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The noncommutative Batalin-Vilkovisky equation and
A-infinity algebras

U -Z/2Z graded vector space/C, l-scalar product on U of degree
d ∈ Z/2Z, (variant: Z−graded), consider

F = Symm(Cλ[1+ d ]), Cλ = ⊕∞
j=0(U [1]

⊗j )Z/jZ

-the symmetric (resp. exterior) powers for odd (resp even) d , of cyclic tensors

([B1],2006) ∆ : F → F [1], ∆2 = 0, defined via dissection-gluing of cyclic
tensors, of the second order w.r.t. product of cycles.
The noncommutative Batalin-Vilkovisky equation (nc-BV)

h̄∆S +
1
2
{S , S} = 0, S = ∑

g≥0,i
h̄2g−1+iSg ,i , Sg ,i ∈ Symmi (Cλ[1+ d ]),

nc-BV⇔ ∆ exp(S/ h̄) = 0

{S0,1, S0,1} = 0,

V = U∨, and S0,1 = mA∞ is A∞−algebra structure on V with invariant
scalar product of degree d
A∞−algebras without scalar product are included in the formalism by setting
U = A⊕ A∨[d ], giving an A∞−algebra with scalar product.
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The A-infinity equivariant matrix integrals ([B2],09/2006)
([B2],09/2006) element S ∈ Symm(Cλ[1+ d ])→matrix integral∫

exp Ŝ(X , Λ)dX

X ∈ gl(N |N)⊗V [1] in the odd d case, X ∈ q(N)⊗V [1] in the even d case,

If S satisfies nc-BV equation then

(∆matrix + igl ) exp Ŝ(X , Λ) = 0

⇔ exp Ŝ(X , Λ)dX is gl−equivariantly closed differential form.
In the case of the algebra 1 · 1 = 1, - solution to nc BV for V = {1}, this is
the matrix Airy integral

∫
exp( 16Tr(Y

3)− 1
2Tr(ΛY

2))dY
This is the higher genus counterpart of the (nc)Hodge theory integration on
CY projective manifolds, ( h̄∆γ+ ∂γ+ 1

2 [γ, γ] = 0, γ ∈ Ω0,∗(M, ΛT ))
S satisfies nc-BV, asymptotic expansion as Λ→ ∞ -sum over stable ribbon

graphs⇒cohomology classes in H∗(MK
g ,n) (in H

∗(MK
g ,n ,L) for odd d)

My A∞ equivariant matrix integrals define an integration framework in the
noncommutative (derived algebraic) geometry, particularly adobted to the
equation {mA∞ , mA∞} = 0∫

exp Ŝ(X , Λ)ϕ̂dX , ϕ ∈ Ker( h̄∆+ {S , ·}) ⊂ Symm(Cλ[1+ d ])
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⇔ exp Ŝ(X , Λ)dX is gl−equivariantly closed differential form.
In the case of the algebra 1 · 1 = 1, - solution to nc BV for V = {1}, this is
the matrix Airy integral

∫
exp( 16Tr(Y

3)− 1
2Tr(ΛY

2))dY

This is the higher genus counterpart of the (nc)Hodge theory integration on
CY projective manifolds, ( h̄∆γ+ ∂γ+ 1

2 [γ, γ] = 0, γ ∈ Ω0,∗(M, ΛT ))
S satisfies nc-BV, asymptotic expansion as Λ→ ∞ -sum over stable ribbon

graphs⇒cohomology classes in H∗(MK
g ,n) (in H

∗(MK
g ,n ,L) for odd d)

My A∞ equivariant matrix integrals define an integration framework in the
noncommutative (derived algebraic) geometry, particularly adobted to the
equation {mA∞ , mA∞} = 0∫
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⇔ exp Ŝ(X , Λ)dX is gl−equivariantly closed differential form.
In the case of the algebra 1 · 1 = 1, - solution to nc BV for V = {1}, this is
the matrix Airy integral

∫
exp( 16Tr(Y

3)− 1
2Tr(ΛY

2))dY
This is the higher genus counterpart of the (nc)Hodge theory integration on
CY projective manifolds, ( h̄∆γ+ ∂γ+ 1

2 [γ, γ] = 0, γ ∈ Ω0,∗(M, ΛT ))
S satisfies nc-BV, asymptotic expansion as Λ→ ∞ -sum over stable ribbon

graphs⇒cohomology classes in H∗(MK
g ,n) (in H

∗(MK
g ,n ,L) for odd d)

My A∞ equivariant matrix integrals define an integration framework in the
noncommutative (derived algebraic) geometry, particularly adobted to the
equation {mA∞ , mA∞} = 0∫
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Noncommutative Batalin-Vilkovisky operator ([B1])

I define my noncommutative BV differential on Symm(Cλ[1+ d ]) via

∆(xρ1
. . . xρr

)λ(xτ1 . . . xτt )λ =

= ∑
p,q
(−1)εlρpτq (xρ1

. . . xρp−1xτq+1 . . . xτq−1xρp+1
. . . xρr

)λ+

∑
p±1 6=q

(−1)ε̃lρpρq
(xρ1

. . . xρp−1xρq+1
. . . xρr

)λ(xρp+1
. . . xρq−1 )λ(xτ1 . . . xτt )λ

∑
p±1 6=q

(−1)˜̃εlτpτq (xρ1
. . . xρr

)λ(xτ1 . . . xτp−1xτq+1 . . . xτt )λ(xτp+1 . . . xτq−1 )λ

lρpρq
= l(xρp

, xτq )

signs are the standard Koszul signs taking into account that
(xρ1

. . . xρr
)λ = (1+ d) +∑ xρi

, xi ∈ V [1].
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The cyclic tensors, invariant functions and the matrix
algebra with odd trace.

Invariant theory:

Symm(Cλ)→ Symm((gl(N |Ñ)⊗ V [1])∨)GL(N |Ñ )

∏(a1 . . . ak )λ →∏ sTr(A1 · . . . · Ak )

This is an isomorphism in degrees ≤ N, it was at the origin of the discovery
of cyclic homology, cyclic differential ↔ Lie cohomology differential of gl(V ).
To relate this with the nc-BV equation, one needs to solve the problem: for
usual algebras (i.e. with scalar product of degree d = 0) this is the wrong
space: the symmetric instead of the exterior powers of cyclic tensors
Solution: there must be a matrix algebra with odd trace:
tr(A1 · . . . · Ak ) = 1+ ΣAi
Such algebra exists:

q(N) = {[X , π] = 0|X ∈ gl(N |N)}

where π =

(
0 1N
−1N 0

)
is an odd isomorphism, π2 = −1,

q(N) =
{
X =

(
A B
B A

)}
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∏(a1 . . . ak )λ →∏ sTr(A1 · . . . · Ak )
This is an isomorphism in degrees ≤ N, it was at the origin of the discovery
of cyclic homology, cyclic differential ↔ Lie cohomology differential of gl(V ).
To relate this with the nc-BV equation, one needs to solve the problem: for
usual algebras (i.e. with scalar product of degree d = 0) this is the wrong
space: the symmetric instead of the exterior powers of cyclic tensors

Solution: there must be a matrix algebra with odd trace:
tr(A1 · . . . · Ak ) = 1+ ΣAi
Such algebra exists:

q(N) = {[X , π] = 0|X ∈ gl(N |N)}

where π =

(
0 1N
−1N 0

)
is an odd isomorphism, π2 = −1,

q(N) =
{
X =

(
A B
B A

)}

ha
l-0

04
93

91
9,

 v
er

si
on

 1
 - 

21
 J

un
 2

01
0



The cyclic tensors, invariant functions and the matrix
algebra with odd trace.

Invariant theory:

Symm(Cλ)→ Symm((gl(N |Ñ)⊗ V [1])∨)GL(N |Ñ )
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∏(a1 . . . ak )λ →∏ sTr(A1 · . . . · Ak )
This is an isomorphism in degrees ≤ N, it was at the origin of the discovery
of cyclic homology, cyclic differential ↔ Lie cohomology differential of gl(V ).
To relate this with the nc-BV equation, one needs to solve the problem: for
usual algebras (i.e. with scalar product of degree d = 0) this is the wrong
space: the symmetric instead of the exterior powers of cyclic tensors
Solution: there must be a matrix algebra with odd trace:
tr(A1 · . . . · Ak ) = 1+ ΣAi
Such algebra exists:

q(N) = {[X , π] = 0|X ∈ gl(N |N)}

where π =

(
0 1N
−1N 0

)
is an odd isomorphism, π2 = −1,

q(N) =
{
X =

(
A B
B A
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Algebra q(N) and nc-BV equation

q(N) has odd trace

otr
(
A B
B A

)
= tr(B)

otr([X1,X2 ]) = 0

q(N) is a simple Z/2Z−graded associative algebra
The map

Symm(ΠCλ)→ Symm((q(N)⊗ V [1])∨)Q (N )

∏(a1 . . . ak )λ →∏ otr(A1 · . . . · Ak )
is an isomorphism in degrees ≤ N
Theorem([B4]): nc-BV differential ∆ on Symm(ΠCλ) is identified with
Q(N)−invariant odd BV-operator on (q(N)⊗ V [1])∨ corresponding to the
odd affi ne symplectic structure defined by otr(X1X2)⊗ l
Corollary: tensor multiplication by q(N), gl(N |Ñ) →super Morita
equivalence on solutions to nc-BV.
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Integration of polyvectors - the (equivariant) BV-formalism

S ∈ Symm(ΠCλ)→ Ŝ ∈ Symm((q(N)⊗ V [1])∨)Q (N ), superfunction on
affi ne BV manifold

Ŝ- polyvector field on the even part (q(N)⊗ V [1])0
canonically defined, up to a sign, affi ne holomorphic volume element dX on
(q(N)⊗ V [1])0
polyvector Ŝ → differential form

action by the super-Lie algebra [Λ, ·]→extension to gl−equivariantly closed
differential form.
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New integration framework in the noncommutative
(derived algebraic) geometry,

A.Connes: integration theory based on maps Cλ →differential forms-
"cycles" on HC ∗(A) , (Ω, d ,

∫
),

τ(a0, . . . , an) =
∫
a0da1 . . . dan

(closely related Karoubi’s nc-De Rham complex)

My nc-BV formalism is an integration framework in the noncommutative
geometry, based on maps to polyvectors rather than differential forms, which
is particularly adobted to the equation {mA∞ , mA∞} = 0 of derived
nc-algebraic geometry, variant: {S , S} = 0∫

exp Ŝ(X , Λ)ϕ̂dX

ϕ ∈ Ker( h̄∆+ {S , ·}+ ∆S), ϕ ∈ Symm(Cλ[1− d ])
Extends to non CY via V = A⊕ A∨[d ] etc.
Invariance with respect to A∞−gauge transformation (and more general
gauge transformation)
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Example: V={e} and matrix Airy integral

V = {e}, e · e = e, l∨(e) = 1, →potential (ξ, ξ, ξ)λ

on (q ⊗ΠV )0 this gives the nonhomogenious polyvector otr(Ξ3),
action by [Λ, ·], Λ ∈ qodd , → extension of exp 13!otr(Ξ

3)dX to
equivariantly closed differential form exp 13!otr(Ξ

3) + 1
2otr([Λ, Ξ], Ξ)dX

its highest degree component is the matrix Airy integral
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