A-infinity GL(N)-equivariant matrix integrals-I
 Serguei Barannikov

To cite this version:

Serguei Barannikov. A-infinity GL(N)-equivariant matrix integrals-I. Topological String Theory, Modularity \& non-perturbative Physics, Jun 2010, Vienna, Austria. hal-00493919

HAL Id: hal-00493919

https://hal.science/hal-00493919

Submitted on 6 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A-infinity $G L(N)$-equivariant matrix integrals-I

Serguei Barannikov

IMJ, CNRS

21/06/2010

The noncommutative Batalin-Vilkovisky equation and A-infinity algebras

$U-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space/C, I-scalar product on U of degree $d \in \mathbb{Z} / 2 \mathbb{Z}$, (variant: \mathbb{Z}-graded), consider

$$
F=\operatorname{Symm}\left(C_{\lambda}[1+d]\right), C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}
$$

-the symmetric (resp. exterior) powers for odd (resp even) d, of cyclic tensors
(r) (r)

The noncommutative Batalin-Vilkovisky equation and A-infinity algebras

ㅇ. $U-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space/C, I-scalar product on U of degree
$\cong d \in \mathbb{Z} / 2 \mathbb{Z}$, (variant: \mathbb{Z}-graded), consider

$$
F=\operatorname{Symm}\left(C_{\lambda}[1+d]\right), C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}
$$

-the symmetric (resp. exterior) powers for odd (resp even) d, of cyclic tensors ([B1],2006) $\Delta: F \rightarrow F[1], \Delta^{2}=0$, defined via dissection-gluing of cyclic tensors, of the second order w.r.t. product of cycles.

The noncommutative Batalin-Vilkovisky equation and A-infinity algebras

ㅇ. $U-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space/C, I-scalar product on U of degree
$\cong d \in \mathbb{Z} / 2 \mathbb{Z}$, (variant: \mathbb{Z}-graded), consider

$$
F=\operatorname{Symm}\left(C_{\lambda}[1+d]\right), C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}
$$

-the symmetric (resp. exterior) powers for odd (resp even) d, of cyclic tensors
-○ ([B1],2006) $\Delta: F \rightarrow F[1], \Delta^{2}=0$, defined via dissection-gluing of cyclic $\bar{〕}$ tensors, of the second order w.r.t. product of cycles.

- The noncommutative Batalin-Vilkovisky equation (nc-BV)

$$
h \Delta S+\frac{1}{2}\{S, S\}=0, S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i}, \quad S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1+d]\right)
$$

The noncommutative Batalin-Vilkovisky equation and A-infinity algebras

ㅇ. $U-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space/C, I-scalar product on U of degree
$\xlongequal[\leftrightharpoons]{\leftrightharpoons} d \in \mathbb{Z} / 2 \mathbb{Z}$, (variant: \mathbb{Z}-graded), consider

$$
F=\operatorname{Symm}\left(C_{\lambda}[1+d]\right), C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}
$$

-the symmetric (resp. exterior) powers for odd (resp even) d, of cyclic tensors
-○ ([B1],2006) $\Delta: F \rightarrow F[1], \Delta^{2}=0$, defined via dissection-gluing of cyclic
\bigcirc tensors, of the second order w.r.t. product of cycles.

- The noncommutative Batalin-Vilkovisky equation (nc-BV)

$$
\hbar \Delta S+\frac{1}{2}\{S, S\}=0, S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i}, \quad S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1+d]\right)
$$

$$
\mathrm{nc}-\mathrm{BV} \Leftrightarrow \Delta \exp (S / h)=0
$$

The noncommutative Batalin-Vilkovisky equation and A-infinity algebras

ㅇ. $U-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space/C, I-scalar product on U of degree
$\cong d \in \mathbb{Z} / 2 \mathbb{Z}$, (variant: \mathbb{Z}-graded), consider

$$
F=\operatorname{Symm}\left(C_{\lambda}[1+d]\right), C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}
$$

-the symmetric (resp. exterior) powers for odd (resp even) d, of cyclic tensors
F- ([B1],2006) $\Delta: F \rightarrow F[1], \Delta^{2}=0$, defined via dissection-gluing of cyclic $\bar{〕}$ tensors, of the second order w.r.t. product of cycles.

- The noncommutative Batalin-Vilkovisky equation (nc-BV)

$$
\hbar \Delta S+\frac{1}{2}\{S, S\}=0, S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i}, \quad S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1+d]\right)
$$

$$
\mathrm{nc}-\mathrm{BV} \Leftrightarrow \Delta \exp (S / h)=0
$$

$$
\left\{S_{0,1}, S_{0,1}\right\}=0
$$

$V=U^{\vee}$, and $S_{0,1}=m_{A_{\infty}}$ is A_{∞}-algebra structure on V with invariant scalar product of degree d

The noncommutative Batalin-Vilkovisky equation and A-infinity algebras

ㅇ. $U-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space/C, I-scalar product on U of degree
$\cong d \in \mathbb{Z} / 2 \mathbb{Z}$, (variant: \mathbb{Z}-graded), consider

$$
F=\operatorname{Symm}\left(C_{\lambda}[1+d]\right), C_{\lambda}=\oplus_{j=0}^{\infty}\left(U[1]^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}
$$

-the symmetric (resp. exterior) powers for odd (resp even) d, of cyclic tensors
F- $([B 1], 2006) \Delta: F \rightarrow F[1], \Delta^{2}=0$, defined via dissection-gluing of cyclic tensors, of the second order w.r.t. product of cycles.
The noncommutative Batalin-Vilkovisky equation (nc-BV)

$$
\begin{gathered}
\hbar \Delta S+\frac{1}{2}\{S, S\}=0, S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i}, \quad S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1+d]\right), \\
\mathrm{nc}-\mathrm{BV} \Leftrightarrow \Delta \exp (S / h)=0 \\
\left\{S_{0,1}, S_{0,1}\right\}=0,
\end{gathered}
$$

$V=U^{\vee}$, and $S_{0,1}=m_{A_{\infty}}$ is A_{∞}-algebra structure on V with invariant scalar product of degree d

- A_{∞}-algebras without scalar product are included in the formalism by setting $U=A \oplus A^{\vee}[d]$, giving an A_{∞}-algebra with scalar product.

The A-infinity equivariant matrix integrals ([B2],09/2006)

○。 ([B2],09/2006) element $S \in \operatorname{Symm}\left(C_{\lambda}[1+d]\right) \rightarrow$ matrix integral

$$
\int \exp \widehat{S}(X, \Lambda) d X
$$

$X \in g l(N \mid N) \otimes V[1]$ in the odd d case, $X \in q(N) \otimes V[1]$ in the even d case,

The A－infinity equivariant matrix integrals（［B2］，09／2006）

○。（［B2］，09／2006）element $S \in \operatorname{Symm}\left(C_{\lambda}[1+d]\right) \rightarrow$ matrix integral

$$
\int \exp \widehat{S}(X, \Lambda) d X
$$

$X \in g I(N \mid N) \otimes V[1]$ in the odd d case，$X \in q(N) \otimes V[1]$ in the even d case， If S satisfies nc－BV equation then

$$
\left(\Delta_{\text {matrix }}+i_{g I}\right) \exp \widehat{S}(X, \Lambda)=0
$$

$\bar{\complement} \Leftrightarrow \exp \widehat{S}(X, \Lambda) d X$ is $g I$－equivariantly closed differential form．

The A-infinity equivariant matrix integrals ([B2],09/2006)

○。 ([B2],09/2006) element $S \in \operatorname{Symm}\left(C_{\lambda}[1+d]\right) \rightarrow$ matrix integral

$$
\int \exp \widehat{S}(X, \Lambda) d X
$$

$X \in g l(N \mid N) \otimes V[1]$ in the odd d case, $X \in q(N) \otimes V[1]$ in the even d case,
$\stackrel{\Gamma}{ } \cdot$ If S satisfies nc-BV equation then

$$
\left(\Delta_{\text {matrix }}+i_{g l}\right) \exp \widehat{S}(X, \Lambda)=0
$$

$\Leftrightarrow \exp \widehat{S}(X, \Lambda) d X$ is $g /$-equivariantly closed differential form.
응. In the case of the algebra $1 \cdot 1=1$, - solution to nc BV for $V=\{1\}$, this is
$\stackrel{\square}{\searrow}$ the matrix Airy integral $\int \exp \left(\frac{1}{6} \operatorname{Tr}\left(Y^{3}\right)-\frac{1}{2} \operatorname{Tr}\left(\Lambda Y^{2}\right)\right) d Y$

The A-infinity equivariant matrix integrals ([B2],09/2006)

ㅇ. ([B2],09/2006) element $S \in \operatorname{Symm}\left(C_{\lambda}[1+d]\right) \rightarrow$ matrix integral

$$
\int \exp \widehat{S}(X, \Lambda) d X
$$

$X \in g l(N \mid N) \otimes V[1]$ in the odd d case, $X \in q(N) \otimes V[1]$ in the even d case,
$\stackrel{\square}{\sim}$ If S satisfies nc-BV equation then

$$
\left(\Delta_{\text {matrix }}+i_{g l}\right) \exp \widehat{S}(X, \Lambda)=0
$$

$\bar{\varrho} \Leftrightarrow \exp \widehat{S}(X, \Lambda) d X$ is g I-equivariantly closed differential form.
जo In the case of the algebra $1 \cdot 1=1$, - solution to nc BV for $V=\{1\}$, this is
$\frac{\text { © }}{>}$ the matrix Airy integral $\int \exp \left(\frac{1}{6} \operatorname{Tr}\left(Y^{3}\right)-\frac{1}{2} \operatorname{Tr}\left(\Lambda Y^{2}\right)\right) d Y$
${ }^{--}$This is the higher genus counterpart of the (nc)Hodge theory integration on CY projective manifolds, $\left(\hbar \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \gamma \in \Omega^{0, *}(M, \Lambda T)\right)$

The A-infinity equivariant matrix integrals ([B2],09/2006)

○。 ([B2],09/2006) element $S \in \operatorname{Symm}\left(C_{\lambda}[1+d]\right) \rightarrow$ matrix integral

$$
\int \exp \hat{S}(X, \Lambda) d X
$$

$X \in g l(N \mid N) \otimes V[1]$ in the odd d case, $X \in q(N) \otimes V[1]$ in the even d case,
Σ° If S satisfies nc-BV equation then

$$
\left(\Delta_{\text {matrix }}+i_{g I}\right) \exp \widehat{S}(X, \Lambda)=0
$$

$\Leftrightarrow \exp \widehat{S}(X, \Lambda) d X$ is $g /$-equivariantly closed differential form.
In the case of the algebra $1 \cdot 1=1,-$ solution to $n c \operatorname{BV}$ for $V=\{1\}$, this is the matrix Airy integral $\int \exp \left(\frac{1}{6} \operatorname{Tr}\left(Y^{3}\right)-\frac{1}{2} \operatorname{Tr}\left(\Lambda Y^{2}\right)\right) d Y$ This is the higher genus counterpart of the (nc)Hodge theory integration on CY projective manifolds, $\left(\hbar \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \gamma \in \Omega^{0, *}(M, \Lambda T)\right)$
S satisfies nc-BV, asymptotic expansion as $\Lambda \rightarrow \infty$-sum over stable ribbon graphs \Rightarrow cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$ (in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}, \mathcal{L}\right)$ for odd d)

The A-infinity equivariant matrix integrals ([B2],09/2006)

ㅇ. ([B2],09/2006) element $S \in \operatorname{Symm}\left(C_{\lambda}[1+d]\right) \rightarrow$ matrix integral

$$
\int \exp \widehat{S}(X, \Lambda) d X
$$

$X \in g l(N \mid N) \otimes V[1]$ in the odd d case, $X \in q(N) \otimes V[1]$ in the even d case,
$\stackrel{\square}{\sim}$ If S satisfies nc-BV equation then

$$
\left(\Delta_{\text {matrix }}+i_{g I}\right) \exp \widehat{S}(X, \Lambda)=0
$$

$\Leftrightarrow \exp \widehat{S}(X, \Lambda) d X$ is $g /$-equivariantly closed differential form.
जo- In the case of the algebra $1 \cdot 1=1$, - solution to nc BV for $V=\{1\}$, this is the matrix Airy integral $\int \exp \left(\frac{1}{6} \operatorname{Tr}\left(Y^{3}\right)-\frac{1}{2} \operatorname{Tr}\left(\Lambda Y^{2}\right)\right) d Y$ This is the higher genus counterpart of the (nc)Hodge theory integration on CY projective manifolds, $\left(\hbar \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \gamma \in \Omega^{0, *}(M, \Lambda T)\right)$
S satisfies nc-BV, asymptotic expansion as $\Lambda \rightarrow \infty$-sum over stable ribbon graphs \Rightarrow cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$ (in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}, \mathcal{L}\right)$ for odd d) My A_{∞} equivariant matrix integrals define an integration framework in the noncommutative (derived algebraic) geometry, particularly adobted to the equation $\left\{m_{A_{\infty}}, m_{A_{\infty}}\right\}=0$

$$
\int \exp \widehat{S}(X, \Lambda) \widehat{\varphi} d X, \varphi \in \operatorname{Ker}(\hbar \Delta+\{S, \cdot\}) \subset \operatorname{Symm}\left(C_{\lambda}[1+d]\right)
$$

Noncommutative Batalin-Vilkovisky operator ([B1])

I define my noncommutative BV differential on $\operatorname{Symm}\left(C_{\lambda}[1+d]\right)$ via

$$
\begin{aligned}
& \Delta\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}\left(x_{\tau_{1}} \ldots x_{\tau_{t}}\right)_{\lambda}= \\
& \quad=\sum_{p, q}(-1)^{\varepsilon} l_{\rho_{p} \tau_{q}}\left(x_{\rho_{1}} \ldots x_{\rho_{\rho-1}} x_{\tau_{q+1}} \ldots x_{\tau_{q-1}} x_{\rho_{p+1}} \ldots x_{\rho_{r}}\right)_{\lambda}+ \\
& \sum_{p \pm 1 \neq q}(-1)^{\tilde{\varepsilon}} l_{\rho_{p} \rho_{q}}\left(x_{\rho_{1}} \ldots x_{\rho_{p-1}} x_{\rho_{q+1}} \ldots x_{\rho_{r}}\right)_{\lambda}\left(x_{\rho_{p+1}} \ldots x_{\rho_{q-1}}\right)_{\lambda}\left(x_{\tau_{1}} \ldots x_{\tau_{t}}\right)_{\lambda} \\
& \sum_{p \pm 1 \neq q}(-1)^{\widetilde{\varepsilon}} \|_{\tau_{p} \tau_{q}}\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}\left(x_{\tau_{1}} \ldots x_{\tau_{p-1}} x_{\tau_{q+1}} \ldots x_{\tau_{t}}\right)_{\lambda}\left(x_{\tau_{p+1}} \ldots x_{\tau_{q-1}}\right)_{\lambda} \\
& l_{\rho_{p} \rho_{q}}=I\left(x_{\rho_{p}}, x_{\tau_{q}}\right)
\end{aligned}
$$

Noncommutative Batalin-Vilkovisky operator ([B1])

I define my noncommutative BV differential on $\operatorname{Symm}\left(C_{\lambda}[1+d]\right)$ via

$$
\begin{aligned}
& \Delta\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}\left(x_{\tau_{1}} \ldots x_{\tau_{t}}\right)_{\lambda}= \\
& \quad=\sum_{p, q}(-1)^{\varepsilon} l_{\rho_{p} \tau_{q}}\left(x_{\rho_{1}} \ldots x_{\rho_{\rho-1}} x_{\tau_{q+1}} \ldots x_{\tau_{q-1}} x_{\rho_{p+1}} \ldots x_{\rho_{r}}\right)_{\lambda}+ \\
& \sum_{p \pm 1 \neq q}(-1)^{\tilde{\varepsilon}} l_{\rho_{\rho} \rho_{q}}\left(x_{\rho_{1}} \ldots x_{\rho_{\rho-1}} x_{\rho_{q+1}} \ldots x_{\rho_{r}}\right)_{\lambda}\left(x_{\rho_{p+1}} \ldots x_{\rho_{q-1}}\right)_{\lambda}\left(x_{\tau_{1}} \ldots x_{\tau_{t}}\right)_{\lambda} \\
& \sum_{p \pm 1 \neq q}(-1)^{\tilde{\tilde{\varepsilon}}} l_{\tau_{p} \tau_{q}}\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}\left(x_{\tau_{1}} \ldots x_{\tau_{p-1}} x_{\tau_{q+1}} \ldots x_{\tau_{t}}\right)_{\lambda}\left(x_{\tau_{p+1}} \ldots x_{\tau_{q-1}}\right)_{\lambda} \\
& I_{\rho_{p} \rho_{q}}=I\left(x_{\rho_{\rho}}, x_{\tau_{q}}\right)
\end{aligned}
$$

signs are the standard Koszul signs taking into account that

$$
\overline{\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}}=(1+d)+\sum \overline{x_{\rho_{i}}}, x_{i} \in V[1] .
$$

The cyclic tensors, invariant functions and the matrix

 agebra with odd trace.No Invariant theory:
hal-00493919, version 1-21 Jun

$$
\begin{gathered}
\operatorname{Symm}\left(C_{\lambda}\right) \rightarrow \operatorname{Symm}\left((g l(N \mid \widetilde{N}) \otimes V[1])^{\vee}\right)^{G L(N \mid \widetilde{N})} \\
\prod\left(a_{1} \ldots a_{k}\right)_{\lambda} \rightarrow \prod \operatorname{sTr}\left(A_{1} \cdot \ldots \cdot A_{k}\right)
\end{gathered}
$$

The cyclic tensors, invariant functions and the matrix adgebra with odd trace.

No Invariant theory:

$$
\begin{gathered}
\operatorname{Symm}\left(C_{\lambda}\right) \rightarrow \operatorname{Symm}\left((g /(N \mid \widetilde{N}) \otimes V[1])^{\vee}\right)^{G L(N \mid \tilde{N})} \\
\prod\left(a_{1} \ldots a_{k}\right)_{\lambda} \rightarrow \prod \operatorname{sTr}\left(A_{1} \ldots . A_{k}\right)
\end{gathered}
$$

- This is an isomorphism in degrees $\leq N$, it was at the origin of the discovery ${ }^{-}$of cyclic homology, cyclic differential \leftrightarrow Lie cohomology differential of $g I(V)$.

The cyclic tensors, invariant functions and the matrix agebra with odd trace.

No Invariant theory:

$$
\begin{gathered}
\operatorname{Symm}\left(C_{\lambda}\right) \rightarrow \operatorname{Symm}\left((g /(N \mid \widetilde{N}) \otimes V[1])^{\vee}\right)^{G L(N \mid \tilde{N})} \\
\prod\left(a_{1} \ldots a_{k}\right)_{\lambda} \rightarrow \prod \operatorname{sTr}\left(A_{1} \ldots . A_{k}\right)
\end{gathered}
$$

- This is an isomorphism in degrees $\leq N$, it was at the origin of the discovery ${ }^{-}$of cyclic homology, cyclic differential \leftrightarrow Lie cohomology differential of $g I(V)$.
응 To relate this with the nc-BV equation, one needs to solve the problem: for usual algebras (i.e. with scalar product of degree $d=0$) this is the wrong space: the symmetric instead of the exterior powers of cyclic tensors

The cyclic tensors, invariant functions and the matrix agebra with odd trace.

No Invariant theory:

$$
\begin{gathered}
\operatorname{Symm}\left(C_{\lambda}\right) \rightarrow \operatorname{Symm}\left((g l(N \mid \widetilde{N}) \otimes V[1])^{\vee}\right)^{G L(N \mid \widetilde{N})} \\
\prod\left(a_{1} \ldots a_{k}\right)_{\lambda} \rightarrow \prod \operatorname{sTr}\left(A_{1} \cdot \ldots \cdot A_{k}\right)
\end{gathered}
$$

- This is an isomorphism in degrees $\leq N$, it was at the origin of the discovery ${ }^{-}$of cyclic homology, cyclic differential \leftrightarrow Lie cohomology differential of $g I(V)$.
응 To relate this with the nc-BV equation, one needs to solve the problem: for usual algebras (i.e. with scalar product of degree $d=0$) this is the wrong space: the symmetric instead of the exterior powers of cyclic tensors
©i. Solution: there must be a matrix algebra with odd trace: $\overline{\operatorname{tr}\left(A_{1} \cdot \ldots \cdot A_{k}\right)}=1+\Sigma \overline{A_{i}}$

The cyclic tensors, invariant functions and the matrix agebra with odd trace.

ㅇ. Invariant theory:

$$
\begin{gathered}
\operatorname{Symm}\left(C_{\lambda}\right) \rightarrow \operatorname{Symm}\left((g I(N \mid \widetilde{N}) \otimes V[1])^{\vee}\right)^{G L(N \mid \widetilde{N})} \\
\prod\left(a_{1} \ldots a_{k}\right)_{\lambda} \rightarrow \prod \operatorname{sTr}\left(A_{1} \cdot \ldots \cdot A_{k}\right)
\end{gathered}
$$

- This is an isomorphism in degrees $\leq N$, it was at the origin of the discovery of cyclic homology, cyclic differential \leftrightarrow Lie cohomology differential of $g l(V)$.
응. To relate this with the nc-BV equation, one needs to solve the problem: for usual algebras (i.e. with scalar product of degree $d=0$) this is the wrong space: the symmetric instead of the exterior powers of cyclic tensors
Solution: there must be a matrix algebra with odd trace: $\overline{\operatorname{tr}\left(A_{1} \cdot \ldots \cdot A_{k}\right)}=1+\Sigma \overline{A_{i}}$
Such algebra exists:

$$
q(N)=\{[X, \pi]=0 \mid X \in g l(N \mid N)\}
$$

$$
\text { where } \pi=\left(\begin{array}{cc}
0 & 1_{N} \\
-1_{N} & 0
\end{array}\right) \text { is an odd isomorphism, } \pi^{2}=-1
$$

$$
q(N)=\left\{X=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)\right\}
$$

Algebra $\mathrm{q}(\mathrm{N})$ and nc－BV equation

$\stackrel{\circ}{\stackrel{\circ}{\mathrm{N}}}{ }^{-} q(N)$ has odd trace
$\stackrel{\subsetneq}{\leftrightharpoons}$

$$
\begin{gathered}
\operatorname{otr}\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right)=\operatorname{tr}(B) \\
\quad \operatorname{otr}\left(\left[X_{1}, X_{2}\right]\right)=0
\end{gathered}
$$

Algebra $\mathrm{q}(\mathrm{N})$ and nc－BV equation

$\stackrel{\circ}{\stackrel{\circ}{\mathrm{N}}}{ }^{(} q(N)$ has odd trace

$\stackrel{5}{5}$	$\operatorname{otr}\left(\begin{array}{cc}A & B \\ B & A\end{array}\right)=\operatorname{tr}(B)$
$\stackrel{\top}{\sim}$	$\operatorname{otr}\left(\left[X_{1}, X_{2}\right]\right)=0$

－• $q(N)$ is a simple $\mathbb{Z} / 2 \mathbb{Z}$－graded associative algebra

Algebra $\mathrm{q}(\mathrm{N})$ and nc-BV equation

$\stackrel{\circ}{\stackrel{\circ}{\mathrm{N}}}{ }^{-} q(N)$ has odd trace

$$
\begin{gathered}
\operatorname{otr}\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right)=\operatorname{tr}(B) \\
\quad \operatorname{otr}\left(\left[X_{1}, X_{2}\right]\right)=0
\end{gathered}
$$

$\leftharpoondown \bullet q(N)$ is a simple $\mathbb{Z} / 2 \mathbb{Z}$-graded associative algebra

ㅇ. The map

$$
\begin{gathered}
\operatorname{Symm}\left(\Pi C_{\lambda}\right) \rightarrow \operatorname{Symm}\left((q(N) \otimes V[1])^{\vee}\right)^{Q(N)} \\
\prod\left(a_{1} \ldots a_{k}\right)_{\lambda} \rightarrow \prod \operatorname{otr}\left(A_{1} \cdot \ldots \cdot A_{k}\right)
\end{gathered}
$$

is an isomorphism in degrees $\leq N$

Algebra $\mathrm{q}(\mathrm{N})$ and nc-BV equation

웅 $q(N)$ has odd trace

$$
\begin{gathered}
\operatorname{otr}\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right)=\operatorname{tr}(B) \\
\quad \operatorname{otr}\left(\left[X_{1}, X_{2}\right]\right)=0
\end{gathered}
$$

-๑ $q(N)$ is a simple $\mathbb{Z} / 2 \mathbb{Z}$ - graded associative algebra
ㅇ. The map

$$
\begin{gathered}
\operatorname{Symm}\left(\Pi C_{\lambda}\right) \rightarrow \operatorname{Symm}\left((q(N) \otimes V[1])^{\vee}\right)^{Q(N)} \\
\prod\left(a_{1} \ldots a_{k}\right)_{\lambda} \rightarrow \prod \operatorname{otr}\left(A_{1} \cdot \ldots \cdot A_{k}\right)
\end{gathered}
$$

is an isomorphism in degrees $\leq N$
Theorem([B4]): nc-BV differential Δ on $\operatorname{Symm}\left(\Pi C_{\lambda}\right)$ is identified with $Q(N)$-invariant odd BV-operator on $(q(N) \otimes V[1])^{\vee}$ corresponding to the odd affine symplectic structure defined by $\operatorname{otr}\left(X_{1} X_{2}\right) \otimes I$

Algebra $\mathrm{q}(\mathrm{N})$ and nc-BV equation

응ㅇ $q(N)$ has odd trace

$$
\begin{gathered}
\operatorname{otr}\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right)=\operatorname{tr}(B) \\
\quad \operatorname{otr}\left(\left[X_{1}, X_{2}\right]\right)=0
\end{gathered}
$$

-๑ $q(N)$ is a simple $\mathbb{Z} / 2 \mathbb{Z}$ - graded associative algebra
ㅇ. The map

$$
\begin{gathered}
\operatorname{Symm}\left(\Pi C_{\lambda}\right) \rightarrow \operatorname{Symm}\left((q(N) \otimes V[1])^{\vee}\right)^{Q(N)} \\
\prod\left(a_{1} \ldots a_{k}\right)_{\lambda} \rightarrow \prod \operatorname{otr}\left(A_{1} \cdot \ldots \cdot A_{k}\right)
\end{gathered}
$$

is an isomorphism in degrees $\leq N$
Theorem([B4]): nc-BV differential Δ on $\operatorname{Symm}\left(\Pi C_{\lambda}\right)$ is identified with $Q(N)$-invariant odd BV-operator on $(q(N) \otimes V[1])^{\vee}$ corresponding to the odd affine symplectic structure defined by $\operatorname{otr}\left(X_{1} X_{2}\right) \otimes I$
Corollary: tensor multiplication by $q(N), g l(N \mid \widetilde{N}) \rightarrow$ super Morita equivalence on solutions to nc-BV.

Integration of polyvectors - the (equivariant) BV-formalism

$\bar{\sim}^{\circ} \cdot S \in \operatorname{Symm}\left(\Pi C_{\lambda}\right) \rightarrow \hat{S} \in \operatorname{Symm}\left((q(N) \otimes V[1])^{\vee}\right)^{Q(N)}$, superfunction on affine BV manifold

Integration of polyvectors - the (equivariant) BV-formalism

$\bar{\sim}^{\circ} S \in \operatorname{Symm}\left(\Pi C_{\lambda}\right) \rightarrow \widehat{S} \in \operatorname{Symm}\left((q(N) \otimes V[1])^{\vee}\right)^{Q(N)}$, superfunction on affine BV manifold
$\check{\subsetneq}^{-} \widehat{S}$ - polyvector field on the even part $(q(N) \otimes V[1])_{0}$

Integration of polyvectors－the（equivariant）BV－formalism

$\bar{N}^{\circ} S \in \operatorname{Symm}\left(\Pi C_{\lambda}\right) \rightarrow \hat{S} \in \operatorname{Symm}\left((q(N) \otimes V[1])^{\vee}\right)^{Q(N)}$ ，superfunction on affine BV manifold
τ_{-}°－polyvector field on the even part $(q(N) \otimes V[1])_{0}$
．응 canonically defined，up to a sign，affine holomorphic volume element $d X$ on $(q(N) \otimes V[1])_{0}$

Integration of polyvectors - the (equivariant) BV-formalism

$\bar{N}^{\circ} S \in \operatorname{Symm}\left(\Pi C_{\lambda}\right) \rightarrow \widehat{S} \in \operatorname{Symm}\left((q(N) \otimes V[1])^{\vee}\right) Q(N)$, superfunction on affine BV manifold
τ_{-}° - polyvector field on the even part $(q(N) \otimes V[1])_{0}$
응 canonically defined, up to a sign, affine holomorphic volume element $d X$ on $(q(N) \otimes V[1])_{0}$
polyvector $\widehat{S} \rightarrow$ differential form

Integration of polyvectors－the（equivariant）BV－formalism

$\bar{N}^{\circ} S \in \operatorname{Symm}\left(\Pi C_{\lambda}\right) \rightarrow \widehat{S} \in \operatorname{Symm}\left((q(N) \otimes V[1])^{\vee}\right)^{Q(N)}$ ，superfunction on affine BV manifold
τ°－\hat{S}－polyvector field on the even part $(q(N) \otimes V[1])_{0}$
canonically defined，up to a sign，affine holomorphic volume element $d X$ on $(q(N) \otimes V[1])_{0}$
polyvector $\widehat{S} \rightarrow$ differential form
action by the super－Lie algebra $[\Lambda, \cdot] \rightarrow$ extension to $g /$－equivariantly closed differential form．

New integration framework in the noncommutative (derived algebraic) geometry,

No A.Connes: integration theory based on maps $C_{\lambda} \rightarrow$ differential forms$\xlongequal{\leftrightharpoons}$ "cycles" on $H C^{*}(A),\left(\Omega, d, \int\right)$,

$$
\tau\left(a_{0}, \ldots, a_{n}\right)=\int a_{0} d a_{1} \ldots d a_{n}
$$

(closely related Karoubi's nc-De Rham complex)

New integration framework in the noncommutative (derived algebraic) geometry,

A.Connes: integration theory based on maps $C_{\lambda} \rightarrow$ differential forms"cycles" on $H C^{*}(A),\left(\Omega, d, \int\right)$,

$$
\tau\left(a_{0}, \ldots, a_{n}\right)=\int a_{0} d a_{1} \ldots d a_{n}
$$

(closely related Karoubi's nc-De Rham complex)
My nc-BV formalism is an integration framework in the noncommutative geometry, based on maps to polyvectors rather than differential forms, which is particularly adobted to the equation $\left\{m_{A_{\infty}}, m_{A_{\infty}}\right\}=0$ of derived nc-algebraic geometry, variant: $\{S, S\}=0$

$$
\begin{gathered}
\int \exp \widehat{S}(X, \Lambda) \widehat{\varphi} d X \\
\varphi \in \operatorname{Ker}(\hbar \Delta+\{S, \cdot\}+\Delta S), \quad \varphi \in \operatorname{Symm}\left(C_{\lambda}[1-d]\right)
\end{gathered}
$$

New integration framework in the noncommutative (derived algebraic) geometry,

No A.Connes: integration theory based on maps $C_{\lambda} \rightarrow$ differential forms\leftrightharpoons "cycles" on $H C^{*}(A),\left(\Omega, d, \int\right)$,

$$
\tau\left(a_{0}, \ldots, a_{n}\right)=\int a_{0} d a_{1} \ldots d a_{n}
$$

(closely related Karoubi's nc-De Rham complex)
My nc-BV formalism is an integration framework in the noncommutative geometry, based on maps to polyvectors rather than differential forms, which is particularly adobted to the equation $\left\{m_{A_{\infty}}, m_{A_{\infty}}\right\}=0$ of derived nc-algebraic geometry, variant: $\{S, S\}=0$

$$
\begin{gathered}
\int \exp \widehat{S}(X, \Lambda) \widehat{\varphi} d X \\
\varphi \in \operatorname{Ker}(\hbar \Delta+\{S, \cdot\}+\Delta S), \quad \varphi \in \operatorname{Symm}\left(C_{\lambda}[1-d]\right)
\end{gathered}
$$

Extends to non CY via $V=A \oplus A^{\vee}[d]$ etc.

New integration framework in the noncommutative (derived algebraic) geometry,

N. A.Connes: integration theory based on maps $C_{\lambda} \rightarrow$ differential forms\leftrightharpoons "cycles" on $H C^{*}(A),\left(\Omega, d, \int\right)$,

$$
\tau\left(a_{0}, \ldots, a_{n}\right)=\int a_{0} d a_{1} \ldots d a_{n}
$$

(closely related Karoubi's nc-De Rham complex)
My nc-BV formalism is an integration framework in the noncommutative geometry, based on maps to polyvectors rather than differential forms, which is particularly adobted to the equation $\left\{m_{A_{\infty}}, m_{A_{\infty}}\right\}=0$ of derived nc-algebraic geometry, variant: $\{S, S\}=0$

$$
\begin{gathered}
\int \exp \widehat{S}(X, \Lambda) \widehat{\varphi} d X \\
\varphi \in \operatorname{Ker}(h \Delta+\{S, \cdot\}+\Delta S), \quad \varphi \in \operatorname{Symm}\left(C_{\lambda}[1-d]\right)
\end{gathered}
$$

气. Extends to non CY via $V=A \oplus A^{\vee}[d]$ etc.

- Invariance with respect to A_{∞}-gauge transformation (and more general gauge transformation)

Example: $\mathrm{V}=\{\mathrm{e}\}$ and matrix Airy integral

```
Jun }201
\(\therefore V=\{e\}, e \cdot e=e, V^{V}(e)=1, \rightarrow\) potential \((\xi, \xi, \xi, \xi)_{\lambda}\)
```


Example： $\mathrm{V}=\{\mathrm{e}\}$ and matrix Airy integral

Example: $\mathrm{V}=\{\mathrm{e}\}$ and matrix Airy integral

$V=\{e\}, e \cdot e=e, I^{V}(e)=1, \rightarrow$ potential $(\xi, \xi, \xi)_{\lambda}$
Γ^{-}on $(q \otimes \Pi V)_{0}$ this gives the nonhomogenious polyvector $\operatorname{otr}\left(\Xi^{3}\right)$, action by $[\Lambda, \cdot], \Lambda \in q_{\text {odd }}, \rightarrow$ extension of $\exp \frac{1}{3!} \operatorname{tr}\left(\Xi^{3}\right) d X$ to equivariantly closed differential form $\exp \frac{1}{3!} \operatorname{otr}\left(\Xi^{3}\right)+\frac{1}{2} \operatorname{otr}([\Lambda, \Xi], \Xi) d X$

Example: $\mathrm{V}=\{\mathrm{e}\}$ and matrix Airy integral

$V=\{e\}, e \cdot e=e, I^{V}(e)=1, \rightarrow$ potential $(\xi, \xi, \xi)_{\lambda}$ on $(q \otimes \Pi V)_{0}$ this gives the nonhomogenious polyvector $\operatorname{otr}\left(\Xi^{3}\right)$, action by $[\Lambda, \cdot], \Lambda \in q_{\text {odd }}, \rightarrow$ extension of $\exp \frac{1}{3!} \operatorname{otr}\left(\Xi^{3}\right) d X$ to equivariantly closed differential form $\exp \frac{1}{3!} \operatorname{otr}\left(\Xi^{3}\right)+\frac{1}{2} \operatorname{otr}([\Lambda, \Xi], \Xi) d X$ its highest degree component is the matrix Airy integral

References:

[B1] S.Barannikov, Modular operads and Batalin-Vilkovisky geometry. IMRN, Vol. 2007, article ID rnm075. Preprint Max Planck Institute for Mathematics 2006-48 (04/2006),
[B2] S.Barannikov, Noncommutative Batalin-Vilkovisky geometry and matrix integrals. «Comptes rendus Mathematique», presented for publication by M.Kontsevich in 05/2009, arXiv:0912.5484; Preprint NI06043 Newton Institute (09/2006), Preprint HAL, the electronic CNRS archive, hal-00102085 (09/2006)
[B3] S.Barannikov, Supersymmetry and cohomology of graph complexes. Preprint hal-00429963; (11/2009).
[B4] S.Barannikov, Matrix De Rham complex and quantum A-infinity algebras. arXiv:1001.5264, Preprint hal-00378776; (04/2009).
[B5] S.Barannikov, Quantum periods - I. Semi-infinite variations of Hodge structures. Preprint ENS DMA-00-19. arXiv:math/0006193 (06/2000), Intern. Math. Res. Notices. 2001, No. 23
[B6] S.Barannikov, Solving the noncommutative Batalin-Vilkovisky equation. Preprint hal-00464794 (03/2010). arXiv:1004.22.53,

