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An iterative solver is proposed to solve the family of linear equations arising from the numerical compu-
tation of non-linear problems. This solver relies on two quantities coming from previous steps of the 
computations: the preconditioning matrix is a matrix that has been factorized at an earlier step and previ-
ously computed vectors yield a reduced basis. The principle is to define an increment in two sub-steps. 
In the first sub-step, only the projection of the unknown on a reduced subspace is incremented and 
the projection of the equation on the reduced subspace is satisfied exactly. In the second sub-step, the 
full equation is solved approximately with the help of the preconditioner. Last, the convergence of the 
sequences is accelerated by a well-known method, the modified minimal polynomial extrapolation. This 
algorithm assessed by classical benchmarks coming from shell buckling analysis. Finally, its insertion in 
path following techniques is discussed. This leads to non-linear solvers with few matrix factorizations 
and few iterations.

1. INTRODUCTION

The algorithms to solve non-linear problems transform a non-linear system into to a family of linear
ones. In general, these linear systems cannot be solved simultaneously because the right-hand side
vectors depend on the solutions at previous steps. At least two classes of non-linear algorithms can
be distinguished. In the first class, the matrix and the right-hand side are updated at each iteration,
as for instance in the Newton–Raphson method. In the second group that includes the modified
Newton method (MNM) and the asymptotic numerical method (ANM, [1]), the same matrix holds
good for several linear equations. Iterative solvers are convenient for the first class, but direct
solvers are more efficient when a matrix is associated with multiple right-hand sides, because the
important computation time due to matrix factorization is shared between several linear systems.

Although an iterative method is not a natural choice for linear problems with multiple right-hand
sides, there are many papers dealing with this question, see, for example, Reference [2]. When
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the vectors are known since the beginning, all the systems can be solved simultaneously with
the so-called block solvers BL-*. The block conjugate gradient method can then be applied [3]
if the matrix is symmetric, as it is generally the case in structural mechanics. For non-symmetric
matrices, a consequent bibliography can be found in [4, 5].

Unfortunately in the case of a non-linear problem, the right-hand side vectors are build up
recursively and block solvers are not adapted. Another idea is to account for the results of previous
linear systems in the numerical treatment of the current system, for instance by using the previously
computed vectors. Such techniques have been introduced under various names: deflated conjugate
gradient [6], augmented conjugate gradient [7] or subspace projection extrapolation [8]. Compar-
isons between these methods have been done within a computational electromagnetic framework
[9]. However, these methods have several drawbacks when they are applied with a cheap precon-
ditioning technique such as ILU or Incomplete Cholesky. Indeed a too large number of stored
vectors leads to numerical instabilities and many re-used vectors are not necessarily representative
of the problem to be solved.

The aim of this paper is to present and discuss two linear iterative solvers that are convenient
in the numerical solutions of non-linear problems. These solvers rely on previously computed
quantities. Among linear problems, a few are solved by a direct method and most of them are
solved iteratively, the last factorized matrix being the preconditioner. The basic idea is more or
less the same as in the MNM, but in the present algorithm, a preconditioning matrix is used to
solve linear equations and not non-linear ones as in MNM. Further this procedure is coupled with
a reduced basis technique, the basis being made of previously computed vectors, as in [6–9].

A non-linear solver has been presented recently [10]. It is based on a homotopy transformation,
a perturbation technique and convergence acceleration by Padé approximants (HPP). It improves
the high-order Newton algorithm and the high-order iterative algorithms introduced in [11, 12].
Roughly, one applies the consistent tangent matrix on the reduced subspace and the chosen
preconditioner in a correction phase on the whole space. The linear version of this HPP algorithm
is one of the two linear solvers evaluated in this paper, see Section 2.3. But it is a bit intricate,
because one has to define the homotopy transformation and the recurrence formulae to compute the
series. That is why we propose a second linear solver that is an iterative variant of the previous one:
it includes the same reduced basis, the same type of reduced problem and the same preconditioner.
Convergence acceleration is a family of very efficient techniques to improve the performance of
iterative algorithms [13, 14]. Two acceleration techniques will be used in this paper: the Padé
approximants introduced in [15] to accelerate Taylor series and mainly the modified minimal
polynomial extrapolation (MMPE, [16]) that is suitable to improve the convergence of sequences
and that has about the same efficiency as Padé approximants [16–18], see Section 2.2. The resulting
algorithm is relatively simple and combines, first a preconditioning by a consistent tangent operator
emanating from a previous step, second a projection on a reduced basis, last an acceleration by
MMPE.

The paper is organized as follows. In part 2, we state or recall the considered algorithms: the new
iterative solver, the linear version of the algorithm from [10], the acceleration by MMPE and the
Newton–Raphson algorithm with arc-length control. In part 3, two classical benchmarks from non-
linear shell analysis permit us to assess the performance of the proposed methods and to compare
their efficiency. They will be compared with the preconditioned conjugated gradient associated
with various preconditioners. Last, in part 4, the robustness of the proposed procedure is evaluated
by considering two path following problems involving the solution of many linear systems.

2. ALGORITHMS

One deals with the numerical computation of non-linear systems of partial differential equations
that depend on a scalar parameter �. After discretization, this system can be written in a generic
form:

R(U,�)=0, U ∈RN , �∈R (1)
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Most of the algorithms to compute non-linear equations as (1) lead to the computation of a family
of linear systems in the form:

KiUi =Fi with Ui ∈RN , Fi ∈RN , K i ∈RN∗N (2)

In this paper, two algorithms are discussed to solve such a family of linear systems. These algorithms
will be based on a preconditioning matrix that is a full tangent matrix coming from a previous step
of the computation. We intend to keep the same preconditioner to solve several linear problems.
Since the linear problems are computed by an iterative method, the consistent tangent matrix can be
considered without additional cost. That is why we shall choose the Newton–Raphson method to
transform the non-near problem (1) into a family of linear problems such as (2): for completeness
this non-linear algorithm is recalled in Section 2.4. In the parts 3 and 4, the proposed algorithms
will be applied in thin shell analysis that is known to provide ill-conditioned matrices. The chosen
class of preconditioning matrices is able to remain very efficient in such a case.

2.1. A linear iterative solver involving a reduced subspace technique

We now describe an algorithm to solve one linear problem. For simplicity, the indices are omitted
and (2) is rewritten as:

KU =F with U ∈RN , F ∈RN , K ∈RN∗N (3)

An increment from a trial solution U should satisfy the following incremental equation:

K�U =F−KU (4)

The principle of the proposed linear solver is to define an increment in two sub-steps. In the
first sub-step, only the projection of the unknown on a reduced subspace is incremented and the
projection of the incremental equation (4) on the reduced subspace is satisfied exactly. In the second
sub-step, the incremental equation (4) is satisfied approximately by replacing the consistent matrix
K by a given preconditioning matrix K ∗. Hence the proposed algorithm relies on the choice of a
preconditioning matrix and of a reduced subspace. Let E be a given subspace generated by n vectors
Ei , where n is much smaller than N . We suppose that this basis (Ei )i=1,n is orthonormalized
according to a chosen scalar product. From this subspace, one can define a prolongation operator
in such a way that a vector of the whole space, X ∈RN is associated with any vector q of the
reduced subspace Rn:

X =Pq=
n∑

l=1
ql E

l (5)

If U is the starting vector of the iteration, the first sub-increment �U =P�q satisfies a linear
problem on the subspace E

k�q= f −CU (6)

where k and C are, respectively, a reduced and a coupling matrix and f is a reduced load. All
these quantities are defined with the following expressions:

k = tPKP, k∈Rn∗n

C = tPK , C ∈Rn∗N

f = tPF, f ∈Rn

(7)

Finally, by considering the initial solution U0=0, we define the iterative method by the following
recurrence formulae:

k�q = f −CUi−1

K ∗V = F−K (P�q+Ui−1)

Ui = Ui−1+P�q+V

(8)
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2.2. Convergence acceleration

During the iterations, a sequence of vectors denoted by s has been constructed:

s={U1, . . . ,Ui , . . . ,UI } (9)

The previous sequence can slowly converge, or sometimes can be divergent, especially when the
preconditioner is not very close to the consistent matrix K . There are several techniques to improve
the convergence of sequences: see, the Reference [19] where a detailed review of these acceleration
techniques is presented. Here, we only consider a vector extrapolation method and more precisely
the MMPE [16]. Within this method, the iterate UI is replaced by the following ‘extrapolated’
vector:

TI =U0+
I∑

i=1
ai (Ui −Ui−1)=U0+

I∑

i=1
ai�Ui (10)

where the real coefficients ai are computed by solving a small linear system resulting from an
orthogonality condition

[M]{a}={b} (11)

where the matrix [M] and the right-hand side {b} are defined by:

Mi j =(�Uj+1−�Uj ) ·Yi and bi =−�U1 ·Yi with i, j =1, . . . , I −1 (12)

Within MMPE, the vectors Yi are arbitrary and linearly independent. In our numerical tests, these
vectors are the vectors �Ui .

In practice this acceleration procedure works well, but only if the sequence s is not too large
and it has been advised to apply MMPE to a limited number of vectors such as I =5,10 or 15
[18]. So in this case, once the extrapolated vector has been built with the help of expression (10)
one defines a new linear problem:

K X =F−KTI (13)

Next the new unknown vector X is computed by the same iterative procedure. In the numerical
tests, this procedure will be denoted as ‘restart algorithm’.

Finally, the first presented iterative method combines the recurrence formulae (8) and possibly
the convergence acceleration method (10). In the application, it will be referred as ‘proposed
method’.

Other acceleration techniques can be deduced from Padé approximants. In the practice, the
results from MMPE and Padé approximants are very close [18]. It has been established that, in
some specific cases, the Padé approximants introduced in [15] lead to the same mathematical
results as MMPE [17].

2.3. A variant based on homotopy and perturbation

In this section, we propose a second linear solver, which is based on homotopy technique, pertur-
bation method and Padé approximants (HPP). This solver is the linear version of an iterative
high-order corrector recently introduced in Reference [10]. For the linear problem (3), the method of
Reference [10] to define a high-order iterative corrector leads to the following system of equations:

�−Cpen(
tPU−q) = 0

kq+CV −� = f

K (Pq+V )+P� = F

U = Pq+V

(14)
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where � is a Lagrange multiplier, �∈ Rn,Cpen is a pseudo-penalization matrix. As in
Reference [10], this matrix is defined with the following expression:

Cpen=�Diag(k) (15)

where � is a small parameter and is chosen equal to 10−20 [10] in all the numerical tests presented
in this paper. The reduced matrix k, the coupling matrix C and the reduced load f are the same
as in Section 2.1 and are defined by expressions (7). System (14) is then modified by introducing
an artificial parameter �

�−�Cpen(
tPW −q) = 0

kq+�CV −� = f

(1−�)K ∗V +K (Pq+�V )+P� = F

W = Pq+V

(16)

where � is a real parameter (0���1). The unknowns (�,q,V,W ) are then sought in the form of
a truncated integro-power series of the parameter �. For example, the asymptotic expansion for
vector W is:

W (�)=W0+�W1+�2W2+·· ·+�pWp (17)

This series is introduced in Equation (16) and equating like power of � a sequence of a linear
problem is obtained:

Order 0 in �

�0 = 0

kq0 = f

K ∗V0 = F−KPq0

W0 = Pq0+V0

(18)

Order p in �

�p = Cpen(
tPWp−1−qp−1)

kqp = �p−CVp−1

K ∗Vp−1 = K ∗Vp−1−K (Pqp+Vp−1)−P�p

Wp = Pqp+Vp

(19)

Finally, when all the terms (�i ,Wi ,qi ,Vi ) are computed, one replaces the asymptotic
expansions (17) by equivalent rational fractions, called Padé approximants. The method to deduce
the Padé approximants is exactly the same as in many previous works (see, for example, [15])
and this permits to accelerate the convergence of the polynomial approximation (17).

In this form, the algorithm is not iterative because the series (17) and the Padé approximants are
explicit functions of �. The sought solution could be obtained by replacing �=1. Nevertheless, if
the radius of convergence is larger than 1, the obtained value U =W (�=1) can be not satisfactory.
The perturbation process can be applied again and this defines an iterative process, see [11, 12].
In this paper, we shall not need iterations in the application of this algorithm.

One remarks that the recurrence formulae (19) are rather similar to formula (8) and to the
iterative process of Section 2.1, except for the Lagrange multiplier and the pseudo-penalization
that had been introduced in [10] to stabilize the result of the perturbation process. We no longer
discuss this algorithm that is only the linear version of the one presented in [10]. It is recalled
here for comparison with the main algorithm of this paper that is the one of Section 2.1. In the
following application, it will be referred as ‘HPP algorithm’.
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There is a wide recent literature about the association of homotopy and perturbation techniques
to solve differential equations or partial differential equations, generally to get analytical solutions
and with few terms in the series [20–22]. Homotopy perturbation methods can also be applied in
a numerical framework and with many terms in the series.

2.4. Applications to non-linear problems

We recall the classical iterative Newton–Raphson method, associated here with an arc-length
control. The generic non-linear Equation (1) is solved in several steps, each step including a
prediction phase and several corrections. In the prediction phase, the increment (�Upred,��pred)
is characterized by the following equations:

�R
�U

∣
∣
∣
∣
0
�Upred+ �R

��

∣
∣
∣
∣
0
��pred = 0

‖�Upred‖2+(��pred)
2 = s2

(20)

The second one is the arc-length control and s is the given arc-length. In the first one, �R
�U

∣
∣
∣
0
is

the Jacobian matrix at the starting point of the step. If (Ui ,�i ) is the result of the iteration i , the
correction (�Ui ,��i ) is characterized by:

�R
�U

∣
∣
∣
∣
i
�Ui + �R

��

∣
∣
∣
∣
i
��i = −R|i

�Ui ·�Upred+��i��pred = 0

(21)

The second one is the so-called normal plane condition. As it is well known, this non-linear process
requires the solution of Niter+1 linear problems, all the matrices being different.

In this paper, these linear problems will be solved by the iterative methods of Section 2.1 or
Section 2.3. The preconditioning matrix will be the Jacobian matrix of a previous step and the same
matrix will be used for many linear problems as (20) or (21). Several strategies will be discussed
to manage the preconditioning matrix: for instance in the next part, the prediction problem (20)
will be solved by a direct method and this factorized matrix will be the preconditioner for all the
iterations of the same step. Hence this leads to an algorithm with one matrix factorization per step.

3. NUMERICAL RESULTS

3.1. Two numerical tests

The previous linear solvers are now applied to linear problems coming from a predictor–corrector
algorithm, the Newton–Raphson method. Two main numerical tests are considered and described
in Figures 1(a) and (b). The non-linear response curves are plotted in Figures 2(a) and (b).
The first example is a cylindrical shell with two diametrically opposed rectangular cut-outs [23].
The corresponding geometric and material characteristics are given in Figure 1. Owing to the
symmetries, only one octant of the structure is considered and the mesh involves about 1600
classical triangular DKT18 elements [24] (5190 d.o.f.). The second example is an open cylinder
pulled out by two diametrically opposite point loads [25]. The geometric and material characteristics
are given in Figure 1(b). The finite element for this second example is an eight nodes quadrilateral
element that is presented in Reference [26]. An additional variable accounts for the strain variations
throughout the thickness (EAS concept). Owing to the symmetries, only one octant of the cylinder
is modelled by 900 elements (30×30). The corresponding number of d.o.f. is then 17 000.

The non-linear response curves have been obtained by the Newton–Raphson method. They are
pictured in Figures 2(a) and (b). The prescribed step length of this incremental/iterative method is
chosen in such a way that at each step, 2–3 corrections are necessary to get the desired accuracy.
For these first tests, the algorithm has been designed in such a way that only one matrix is
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Geometry :

L = 200. mm

R = 100. mm

t

h = 1. mm

s = 80. mm

t = 79.5 mm

Material :

E = 71122.5 Mpa

s

Mo

E =1.05 .10   psi7

= 0.3125

P

P

t

R

L

t = 0.094 in.
R = 4.953 in.

Free

L/ R = 3.5

 M

(a) (b)

Figure 1. Geometrically non-linear shell problems. Tests 1 and 2: (a) cut-out cylinder and
(b) pull-out of an open cylinder.
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Figure 2. Load–displacement curves at the loaded point of the geometrically non-linear shell problems:
(a) reference curve of the cut-out cylinder and (b) reference curve of the pull-out cylinder.

triangulated at each step. The prediction step is carried out by using a direct solver. The corrections
are achieved by the iterative linear solvers presented in Part 2, the preconditioning matrix K ∗ being
the triangulated matrix of the prediction step. The prolongation operator P is built with the already
computed solutions U , coming from the previous prediction–correction steps. This operator is then
upgraded at each prediction–correction step. Consequently, the reduced basis size ‘n’ increases
with the number of prediction–correction steps.

In all the numerical tests presented in this study, we consider that the linear solvers have
converged when the following criterion is satisfied:

‖KU−F‖
‖F‖ <�lin (22)

where ‖•‖ is the Euclidian norm and �lin is a small parameter (10−8��lin�10−4).

3.2. Evaluation of the proposed solver

The proposed iterative solver is first evaluated by studying its convergence within the first corrective
step of a Newton–Raphson algorithm, the preconditioning matrix and the prolongation operator
being defined in Section 3.1. The numerical results will be compared with those obtained with the
preconditioned conjugate gradient method, the preconditioning matrix K ∗ being the same. In the
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next Figures 3–6, the convergence is represented by curves relating the logarithm of the residual
of the linear problem versus the iteration number. The results obtained with the ‘proposed method’
and with the ‘preconditioned conjugate gradient’ method will be referred as ‘PM’ and ‘PCG’,
respectively.

A first example is presented in Figure 3, the physical model being the cut-out cylinder. In
this case, we have also considered the linear solver based on the HPP method (Equation (19),
denoted by ‘linear solver’ from Reference [10] in Figure 3). First, one observes that the number
of iterations is very small: one can get a residual of 10−5 after only 4 iterations. This is due to the
choice of a good preconditioner and also the efficiency of the proposed algorithm. Second remark:
the proposed method converges more rapidly than the preconditioned conjugate method, with the
same preconditioning matrix. Third, the proposed method and the HPP solver of the Section 2.3
lead to the same convergence curve: this is in accordance with the results of Reference [17], where
one has established the mathematical equivalence between a sequence accelerated by MMPE and
the ‘homotopy–perturbation–Padé’ method. Consequently, the HPP will be no longer considered
in the following numerical tests.
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Figure 3. Convergence curve. Comparison between the proposed solver (Equation (8)), the linear
solver coming from Reference [10] and the preconditioned conjugate gradient (PCG). The size of

the basis is n=20. Cut-out cylinder.
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Figure 5. Convergence curves for several sizes of the basis. Cut-out cylinder.
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Figure 6. Comparison between the proposed method+MMPE with or without restart. The size of the
reduced basis is n=5. Cut-out cylinder.

Another example is presented in Figure 4, where the sequence (9) diverges, despite of the great
size of the reduced problem (n=40). The initial sequence has been replaced by the extrapolated
vector (10), which leads to a sequence that converges more quickly than the PCG. Hence, it
is very interesting to use a convergence acceleration technique that has moreover a negligible
computational cost [18].

The influence of the size of the basis (5�n�30) is discussed in Figure 5. In this case, the
accuracy is not improved beyond 20 vectors in the basis. A similar result has also been noted
in other tests with a larger number of unknowns. This can be explained by the fact that the gap
between the operator K ∗, the prediction matrix and the consistent correction matrix K is small.
In this case, this leads to a good preconditioning matrix and the influence of the reduced problem
on the convergence is less important.

This figure also illustrates one of the characteristics of the MMPE. Indeed, the accelerated
sequence can become unstable or the convergence is not improved when the number of vectors
composing the sequence is high. In this case, a solution is to apply the restart algorithm as defined
in Section 2.2. In Figure 6, one can see that without using the restart algorithm the proposed

9



Table I. Average number of iterations for various linear solvers.

Cut-out cylinder

Average number of iterations

Newton–Raphson Step PM PCG PCG IC[0] PCG IC[1]

4 6 11 170 110
5 6 11 176 111
6 7 12 178 113
7 8 17 184 121
8 9 20 193 124
9 10 21 198 130
10 9 21 198 135

The proposed method (PM) is compared with the conjugated gradient associated with three preconditioners:
the same as in PM (PCG) and the incomplete Crout triangulations of level 0 and 1 (IC[0] and IC[1]). Required
accuracy �lin=10−4 for the linear solver and �nl=10−3 for the non-linear solver. Each Newton–Raphson step
includes the prediction and 2 or 3 iterations. In PM, the size of the reduced basis varies between 15 and 37.

Table II. Average number of iterations for the proposed method and the conjugated gradient
associated with the same preconditioner.

Pull-out cylinder

Average number of iterations
Newton–Raphson
Step PM PCG

4–6 11 46
7–12 6 27
13–15 3 12
16–23 7 20

The required accuracies are the same as in Table I. Each Newton–Raphson step includes the
prediction and 2 or 3 iterations. The size of the reduced basis varies between 17 and 50.

method does not reach the desired accuracy (≈10−5). Whereas, when the restart algorithm is used
after 10 or 15 iterations, the proposed linear solver converges.

3.3. Two full path following computations

Let us now apply the proposed iterative solver for the whole computation of non-linear solution
branches in order to demonstrate its robustness. We consider the two tests described in Section
3.1: cut-out cylinder and pull-out open cylinder pulled by two diametrically opposite sides. The
prediction step is done with a direct method and the iterative solver is used in the correction phase.
The accuracy on the linear and non-linear problems are, respectively, chosen equal to 10−4 and
10−3. The prediction step length is chosen in such a way that 2 or 3 iterations per step are needed.
This leads to 10 steps to solve the cut-out cylinder problem and 23 for the open cylinder (the
sought response curve is in the range 0<PR/D<100).

Owing to the efficiency of the preconditioning matrix, the proposed method (PM) and the
preconditioned conjugate gradient (PCG) converge in any case. The average number of iterations
for these linear solvers is reported in Tables I and II. With the proposed method, the number of
iterations is very small, generally lower than 10. The conjugate gradient associated with the same
preconditioning matrix (PM) is more expensive: the number of iterations is twice larger in the first
example and four times larger in the second one that has a larger number of degrees of freedom.

For comparison, we have also evaluated the conjugate gradient associated with an incomplete
Crout factorizations [27] of the matrix of the prediction step. In Table I, this preconditioner is
referred to as IC[m], where m is the ‘level’ of the incomplete factorization. As it is well known,
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this technique requires much less memory and much less computation time per iteration than
the previous one. The drawbacks are also known and corroborated by our numerical results.
Indeed the number of iterations is much higher than with a complete factorization: in the first test
(cut-out cylinder), the number of iterations is about 200 with IC[0] and 100 with IC[1]. In the
second test (pull-out cylinder), the algorithm diverges. Likely this could be removed by introducing
an appropriate stabilization parameter, but this confirms the lack of robustness of incomplete
factorization techniques with ill-conditioned problems as in shell analysis.

4. PREDICTION–CORRECTION STRATEGIES

Various prediction–correction strategies can be established from the linear iterative solver presented
in Part 2. As recalled in Section 2.4, a Newton–Raphson step leads to Niter+1 linear problems.
These linear problems will be solved, either by a direct method, either by the iterative solver. In
the two first strategies that are discussed in this part, only one matrix per step is triangulated and
the corresponding linear problem is solved by the direct method, while all the other problems
are solved iteratively, the preconditioner being the last triangulated matrix. More precisely, the
prediction problem is solved by the direct method in the first strategy and the linear problem
of the first iteration in the second strategy. They will be referred as ‘one matrix algorithms’,
because they require only one matrix triangulation per step. By comparison, the Newton–Raphson
method requires classically Niter+1 matrix triangulations or, at least, two in the so-called ‘MNM’.
With the third strategy, one tries to establish a matrix-less algorithm. More precisely, the direct
solver is no longer used at each step, but only when the number of iterations increases too much.
In the following numerical experiments, we limit ourselves to 10 iterations before applying the
convergence acceleration process (i.e. I =10 in formula (10)) and to 2 cycles ‘10 iterations +
MMPE’. In other words, a new matrix is factorized as soon as the number of iterations is beyond
20. These three strategies are sketched in Table III.

The efficiency of these strategies is assessed by two examples. The first one is the open cylinder
(Figure 1). The second one is another classical benchmark: a hemispherical shell with a hole
and loaded by pinching forces (F=1.) [28]. The geometric and material descriptions are given
in Figure 7. The response curves of the two loaded points are plotted in Figure 7. The mesh is
the same as the one used in [26] (108 eight-node quadrilateral elements with 2166 d.o.f.). In our
computations, 30 prediction–correction steps are needed to obtain the non-linear solution branch
(Figure 7). The corresponding total number of linear problems to be solved is equal to 139. In
Reference [26], this branch had been obtained by the commercial code Abaqus with a cost of 104
tangent matrix triangulations, which is relatively close to our results. For the pull-out cylinder, the
number of prediction–correction steps is 23 and 86 linear problems are to be solved. Because the
solver is based on a reduced basis, the first three steps are computed by classical direct method,
which permits to compute at least 10 basis vectors. The demanded accuracies are the same as in
Section 3.3 : 10−3 for the non-linear iterations and 10−4 for the linear ones.

The numerical costs depends on the number of iterations and of matrix factorizations. These
quantities are reported in Tables IV and V, for the two tests and for the three computational
strategies. First, one observes the strategy 2 is much more efficient than the other ‘one matrix
algorithm’ (strategy 1), the number of iterations being about half. This can be explained by the fact
that the matrix of the first Newton iteration is a better preconditioner (for the next iterations) than

Table III. Description of the three prediction–correction strategies. DS and PM design, respectively, a
direct solver and the proposed linear solver.

Strategy 1 Strategy 2 Strategy 3

Prediction DS PM DS or PM
Correction PM Iteration 1 : DS DS or PM

Iteration >1 : PM
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Figure 7. Example of the pinched hemisphere: (a) geometry and material descriptions and (b)
displacement of points A and B versus the load parameter. The curve is obtained with 30 steps

of the Newton–Raphson method.

Table IV. Evaluation of the three strategies to update the preconditioner.

Pinched hemisphere

Average number of iterations per step Number of matrices

Steps Strategy 1 Strategy 2 Strategy 3 Strategy 1 Strategy 2 Strategy 3

4–8 24 8 14 5 5 4
9–13 10 4 13 5 5 2
14–30 6 2.5 12 17 17 4

Table V. Comparison of the three strategies to update the preconditioner. Average
number of iterations per step.

Pull-out cylinder

Strategy 1 Strategy 2 Strategy 3

Iterations per step 7 2.75 13
Matrices 20 20 4

the prediction matrix. Another consequence: the prediction problem (20) is also an ‘easy’ problem
that is generally solved with less than 5 iterations. As for the ‘matrix-less algorithm’, it permits to
reduce hugely the number of matrix factorizations: for instance, in the pull-out cylinder problem,
only 4 factorizations are necessary, to be compared with 20 for the ‘one matrix algorithms’ and
76 for the direct solver. The decrease of the number of matrices does not lead to a consequent
increase of iterations. More surprisingly, in some cases (Table IV) there are even less iterations
than with the strategy 1. This can also be explained by the fact that in strategy 3, the triangulated
matrix comes always from the Newton’s correction phase, and not from the prediction step, as in
strategy 1.

Hence an algorithm based on sparse matrix factorizations, as strategy 3, seems the most attractive
technique, especially for large-scale problems since the cost of the matrices is much larger than
the cost of one iteration.
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5. CONCLUSION

In this paper, a new linear iterative solver has been proposed, that is designed to solve the numerous
linear equations arising in the solution of a non-linear system. It associates a reduced basis
technique, a full preconditioning matrix and an accelerating convergence method, the modified
minimal polynomial extrapolation (MMPE). It converges more rapidly than the preconditioned
conjugate gradient method and as rapidly as a recently introduced algorithm [10] that relies on
homotopy transformation, perturbation technique and Padé approximants. The process is robust
and leads to convergence with a small number of iterations.

The reliability and the efficiency of the procedure have been proved by several shell buckling
non-linear computations within a Newton–Raphson framework. When it is applied to solve non-
linear problems, one gets algorithms that need one matrix factorization per step or one factorization
for several Newton–Raphson steps.

This strategy could also be applied in the asymptotic numerical method (ANM) [1] to compute
several steps of the continuation methods with a single matrix factorization. Note that, within
ANM, it is very easy to build up a relevant reduced subspace including a rather large number of
vectors. There are also possible applications in the computation of non-linear dynamics problems
with an implicit scheme.

In this paper, the number of iterations and the speed of convergence have permitted us to discuss
the efficiency of the algorithm. Of course, a direct measure of the computation time would be more
convincing, but only for tests with many degrees of freedom on parallel computers and with the
help of modern direct solvers as MUltifrontal Massively Parallel sparse direct Solver (MUMPS
[29]). We are now working in this way.
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