Ez(l{Tn,1+T09Tn71<oo}‘sTn,1))
= Eo (L7, <00} Ba(Lironr, , <oo}[81.-1))- (7)
On the other hand, and using the Markov property as in Eq. (5), we have:
E. (1{T00T,,L,1<oo}|3'Tn71) = ]Ev(wT,,L,l)(lT < 00) =P, (T < ). (8)

Hence, putting a = P(T' < o0), we get from Egs. (7) and (8):
P, (T, < o) = aP,(T,,—1 < 0).

It follows from the Borel-Cantelli lemma that x is recurrent if @ = 1, and
transient if a < 1. O

Another consequence of the Markov property will be very helpful to under-
stand how synchronization occurs in Markov 2-components probabilistic process.
For each global trajectory w = (w!,w?), let Y (w) be the Q-sequence induced
by w, defined as the common @Q-sequence induced by both w! and w?. Then
Y (w) can be either infinite or finite, even empty.

Definition 2.4. We say that a global trajectory synchronizes infinitely of-
ten if the Q-sequence it induces is infinite. If a 2-components probabilistic
process has the property that, with probability 1, global trajectories synchronize
infinitely often, we say that the process is closed; if, with probability 1, global
trajectories induce an empty Q-sequence, then we say that the process is open.

Proposition 2.2. For any recurrent state x of a Markov 2-components proba-
bilistic process, P, either defines a closed or an open process.

Proof of Proposition 2.2. Let x be a recurrent global state. It follows from the
Markov property that the finite trajectories delimited by the successive returns
in x form an infinite sequence of independent and identically distributed random
variables. Hence, if the P, probability of hitting ) between two returns in x
is 0, then he process is open; while, by the Borel-Cantelli lemma, if the P,-
probability of hitting @ is positive, then the probability of hitting @ infinitely
often is 1, and thus the process is closed. O



3 The Local Independence Property

Contrary to the Markov property, which can be expressed in both the sequential
and in the concurrent cases, the probabilistic interaction of components in the
present model has no analogous for sequential processes.

Just as the Markov property limits dependency between past and future, it is
natural to limit dependency between the components. How tiny can dependency
be kept? It is unreasonable to expect independence between local components
since, in general, the synchronization constraint is far from being trivial—and
probability cannot add independence on top of a model with intrinsic depen-
dency. Instead, we will require minimal dependency, besides the synchronisation
constraints. The minimal dependency property that we introduce is called the
local independence property, abbreviated in LIP, and it intuitively renders the
following behaviour: apart from synchronizing, the two components are free to
evolve “on their own”.

3.1 First Formulation of the LIP

The most convenient way to formulate the property we have in mind, although
not the most intuitive, is the following.

Definition 3.1. Let Y denote as above the Q-sequence induced by a generic
global trajectory.

We say that a 2-components probabilistic process enjoys the local indepen-
dence property (LIP) if its two components w* : Q@ — Q! and w? : Q — Q?
are independent with respect to the random variable Y .

Intuitively, the definition says that, conditionally on each synchronization
constraint Y, the two local components are independent.

Besides allowing a concise definition, treating Y as a random variable in
Def. 3.1 has the advantage of not distinguishing between the cases where the
synchronization sequence Y is finite or infinite. We give below however a more
concrete characterization of the LIP (§ 3.2).

It is useful to examine first some particular cases of Def. 3.1, that can be
seen as trivial cases. For this, we need a lemma that explores the case where
relative independence of Def. 3.1 reduces to actual independence.

Lemma 3.1. Assume that PP defines a Markov 2-components probabilistic pro-
cess such that the two local trajectories given by w €  — w! and w € O — W?
are independent. Then w' and w? define two independent homogeneous Markov
chains with values in S and S? respectively.

Proof of Lemma 3.1. Since w' and w? are assumed to be independent, we only
need to show that their laws are those of two homogeneous Markov chains. For
i =1,2, let P’ be the law of w*, characterized by the following values:

Pi(w’ > s') = P(w' > s),

for s* ranging over the set of finite local trajectories (= sequences in S%). The
ordering “<” used above is the prefix ordering on sequences. To show that P? is
the law of a homogeneous Markov chain, it is enough to show that for any finite
local trajectory s’, the conditional probability P?(s’ -+ | T s*) only depends on



the last state in sequence s*. Fix i = 1, the case i = 2 is similar. For s' a finite
sequence in S, such that P(w! > s') > 0, let 2! be the last state of s!. Pick an
arbitrary finite sequence s2 in S? such that IP(T (st 52)) > 0; such a sequence
exists since P(w! > s!) > 0. Put s = (s!,s?), and let 2% be the last element
of s2. For any finite sequence o in S, we have:

1> 1,
Pl(w1281~0\w1251)zp(w > s -0)

P(w! > st)
P! >st0) " P(w? > s%)

P(w! > st) P(w? > s?)

P(w! > st -0, w? > s%) .
= Bl > 51, o2 S 52) by independence
=P, (T (o, e)) with € the empty sequence
=P(a1,22)(1 (0,€)) since P is Markov |}
We thus obtain the following identity:
P'(w' > s' - ofw! > 5') =P 42 (1 (0,€)). (9)

It is obvious that the left member of (9) is independent of 22, last state of s2
arbitrarily chosen. Therefore, the right member of (9) is independent of 22 as
well. Tt is then visible that the right member of (9), only depends on x! and o.
Therefore the conditional probability P!(w! > s!-¢|w! > s!) only depends on z!,

which was to be shown. O

Case where @ is empty. Then the random variable Y is constant, equal to
the empty sequence. The independence with respect to Y in Def. 3.1 reduces
to usual independence: the two local trajectories w' and w2, seen as random
variables, are independent. According to Lemma 3.1, the local trajectories are
two independent Markov chains.

Case where @ has one element. Say @ = {a}. We analyse the process
defined by P, , where x is any recurrent state. According to Prop. 2.2, we are
in one of the following cases:

e If P, is open, then it follows from the previous case that P, defines a
product of two independent Markov chains.

e If P, is closed, then the random variable Y is constant, this time equal to
the infinite sequence (aaaa...) with probability 1. Hence, as in the pre-
vious case, the independence relative to Y reduces to usual independence,
and Lemma 3.1 applies: the local trajectories are also two independent
Markov chains, with a as a recurrent state.

We summarize the above results in the following proposition:

Proposition 3.1. If the common state space Q@ of a Markov 2-components
probabilistic process P, satisfying the LIP, has no element, then P is the law of
two independent Markov chains. If Q has only one element, the same is true
for P, , where x is any recurrent state.

10



It also follows from the above discussion that, in the study of Markov 2-
components probabilistic processes with the LIP, we might only retain the case
of closed processes. Indeed, since there are finitely many states, transient states
are eventually left and therefore we may assume without loss of generality that
the process starts from a recurrent state. From there, the process is either open
or closed according to Prop. 2.2; and it reduces to a product of independent
Markov chains if it is open, by the same argument as above using Lemma 3.1.
Hence, the core of our theory is occupied by closed processes.

3.2 Second Formulation of the LIP

We decompose global trajectories into pieces, in such a way that the LIP is
equivalent to a suitable independence between these pieces. Intuitively, the
decomposition follows the alternation between shared and non-shared states.
Thanks to the remark following Prop. 3.1, we consider a closed Markov 2-
components probabilistic process. Fix a trajectory w = (w!,w?). Let Y denote
the @-sequence induced by w; then Y is an infinite sequence with probabil-
ity 1 and we put Y = (y1,92--+). Then the local trajectories w! and w? are
represented as an infinite concatenation
w'=(2{-2}-Z5--), i=1,2 (10)

)

where all ZJZ: have the following form
Zy=(Bj ), j=12...,

and all E; are finite sequences with values in S\ Q. It is clear that each w
synchronizing infinitely often has a unique such decomposition.

All the above values, namely Y, y;, Z]Z: and E; for j > 1, are defined with
probability 1 if the process is closed. In other words, they define random vari-
ables. With these notations in mind, we give an alternative formulation to
Def. 3.1 for closed processes.

Proposition 3.2. A closed Markov 2-components probabilistic process has the
LIP if and only if for all j > 1, the two random variables Z} and ij are
independent conditionally on the values of y;_1 and y; (where yo is given an
arbitrary, constant value).

Remark. We have formulated the proposition for closed processes. Treating the
case of general processes would lead us to distinguish between the indices j such that
y; is defined, and those for which ¥; is not defined.

Proof of Proposition 3.2. Let (a) be the property that w! and w? are indepen-
dent with respect to Y, and let (b) be the property stated in the proposition.

Proof of (a) = (b). Assume that property (a) is in force, it is enough to
show

P(Z} = 2% |yjo1=a,y; =b,2) =2") =P(Z] = 2% |yj—1 = a,y; =b), (11)

for all integers j > 1, for all possible values z', 22 of 271 and Z]2 respectively
and for all a,b € Q. Using the Markov property, there is no loss of generality
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by assuming that j = 1; using the notations Z* and Z? for Z{ and Z?, Eq. (11)
reduces to

P(Z2 =22 |y = b, 2" = 2') = P(2% = 2% |y, = b). (12)

Since {y1 = b} is Y-measurable, and {Z! = 21} and {Z? = 22} are respectively
w! and w?-measurable, Eq. (12) follows from the independence of w' and w?
with respect to Y.

Proof of (b) = (a). Assuming that property (b) is in force, we claim first

that for all possible values a; € @ and z; with i =1,2and j = 1,...,n, we
have:
P(Zfzzf,...,Zﬁzzﬂyl:a17...7yn:an, lezz%,...7Z7£:lel)

(13)

:P(Zf:zf,...,ZZ:Zi|ylza1,...,yn:an).

Indeed, Eq. (13) follows from property (b) used in conjunction with the Markov
property and usual recursive conditioning technique. Then, by summing and

conditioning over all possible values of y; and Z]1 for j =1,...,m, we get that
for any integer n > 1 and for any integer m > 1 large enough:
IE”(ZI2 =2 2 =2 i =al, . Y = A, 2 :zi7...,Z,ll:z711)

:P(Zf:zf,...,anzz,ZnWl:al,...,yn:an).

Since the process is assumed to be closed, the elementary cylinders {Z? =
22, Z2 = 22} generate the o-algebra generated by w?. Hence we obtain,

for any function h : Q? — R bounded and measurable:

= E(h(w2)|y1 =ai,...,Yp = an).

By the Martingale convergence theorem, the left member of Eq. (14) con-
verges P-almost surely to E(h(w?)|Y,w!), while the right member converges
to ]E(h(wQ) | Y). Therefore:

vn>1, E(h(w?)|y1 =ai,....yn =an, Z{ =2{,...,Z) = 2,) (14)

E(h(w?)]Y, w') = E(h(w?)]Y),

and this holds for every function h : 92 — R bounded and measurable. This is
equivalent to property (a). O

4 Characterization of Markov 2-Components
Probabilistic Processes with the LIP

We now seek a complete description of Markov 2-components probabilistic pro-
cesses satisfying the LIP. We have defined these processes in an abstract manner,
by a condition on the probability measure P defined on the space §2 of global
trajectories. What we are looking for now is a complete characterization of such
a process by a finite number of real parameters, analogous to the description of
a finite Markov chain by means of its initial distribution together with its tran-
sition matrix. Although the initial distribution has a clear analogous here, the
corresponding transition matrix is not obvious, in particular since the transition
matrix of a Markov chain is tightly dependent of the totally ordered nature of
time.

12



4.1 Construction and Characterization

As we will see, the correct notion to quantify a Markov 2-components proba-
bilistic process is not a single transition matrix with the LIP, but rather a family
of transition matrices, introduced in Def. 4.1 below. Before that, a first step is
to the establish the two following results, valid without the LIP.

Lemma 4.1. IfY denotes the (infinite) synchronization sequence induced by a
closed Markov 2-components probabilistic process, then 'Y is a Markov chain on
the set Q = S1 N S2.

Proof of Lemma 4.1. The formulation (3) applies to the chain Y as follows:
for any two finite sequences s and u in @, the conditional probability P(Y >
s-u|Y > s) only depends on u and on the last state of s. This shows that YV
is a homogeneous Markov chain. O

Remark. If the process considered was not closed, the resulting synchronizing
sequence Y would be in general a stopped Markov chain.

We have in view to use the decomposition stated in Eq. (10) to entirely
describe the 2-components probabilistic process. Focusing on local sequences
(Z;:)jzl, for i = 1,2, our next observation is the following—keeping in mind
that Zj’: itself is defined as a sequence of states in S°.

Lemma 4.2. Consider a closed Markov 2-components probabilistic process.
Then, for i = 1,2 and for every j > 1, the sequence Z; 18 a stopped Markov
chain conditionally on the values of y;_1, y; (where yo is given a conventional,
constant value).

Proof of Lemma 4.2. Consider any reachable state z = (x},23) € S* x 5%, and
and element a € Q such that P, (y; = (a,a)) > 0. We denote by w! = (X} ),>0
the local trajectory on site 1. Consider 7 : 2 — N, defined almost surely as the
first hitting time of @ for the sequence (X}),>0. Denote by Q the conditional
probability

Q=PF.(* 11 = (a,0)).

Our first claim is that the stopped process Z; = (X, X{,..., X1) is a stopped
homogeneous Markov chain under Q. For this, let n > 1 be any integer and let
x1,...,2, be values in S1\ @, and z,,+1 € S' U {a}. We put

6= Q(XnJrl = $n+1|X11 =T1,... ,X}L = xn)
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and we show that § only depends on x,, and x,1 . Indeed, we compute:

QX{ ==z1,.... X} =2n, X}, = Tnp1)
QX] =w,.... X} =)
P (X =, X =2, X = 21, X = a)
P, (X{ =21,..., X} =2,, X! =)
P (w! > (zgal...alyy), X =a)
o(w! > (zhat.. . 2l), X1 =a)
Po(w> (2§ ...k, 0d), X =a|lw> (zf.. .2}, 23))
P.(Xt=alw> (z}...2},23))
Po, 22) (X1 = Zni1, X} = a)
Pa, a3 (X1 = a)

6:

- P(xnvf?))(Xll = $n+1|XTl = a).

It is now visible on the above expression that § only depends on z,, and 1,
and not on z1,...,T,_1, showing our first claim.

Since the first claim is true for any initial state x, it is actually true for
any initial distribution, and thus it is true for P instead of P, ; and this is
the statement of the lemma for j = 1, since conditioning with respect to the
conventional value yq is equivalent to not conditioning, and thus to considering
probability P(¢|y;) directly. The statement of the lemma then follows for all
7 > 1 using the Markov property. O

As a consequence, one can consider the following construction for a 2-
components probabilistic processes: first construct the sequence ¥ = (y;);>1,
which is a Markov chain by Lemma 4.1. Then, for each j > 1 and ¢ = 1,2,
replace y; by a stopped Markov chain Z]i» that ends with y;, whose transition
matrix only depends on the value y; and whose initial distribution is the Dirac
distribution on y;_1 (excepted for j = 0, where the initial distribution is arbi-
trary). By the LIP, for a given integer j > 1, the two local sequences E} and E?
are independent with respect to y; . The 2-components probabilistic process is
now entirely constructed. This description is formalized in Theorem 4.1 below.
It is convenient to adopt the following definitions:

Definition 4.1. Let two finite sets S* and S? be given, with Q = S N 52. An
adapted family of transition matrices is given by two families (R))yeq,
one for each i = 1,2, such that:

1. The R}’s are transition matrices on S*\ Q U {y};
2. Any Markov chain with R; as transition matriz has probability 1 to reach yl

With this definition at hand, the existence and uniqueness result states as
follows.

Theorem 4.1. Any closed Markov 2-components probabilistic process with the
LIP induces the following elements, that entirely characterize the probability
measure P defined on the space (2,F) of global trajectories:

1. An initial distribution i on the space of global states, given as in Def. 1.1.
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2. A transition matriz R on Q, defined as the transition matriz of the induced
Markov chain'Y = (y;)j>1 -

3. An adapted family of transition matrices (R;)yeQ, fori=1,2. For each
i=1,2 andy € Q, and for any integer j > 1, Ry is the transition matriz
of the chain ij: conditionally on y; = y.

Conversely, given:
1. A probability distribution p on S* x S?;

2. A transition matriz R on the set Q);

3. An adapted family of transition matrices (Ry)yeq, i = 1,2;

there exists a unique closed Markov 2-components probabilistic process inducing
such elements. In other words, there is a unique probability measure P on the
space 2 of global trajectories, with p as initial distribution, with R as transition
matriz for the induced Markov chain Y, and such that for each j > 1 and
i = 1,2, the sequence Z]’: is, conditionally on y; = y, a stopped Markov chain
with Ry, as transition matriz and stopped when y is reached.

Remark. An interpretation of Theorem 4.1 is that, starting from a Markov chain Y,
replacing each state y of Y by a pair of stopped Markov chains yields a process that
is still Markov, in the 2-components sense. In other words, the private parts do not
disturb the global process.

Proof of Theorem 4.1. We quickly review the routine probability arguments,
and we give more details on the new part of the theorem.

The LIP guarantees that, given the two laws of Ej and E7,
on y;, the law of the pair (Ejl, EJQ) conditionally on y; is known, as the product
of the two marginal laws. Hence, applying the Kolmogorov theorem (see, e.g., [6,
Th. 2.8 p. 16]) with state space the infinite countable set of pairs (2!, 22), where
2' is any finite sequence in S\ Q, except for the last element that belongs
to @, the uniqueness property shows that the data 1-2-3 in the statement of the
theorem are enough to uniquely characterize a given 2-components probabilistic
process with the LIP.

Conversely, if the data 1-2-3 is given, using this time the existence part of the
Kolmogorov theorem, we construct a closed 2-components probabilistic process,
with a probability measure P inducing the given elements. Hence, beside the
routine arguments that apply with no mathematical difficulty in our case, what
is really needed to be shown is that the so-obtained process satisfies the Markov
property; since, by construction and in conjunction with Prop. 3.2, it is clear
that the LIP is satisfied by the process.

We have to show that, for any finite trajectory ¢ such that P(1 ¢) > 0, the
probability P, on ~(t). It is clear that this is the case if 7(¢) has the form
~(t) = (a,a) for some element a € Q. Hence, up to a shift in ¢, we may assume
without loss of generality that, if ¢ = (¢!,t2), then ¢! and t? are sequences in
ST\ Q and S?\ Q respectively, except maybe for their first element that may
belong to Q.

Assuming that ¢ has this particular form, we need to show that, for any
finite trajectory o, the quantity P(1 o) only depends on «(¢) and o. Our first

conditionally
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claim is that this is the case if o has the form o = (0!, 02), where o! and o2 are

sequences in S'\ Q and S?\ Q respectively, except for their last element which
is a common element a € Q). We have:

T(t-o)={2] =t'-o', Z7 =t*-0%}.

Considering an element y € Q, let Q' and Q? denote the probability laws
for Markov chains associated with transition matrices R}! and RZ , respectively,
and starting from the same elements in S! and S? respectively than t. We also
denote, for i = 1,2, by Qj the law of the Markov chain with the same transition
matrix, and starting from state b € S¢. We compute:

P e Y1:

Q1) @1 (%)
Qi(1t!) Q(112)
= Q) (1 01) x Q% g2y (1 0%),

where v(t') and (t?) denote the last states of t! and t? respectively. It is
clear on the last term that Py(1T o|Y; = y) only depends on o = (o!,02),
v(t) (v(t),7(t?)), and on y. Therefore the probability Py(T o) = >, Py =
y)P(1 oY1 = y) only depends on o and ~. This shows our first claim.

We deduce from this that P;(1 o) only depends on v(t) and o, not only if o
has the above form, but also if o = (0!, 0?) is composed of sequences o' and
o2 that only contain elements of S*\ Q and S? \ @, respectively. For, for such

a finite trajectory o, we have:

mmﬂzgmmﬂ,

by independence w.r.t. Y;

where o’ ranges over those finite trajectories such that o < ¢/, and that are com-
posed of private elements exclusively, but for their last element which belongs
to Q. By the previous case, and thanks to the above expression, we conclude
that P;(1 o) only depends on y(t) and o, in this case as well.

We then extend the result to any o since, by construction of P and as we
observed earlier, as soon as a synchronizing element (a,a) € @ X @ occurs in
a finite trajectory o, the probability of the tail of o after (a,a) only depends
on a. Finally, we conclude that P;(*) only depends on «(¢), showing that the
2-components probabilistic process is Markov. O

4.2 An Example: Synchronization of Markov Chains

This work was initiated by the study of an example, the so-called synchroniza-
tion of Markov chains, which now appears as a particular case of Markov 2-
components probabilistic processes with the LIP. Consider two ergodic Markov
chains (X¢)n>0, i = 1,2, with state spaces S' and S?, with a nonempty inter-
section Q = S'NS2. Excepted in very particular cases, the event that two local
trajectories are two synchronizing sequences has zero probability in the prod-
uct space, spanned by the pairs of trajectories. Hence, “brute conditioning”
on the synchronization constraint is not operational for the construction of a
2-components probabilistic process.
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We proposed in [3] the following construction: first stop both chains on their
reaching time of @, let 7' and 72 be the reaching times, and condition the pair
of processes under their product probability on the event {X!, = X2,}. Under
quite general conditions, this event has positive probability in the product space.
Then shift the process and repeat the construction by conditioning, infinitely
many times. This amounts to the construction of Theorem 4.1, in a particular
case. It is now a consequence of Theorem 4.1 that this construction yields a
Markov 2-components probabilistic process with the LIP. Furthermore, it is now
easy to recognize that not any Markov 2-components probabilistic process with
the LIP can be obtained as the synchronization of two Markov chains.

5 Conclusion and Discussion

We have introduced a model a probabilistic process allowing concurrency of
local components. We have distinguished two properties: the Markov property,
that extends the Markov property in the case of usual, sequential processes, and
the local independence property. The later property is specific to our model,
since it is a condition on the relative independence of local components, and is
thus not applicable for sequential processes, without concurrency. The model we
consider has the same basic ingredients than any probabilistic model: a space
of trajectories, on top of which we construct some probability measure with
particular properties. However the meaning of “trajectory” is quite different
in our case: instead of considering sequences of successive states, a trajectory
consists of a partial order of local states. Hence, insisting on a state space that
takes into account the distributed character of the system induces a distributed
property for time as well. We detail this point below.

5.1 Time in 2-Component Probabilistic Processes

It has been noted in § 2.2 that the only Markov property available in our context
is a Strong Markov property, that is to say, a property formulated with respect
to stopping times. In other words, a weak Markov property formulated with
constant times is unavailable. We argue in fact that the notion of constant time
itself is unavailable.

In sequential processes, all trajectories are infinite sequences. Seen as partial
orders, they are thus all isomorphic with each other. There is therefore an ab-
stract “skeleton”, namely the ordered set N of integers, that is a universal model
for every trajectory. Considering a “constant time” is nothing but designating
a place on this universal scale; and then stopping any given trajectory on the
place of the trajectory that corresponds to the given time on the universal scale.

Now in a context with concurrency, although we have introduced the notion
of length as a pair of integers, it cannot replace the notion of constant time,
basically because there is no universal skeleton for all trajectories. For instance,
consider the length (4,5); now, extracting from a given trajectory w the unique
prefix of w of length (4,5) will not produce a subtrajectory of w in general,
because local components are asynchronous. It has thus no sense to talk about
an instant that would be indexed by (4, 5).

Therefore, the natural solution to obtain “time instants” in general is to use
stopping times, that are instants of times that depend on the given trajectory.

17



This emphasizes the dynamics of time for concurrency.

Another topic related to time and concurrency has counter-intuitive conse-
quences. In view of Th. 4.1, one can be surprised by the construction suggested.
For, if one only observes one component, it seems that the current evolution
depends on the future; since the current evolution law is determined by next
synchronisation state. In particular, a local component is by no mean a Markov
chain itself. This strange effect has its roots in concurrency; it only appears
when looking at one particular component. This disturbing effect of depen-
dency with respect to future disappears when considering the global process,
where the concurrent Markov property is in force.

5.2 Two Research Directions

There are two obvious directions for future work: one concerns the extension of
this work to an arbitrary number of sites; the other one concerns the study of the
asymptotic behaviour of 2-components probabilistic processes, or of more gen-
eral multi-component processes. We will quickly review some of the difficulties
that we face for these two challenges.

The extension to an arbitrary number of sites should start from the same
principles than we did for two sites. With two sites only, synchronizations occur
in a totally ordered manner: this is the chain Y of this paper. The novelty with
more sites is that synchronization events themselves will be concurrent. If each
site has private and public states, one can actually make abstraction of private
states; for, as the present paper has shown, the interleaving of private sequences
between synchronization on public states does not disturb the global process,
and keeps all required properties such as the Markov property. Hence, focusing
on the public part, one realizes that the probabilistic behaviour of synchroniza-
tion is another topic, where concurrency and probabilistic independence may
not be related as we did for private states by conditioning with respect to the
appropriate variable. In other words, the combination of synchronization and
concurrency brings another challenge, that we avoided by considering only two
sites in this paper.

The study of asymptotic behaviours, for two or more sites, also brings new
challenges. First, a notion of convergence must be explored for concurrent pro-
cesses, since no ordered time is available. In the, related but different, study of
probabilistic event structures [2], we considered appropriate sequences of stop-
ping times as replacements for “n — oo”. This could be explored here as well.
The difficulty, and also the mathematical interest, lies in the structure of each
individual component. As we observed earlier, it is not Markov. A prospective
research direction to relate them to known theories is to explore the theory of
random walks in random environments, where typically transition matrices are
first chosen at random, then used as “normal” transition matrices. Intuitively,
each local site does evolve in a random environment with feedback: the transition
matrices that govern its evolution depend on the environment (i.e., the other
component), but each component has some effect on the environment as well.
The theory of random walks in random environments has been studied since
the 1970’s, and is still a very active field of research. Establishing a clear bridge
with the theory of random walks in random environments is one of the most
promising research direction for the study of concurrent probabilistic processes.
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Appendix: Background on Conditional Indepen-
dence and Conditional Expectation

In this appendix we recall some basic definitions on conditional independence
and conditional expectation. This is not a short presentation of these notions; in
particular, no intuition is given. For longer explanations, see classical references
on probability theory (Doob’s Stochastic processes, Breiman’s Probability or
Billingsley’s Probability and Measure, for instance).

A probability space (€, F,P) is given throughout the Appendix.

1 Background on Conditional Expectation

Let X : @ — R be a bounded random variable, and let & be a sub-o-alge-
bra of §. The conditional expectation of X with respect to & is the random
variable Y, uniquely defined P-almost surely, such that:

1. Y is B-measurable; and

2. For every bounded and ®&-measurable variable ¢ : Q@ — R, we have
E(X¢) =E(Y ).

The conditional expectation of X with respect to & is denoted E(X|®).
If & is the o-algebra generated by a random variable Z, we use the notation

E(X|®) = E(X|2).

2 Background on Conditional Independence

Let X; and X5 be two random variables, with values in any measurable space,
and let Y be a random variable defined on (£2,F,P). We say that X; and X5
are independent with respect to Y if, for any two functions h; : 2 — R and
hs : 2 — R such that h; is bounded and measurable with respect to X;, for
i = 1,2, we have:

E(h1h2|Y) = E(h1|Y)E(h2|Y)7 ]P’—a.s.

Equivalently, X; and X5 are independent with respect to Y if and only if,
for any function hy : 2 — R bounded and Xs-measurable, we have

E(ha|X1,Y) = E(ha|Y),

where E(hg|X1,Y") denotes the conditional expectation of hy with respect to the
o-algebra generated by Y and X; .
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