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The bifurcation indicator gives initial critical values (Reynolds number, Strouhal
1. Introduction

In fluid mechanics, flow can change when the Reynolds number
reaches critical values. In this paper, we focus on the transition be-
tween a steady flow to a time-periodic solution. This modification
characterizes an instability which is called Hopf’s bifurcation. The
present study concerns the numerical computations of these bifur-
cation points. However, to be precise, we do not discuss, in this
paper, the stability of the flow after these instabilities. With the
numerical methods presented in this paper, it is then impossible
to give information on the kind of instability (subcritical or super-
critical bifurcation for example) found. From a mathematical point
of view, Hopf bifurcations correspond to two conjugated complex
eigenvalues of the Jacobian matrix crossing the imaginary axis.
The method to compute numerically this kind of instability can
be classified into two families.

The first one is the family of indirect methods which consist in
following a test function which has the property to be null in a
Hopf bifurcation point [1,4,5]. This test function can be the small-
est real part of one or more eigenvalues of the Jacobian matrix [6].
When this real part is equal to zero, then a Hopf bifurcation point is
found. Nevertheless, as numerical fluid mechanics requires fine
spatial discretization, the eigenvalue computation can lead to long
CPU time. Moreover, due to non symmetric matrices, specific algo-
rithms have to be used, for example the Arnoldi method [7].
. Cadou).
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In a recent work [1], the authors proposed an indirect method
based on a bifurcation indicator initially introduced in solid
mechanics [8,9]. These indicators are scalar functions which have
the property to be null in a bifurcation point. In Ref. [1], two indi-
cators have been proposed. The first one allows for the character-
ization of stationary instabilities, such as the loss of symmetry in
the flow and has been used to study the Coanda effect [10]. The
second one leads to determining precisely Hopf bifurcation points.
This indicator was first introduced in Refs. [11,12], respectively for
models with small numbers of degrees of freedom and solid
mechanics involving following loads. This bifurcation indicator is
a function of the Reynolds number and the frequency. In Ref. [1],
the bifurcation indicator is computed for a fixed value of the Rey-
nolds number. It means that for a given value of the Reynolds num-
ber, the evolution of this indicator is evaluated versus the
frequency. As the computation cost of this indicator can be great,
an Asymptotic Numerical Method is used [13]. The latter permits
the user to obtain analytic solutions. Nevertheless, with this meth-
od, the user has to follow the minimum value of the indicator ver-
sus the Reynolds and finally isolate the critical values of the flow
indicating a Hopf bifurcation. This method is not an automatic ones
and needs a great deal of post-analysis work for each computation.
Moreover, precisely computing the critical values of the flow can
lead to a great amount of indicator calculus and therefore to long
CPU time.

The second family of methods used to characterize Hopf bifur-
cation points is the direct methods. They consist in the resolution
of a nonlinear augmented system whose solutions are the Hopf



bifurcation points. One can cite the methods proposed by Jepson
[3] and Griewank and Reddien [14] which are solved by a Newton
method [2]. These methods need initial values close to the bifurca-
tion point to assure convergence. Usually [2,15], initial values are
obtained by the computation of some eigenvalues of the Jacobian
matrix. In fact, one must isolate or at least have an idea of what
the eigenvalues which can cross the imaginary axis are. Unfortu-
nately, as this operator depends on the Reynolds number, the
eigenvalues also do. One might note that their evolution with this
number is not linear [16]. Consequently, it can be difficult to esti-
mate precisely the eigenvalues which can cross the imaginary axis.
Moreover, the numerical resolution of fluid mechanics requires a
fine spatial discretization which can lead to an extensive matrix
operator. The use of eigenvalues as initial values can then be quite
difficult.

To avoid these eigenvalue computations, some authors [17]
propose the quantities coming from an unsteady Navier–Stokes
simulation as initial values. If for a given Reynolds number, the
flow is time periodic, a Fourier transformation to the time series
is applied to determine the critical frequency. Additional relations
help give an approximation of the complex eigenvector [17].

In this work, we propose to use the quantities coming from the
bifurcation indicator proposed in Ref. [1] as initial approximations
for the augmented system proposed by Jepson [3] and Griewank
and Reddien [14]. The basic idea is to associate the advantages of
both methods to obtain a simple and efficient algorithm for the
computation of Hopf bifurcation points. Indeed, the latter method
can easily give good initial guesses but can demand long CPU time
if precise values of the critical flow parameters are required. The di-
rect method can compute precise critical numbers in few iterations
if initial approximations are relatively close to the bifurcation point.

This paper is organized as follows. In the first part, the govern-
ing equations to be solved are recalled. The second part is con-
cerned by the presentation of the two methods: firstly the direct
method and secondly the bifurcation indicator. The numerical
scheme is introduced during the third part. Finally, numerical
examples, concerning classical tests in fluid mechanics are
reported in the last part of this paper.

2. Governing equations

The Navier–Stokes equations for a Newtonian and incompress-
ible fluid are the following:

@ui
@t � mui;jj þ ujui;j þ 1

q p;i ¼ 0 in X

ui;i ¼ 0 in X

u ¼ kud on @uX

8><
>: ð1Þ

where u and p are respectively the velocity and the pressure, ud is
the imposed velocity in the boundary @uX and q is the density. In
Eq. (1), k designates the intensity of the imposed velocity and can
be identified by the Reynolds number, denoted Re, which is defined
by using a reference length and the kinetic viscosity m. The previous
equations are written in the following operator form:

Mð _UÞ þ LðUÞ þ QðU;UÞ � kF ¼ 0 in X ð2Þ

where M is the mass matrix, LðUÞ and QðU;UÞ are respectively the
linear and quadratic operators and U is a mixed unknown vector de-
fined by:

U ¼
u

p

� �
ð3Þ

In Eq. (2), a load vector F is introduced which is identical to the
velocity imposed in the boundary @uX. For a more precise definition
of these operators, the reader can refer to Ref. [18].
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To study the stability of the Navier–Stokes equations (1), a per-
turbation vector Vfrom the steady solution US is introduced in Eq.
(2) and by neglecting the second order terms in V, the latter equa-
tion becomes:

Mð _VÞ þ LðVÞ þ QðV;USÞ þ QðUS;VÞ ¼ 0 in X ð4Þ

As US is a steady solution of the Navier–Stokes equations,
USverifies:

LðUSÞ þ QðUS;USÞ � kSF ¼ 0 inX ð5Þ

where kS is equivalent to the Reynolds number at the steady solu-
tion US.

A Hopf bifurcation occurs when two eigenvalues of the Jacobian
matrix cross the imaginary axis. So the velocity perturbation is
sought under the form:

Vðx; tÞ ¼ VðxÞ:eixt ð6Þ

where x is the frequency, V the complex eigenvector and x = (x,y) is
the position vector of any point in the flow domain X. The previous
expression is introduced into Eq. (4) which becomes, vector x being
omitted for the sake of simplicity:

ixMðVÞ þ LðVÞ þ QðV ;USÞ þ QðUS;VÞ ¼ 0 in X

Vu ¼ 0 on @uX

(
ð7Þ

where Vu designates the velocity part of the mixed unknown vector
V. The latter is given by:

V ¼ Va þ iVb ð8Þ

In the previous expression, Va and Vb are respectively the real and
imaginary part of V. Finally, by introducing relation (8) into Eq.
(7), a Hopf bifurcation point is the solution of the following system:

LðUSÞ þ QðUS;USÞ � kSF ¼ 0 in X

LðVaÞ þ QðVa;USÞ þ QðUS;VaÞ �xMðVbÞ ¼ 0 in X

LðVbÞ þ QðVb;USÞ þ QðUS;VbÞ þxMðVaÞ ¼ 0 in X

Va
u ¼ 0 on @uX

Vb
u ¼ 0 on @uX

8>>>>>>><
>>>>>>>:

ð9Þ

The previous nonlinear system is rewritten in the following
condensed form:

LðKÞ ¼ 0 in X

Va
u ¼ 0 on @uX

Vb
u ¼ 0 on @uX

8><
>: ð10Þ

where the unknown K is defined by K¼tfUS;Va;Vb; kS;xg. Addi-
tional normalization conditions have to be added to the previous
system to obtain a well-posed problem. These conditions are spec-
ified in the following sections where the methods used to compute
the unknown vector K are presented.
3. Methods for computing Hopf bifurcation points

To make this paper self-contained, let us recall the two methods
used to compute bifurcation points. The coupling between these
methods is also presented.

3.1. Direct method

The method proposed by Jepson [3] consists in solving problem
(9) with the help of the Newton method. The unknown vector K is
then sought under the following expression:

K ¼ K0 þ DK ð11Þ



where K0 is a known initial approximation and DK is the unknown
increment. The previous relation is introduced into Eq. (10) and by
neglecting the second order terms in MK, one obtains the equations
to be solved at each iteration of the Newton method:

LK0
t ðDKÞ ¼ RK0 in X

DVa
u ¼ 0 on @uX

DVb
u ¼ 0 on @uX

8><
>: ð12Þ

where LK0
t ðDKÞ and RK0 are respectively the tangent operator and

the residual vector computed at the initial point K0. These quanti-
ties are precisely defined in Appendix A.

To have a well-posed problem (25), two additional conditions
are introduced [2,3,14]:

hl;Va
ui ¼ 0

hl;Vb
ui ¼ 1

(
ð13Þ

where l is a given vector (in our case an arbitrary chosen vector) and
h�; �i stands for the euclidian scalar product. Although these nor-
malization conditions can lead to turning points (i.e. x ¼ 0 and
Va ¼ 0) [16,17], they are linear expressions and their numerical
treatment is easy to do. Discussions about such a choice are given
in Refs. [3,17].

3.2. Bifurcation indicator

In Ref. [1], the authors have proposed an indicator, the property
of which is to be null at a Hopf birfurcation point. Instead of solving
the augmented system (9), they have fixed the Reynolds number
(i.e. the steady solution US is known) and they have computed
the unknowns ðVa;Vb;xÞ which satisfied system (9) with the help
of an indicator. The steady solution is then computed indepen-
dently by using an Asymptotic Numerical Method [18]. Eq. (9)
are then replaced by the following ones:

LðVaÞ þ QðVa;USÞ þ QðUS;VaÞ � ðx0 þ x̂ÞMðVbÞ ¼ Uf in X

LðVbÞ þ QðVb;USÞ þ QðUS;VbÞ þ ðx0 þ x̂ÞMðVaÞ ¼ 0 in X

Va
u ¼ 0 on @uX

Vb
u ¼ 0 on @uX

8>>>><
>>>>:

ð14Þ

where f is a known random vector (chosen real), U is an unknown
scalar, x0 designates the initial angular frequency. In the numerical
examples presented in this paper, x0 is equal to zero. This is not a
rule and x0 can be chosen close to a critical value of the angular
frequency.

The scalar U is the bifurcation indicator. Determining a Hopf
bifurcation point consists in finding, for the steady solutions, the
values x ¼ x0 þ x̂ where U is equal to zero. The previous system
can be solved by using a Newton method for each value of the
angular frequency x. Nevertheless as the resolution of system
(14) requires the triangulation of a great size operator, the total
CPU time for the computation of U can be great. To avoid this, a
perturbation method is proposed to solve system (14). The
unknown vector X ¼ ðU;Va;VbÞ is then sought as an integro-power
series with respect to the angular frequency x̂:

X ¼ X0 þ x̂X1 þ x̂2X2 þ � � � þ x̂pXp ð15Þ

To obtain a well-formulated problem, the following addition condi-
tion is required:

kVuk2 ¼ kWu0k
2 ð16Þ

where k � k designates the euclidian norm of the vector ‘�’. The addi-
tional condition (16) is chosen to avoid numerical instabilities (see
Ref. [1] for more details). The vector Wu0 is the solution to problem
3

(14) where x ¼ 0 and U0 equal to 1. The asymptotic expansions
(15) are then inserted in Eq. (14) and with balancing terms with
identical powers of x̂, we obtain the following set of linear
equations:

Order 0 in x̂

LtðVa
0Þ �x0MðVb

0Þ ¼ U0f in X

LtðVb
0Þ þx0MðVa

0Þ ¼ 0 in X

Va
u0
¼ 0 on @uX

Vb
u0
¼ 0 on @uX

kVu0k
2 ¼ kWu0k

2

8>>>>>>><
>>>>>>>:

ð17Þ
Order p in x̂

LtðVa
pÞ �x0MðVb

pÞ ¼ Upf þMðVb
p�1Þ in X

LtðVb
pÞ þx0MðVa

pÞ ¼ �MðVa
p�1Þ in X

Va
up
¼ 0 on @uX

Vb
up
¼ 0 on @uX

Forp ¼ 1; hVu1 ;Vu0i ¼ 0

Forp P 2; hVup ;Vu0 i þ
Pp�1

r¼1
hVuðp�rÞ ;Vur i ¼ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð18Þ

The linear sytems (17) and (18) all have the same operator. So
only one triangulation and ðpþ 1Þ foreward/backward substitu-
tions permit the computation of the solution (15). In the previous
systems, the tangent operator Lt is the one which is defined in Eq.
(27) in Appendix A. The validity range of these asymptotic
expansions, which means the maximum value of x̂, is determined
by a simple criterion introduced in Ref. [13] and recalled in Appen-
dix B.

From this maximum value of x̂, one can compute a new initial
value x0 and by applying this scheme in a step-by-step manner,
the indicator U can be determined for any value of x . To increase
the validity range of asymptotic expansions and then decrease the
number of operator triangulations, the polynomial expansions (15)
are replaced by equivalent rational ones, called Padé approximants
[19]:

XPad�e;pðx̂Þ � X0 ¼
Xp�1

k¼1

Pðp�1�kÞðx̂Þ
Q ðp�1Þðx̂Þ

x̂kXk ð19Þ

where Pk and Qk are polynoms of degree k. One can remark that all
the fractions in (19) have the same denominator Qk. This represen-
tation has been tested and evaluated in Refs. [20,21] and is gener-
ally preferred to limit the number of roots of the Padé’s
denominator, the so-called ‘‘poles” of Padé approximants.

To compute the entire response indicator versus frequency, de-
noted by GReðU;xÞ, a continuation method based on the Padé
approximants and first proposed by Elhage-Hussein et al. [22] is
used. As for the polynomial expansions, the computation of the
validity range of these rational fractions is recalled in Appendix
B. The latter is the only difference between the method proposed
in Ref. [1] and the indicator used in this work. Numerical compar-
isons between these two representations are done in the first part
of the numerical section (see Section 5.2).

With the previous relations, the curves GReðU;xÞ are computed
for a fixed value of the Reynolds number. The determination of
Hopf bifurcation points consists in finding where x leads to a null
value of the scalar U on these curves. In practice, it consists in



following the minimas of the function GReðU;xÞ and then esti-
mates the critical numbers of the flow where a Hopf bifurcation
appears.
3.3. The proposed algorithm

The computation of a Hopf bifurcation point with the presented
direct method in Section 3.1, requires an initial approximation of
K0 which is relatively close to the solution to ensure the conver-
gence of the Newton method. The bifurcation indicator, introduced
in the previous section, allows one to obtain an estimation of the
critical values of the flow. Thus we propose the following algorithm
for the computation of the Hopf bifurcating point:

0. Set the parameters of the method:

(a) The area of interest for the Reynolds number: Re 2 [Re1,

Re2].
(b) The order of truncation of the asymptotic expansions: p

(expression (15)). In practice p is between 15 and 20.
(c) The number of steps, ns, in the continuation technique

[22] (the range of interest for the perturbation parame-
ter x̂).

(d) The maximum number of iterations for the Newton
method (relations (25)).
1. Compute the steady solution US
0 and the corresponding Rey-

nolds number, Re. In this work, it is done with the help of
ANM [18].

2. If Re 2 [Re1, Re2], then:
– Indicator phase, for step j ¼ 1; . . . ;ns.

2.1 Computation of the Uj
p and Vaj

p and Vbj

p with the expres-
sions (18).

2.2 Evaluation of the validity range of the Padé approximants
with the criterion defined in Ref. [22] and Appendix B.
This means computing the maximum value of the pertur-
bation parameter x̂, denoted x̂max.

2.3 Build the Padé approximants with the expressions (19)
and x̂max .

2.4 Continuation technique: xj
0 ¼ xj�1

0 þ x̂max; Vaj

0 ¼ Va
Pad�eðx̂

maxÞ; Vbj

0 ¼ Vb
Pad�eðx̂maxÞ.

– Direct method phase
3.1 Iterations of the Newton method (relations (25) and (13)),

with US
0; Va

0; Vb
0 and x0 coming from steps 2.1 to 2.5 until

convergence or the maximum number of iterations
reached.

To summarize, the bifurcation indicator gives an initial approx-
imation K0 to the direct method during steps 2.1–2.5 of the previ-
ous algorithm. We will show in the numerical section how these
initial values can be chosen in the best manner.
4. Spatial discretization

Spatial discretization of the previous equations are performed
by using the classical finite element method. The chosen finite ele-
ment is a quadrilateral element, with 9 nodes for the velocity (bi-
quadratic interpolation) and 3 for the pressure (linear interpola-
tion) [23]. The continuity equation is solved by using a penalty
method [23]. In the following and for the sake of simplicity, dis-
crete and continuous quantities have the same names.

The finite element formulation applied to expressions (12) and
(13) leads to a linear system with a matrix which has a size
ðR3nþ2 � R3nþ2Þ (where n is the number of degrees of freedom).
The triangulation of such an operator leads to a very long compu-
tational times. Therefore to avoid a large amount of computational
time, the system (12) is solved in a two-step method [2]. Firstly,
4

the stationary solution, DUS, is looked for under the following
form:

DUS ¼ aþ Dkb

with a ¼ K�1
t � R

S and b ¼ K�1
t � F

(
ð20Þ

The previous relation is the discrete form of the linearized station-
ary Navier–Stokes Eq. (5) and Kt is the corresponding tangent ma-
trix. Let us precise that this tangent matrix is the discrete form of
the tangent operator defined in Eq. (27) in Appendix A.

Secondly, vectors a and b are substituted in the discrete expres-
sion of Eq. (12) which can be written:

½KtðK0Þ�fDCg ¼ fRK0g ð21Þ

where ½KtðK0Þ�; fDCgand fRK0g represent respectively the tangent
matrix, the unknown vector and the residual computed at the initial
value K0. The tangent matrix ½KtðK0Þ� is approximatively the discrete
form of the linear sytem (25) defined in Appendix A. In fact, the first
equation (the stationary part) in Eq. (25) is removed and the station-
ary unknown, DUS, is modified according to the expression (20).

The unknown vector fDCg is defined by the following
expression:

fDCg¼tfDk; DVa; DVb; Dxg ð22Þ

The computation of the vector fDCg is performed by the factoriza-
tion of the operator ½KtðK0Þ�. As the size of this operator is
ðR2nþ2 � R2nþ2Þ, the computation cost is cheaper than the initial
ones. Finally, the stationary part, DUS, of the vector DK is deter-
mined by introducing Dk in the Eq. (20).

For the bifurcation indicator, the discrete linear system at the
truncature order p (18) is written:

Kt �x0M
x0M Kt

� � Va
p

Vb
p

( )
¼

Upf þMVb
p�1

�MVa
p�1

( )
ð23Þ

where M is the discrete mass matrix. Solving system (23), associ-
ated with the additional condition (16) written at the order p, gives
all the unknowns Va

p;V
b
p;Up

� �
. For all these linear systems, only one

matrix triangulation is needed and ‘p’ backward and forward substi-
tutions. As the size of this matrix is approximatively the same as
that of the Newton method, this means that the computation of
one step of the indicator requires the same computational times
as a single iteration of the direct method. By using relation (19),
one can build an analytical part of the curves GReðU;xÞ. The entire
curves, GReðU;xÞ, are computed by using a continuation method
based on the Padé approximants [22].

5. Numerical results

5.1. Numerical examples

The numerical tests presented in this paper are classical ones
but have the advantage of presenting Hopf bifurcations which
are relatively well-known. Hence, one considers two examples.
The first one is the flow around a cylinder. This example is the
same as in Ref. [2] excepted for the boundary conditions. Indeed,
in this work, the outflow condition is a Dirichlet condition whereas
in Ref. [2] a stress boundary condition is imposed. In fact, this
Dirichlet condition can lead to spurious oscillations of the solu-
tions. Nevertheless, as the considered Reynolds are relatively small
(between 23 and 54), these spurious oscillations have not been ob-
served in all our numerical computations. Let us remark that for
higher Reynolds numbers, a stress boudary condition has to be im-
posed in the outflow. The second one is the lid-driven cavity. For
this problem, several geometrical cases or aspect ratios A are stud-
ied in this paper (see Table 1).



Table 1
Mesh sizes used for the numerical tests.

Example Aspect ratio Number of d.o.f.

Flow around a cylinder – 6112

Lid-driven cavity A = 0.8 20.402
A = 1.0 13.122
A = 1.5 13.122

Table 2
Comparison of the critical parameters for the first Hopf bifurcation from the
literature. The following acronyms EC, DNS, NM respectively stand for eigenvalue
computation, direct numerical simulations and Newton method. The considered
example is the flow around a cylinder.

Authors Rec Stc Method

Jackson [2] 46.184 0.137 NM
Cossu and Morino [25] 45.63 0.112 EC
Kumar and Mittal [26] 46.88 0.116 DNS and EC
Ding and Kawahara [27] 46.389 0.126 EC
Morzynski et al. [28] 47 0.132 EC
This study 45.98 0.137

Table 3
Comparison of the critical parameters for the first Hopf bifurcation from the
literature. The following acronyms EC, POD, DNS, NM, LE respectively stand for
eigenvalue computation, proper orthogonal decomposition (associated to the com-
putation of the eigenvalues of the reduced system), direct numerical simulations,
Newton method, Lyapunov exponent. The considered example is the lid-driven cavity
with A = 1.

Authors Rec Stc Method

Fortin et al. [5] 8000 0.45 EC
Boppana and Gajjar [6] 8026.6 0.4497 EC
Polishenko and Aidun [17] 7763.4 0.45 NM
Bruneau and Saad [29] 8000–8050 – LE
Peng et al. [30] 7402 0.59 DNS
Abouhamza and Pierre [31] 8004.5 – EC
The geometrical description of these examples and the bound-
ary conditions are shown in Figs. 1 and 2 respectively for the flow
around a cylinder and the lid-driven cavity. As discussed previ-
ously, the finite element used in the numerical tests is a quadran-
gle with nine velocity nodes and three for the pressure. The
number of d.o.f. for the numerical tests is given in Table 1.

We give in Tables 2 and 3 the critical Reynolds and Strouhal
numbers reported by various researchers, respectivevly for the
flow around a cylinder and the lid-driven cavity with an aspect ra-
tio A equal to 1. We also indicate in these tables, for all the refer-
ences, the numerical method used to characterize a Hopf
bifurcation point. One can remark in these tables that, most of
the works are based on an eigenvalue computation (EC in the Ta-
bles 2 and 3). In the latter and concerning the eigenvalue compu-
tation we do not distinguish the kind of eigensolution method
used in the different references. For example, in Ref. [28] a sub-
space iteration is used, in Ref. [25] it is a classical QR algorithm
P1l=10

(Ux=1,Uy=0)

(Ux=1,Uy=0)

x

y

(Ux=1,Uy=0)

D = 1

L = 20

l’ = 5

Fig. 1. Flow around a cylinder, description of the geometry.

y=0
1=x0=x

y=A

(u=0,v=0)

(u=0,v=0)

(u=0,v=0)

(u=1,v=0)

Fig. 2. Geometry for the 2-D lid-driven cavity flow.

Gervais et al. [32] 7960 0.45 EC
8040 0.45 EC

Tiesinga et al. [33] 8375 0.4399 EC
Cazemier et al. [34] 7819 0.61 POD

7972 0.45 DNS
Auteri et al. [35] � 8018 0.4496 DNS
This study 7890 0.44
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and in Ref. [6] the eigenvalue problems is solved with an Arnoldi
package. In Ref. [34], the authors have also computed the eigenso-
lutions of the linearized perturbed Navier–Stokes equations.
Nevertheless, a low order model (POD) is used to reduce the size
of the Jacobian matrix.

One should remark that in Ref. [2], an eigenvalue computation
is also realized (inverse iteration method) to give an initial guess
for the Newton method. In Ref. [17], the Hopf bifurcation point is
also computed with the help of a Newton method, but this time,
the starting values for the iterative method are obtained with a
time dependant Navier–Stokes simulation. From these tables, one
can note that in a few works, a direct numerical simulation of
the time dependant Navier–Stokes equations has been done. This
is mainly due to the fact that this kind of technique requires a great
amount of CPU time to localize precisely the bifurcation point.
Finally, in Ref. [29], the stability of the flow is studied by comput-
ing the first Lyapunov exponent of the linearized problem.

For these two classical benchmarks in the numerical study of
flow stability, the literature’s results presented in Tables 2 and 3
show that all the studies give approximatively the same critical
Reynolds and Strouhal numbers. Hence, for the flow around a cyl-
inder, the Hopf bifurcation occurs for a Reynolds and a Strouhal
number respectively between [45–47] and [0.112–0.137]. For the
lid-driven cavity, the Hopf bifurcation point is found for a Reynolds
number included in the range [7400–8400] and the corresponding
critical frequency is close to 0.45. In Ref. [34], the found critical
Strouhal number is greater than the other works reported in Table
3. This difference is explained by the fact that the small dynamical
system (from which an eigenvalue computation is done) is ob-
tained with a time dependant simulation realized at a Reynolds
number equal to 22,000.



In the following, we first propose to give some explanations on
how the bifurcation indicator [1] works. Next, we compare the
computing performances obtained with the first version of the
indicator [1] and the one based on the Padé approximants. In the
following section, we show how this indicator is linked to the
Newton method (see Section 3.1) to give an efficient algorithm
for the computation of Hopf bifurcation points. A section is also de-
voted to the computational times of the proposed method. The
proposed algorithm is then applied to the lid-driven cavity with
geometrical aspect ratio equal to 0.8 and 1.5. In the last part of this
numerical section, we show that the coupled method can easily
give some supplementary Hopf bifurcation points.

5.2. Bifurcation indicator

We first propose to give some explanations about the bifurca-
tion indicator presented in Section 3.2 and in Ref. [1]. We then con-
sider the flow around the cylinder. The critical numbers for this
flow are Rec = 45.98, xc ¼ 3:97 [1] and the corresponding Strouhal
 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10  12

In
di

ca
to

r

Pulsation

Φmini =0.42

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8  9

In
di

ca
to

r

Pulsation

Φmini =0.0029

Fig. 3. Indicator versus angular frequency, curves GReðU;xÞ. The dashed lines indicate th
flow around a cylinder.
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number is equal to Stc = 0.137. Jackson [2] has found, for this exam-
ple, the following values: Rec = 46.184 and Stc = 0.138. The Strouhal
number is computed from the following expression:

St ¼ D �x
2pu

ð24Þ

where u is the imposed velocity (see Fig. 1) and D is the cylinder
diameter. To understand how the indicator, U, works we have com-
puted it for a Reynolds number Re 2 ½20;60�. The curves GReðU;xÞ
for four values in the range of Reynolds numbers are shown in
Fig. 3. We indicate for each curve, GReðU;xÞ, the minimum value
of the indicator U. One can see in these curves that the minimum
of the indicator decreases when we get closer to the critical Rey-
nolds and increases when we get farther from this value. Indeed
the minimum is equal to 0.42 for Re = 23.05, 0.19 for Re = 32.41,
0.0029 for Re = 45.60 and 0.04 for Re = 54.92, which means that,
according to the conclusions presented in Ref. [1] there is a Hopf
bifurcation point between the Reynolds number 32.41 and 54.92.
So to determine precisely this critical value one has to compute
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supplementary curves GReðU;xÞ for some Reynolds numbers in this
range. From these computations, one has to determine a new range
of Reynolds number where the indicator is minimum and so on
until this minimum reaches a fixed user given tolerance.

In Table 4, we give, for each Reynolds number considered in
Fig. 3, the number of steps and the final value of the parameter
x reached. We consider the polynomial approximation (15) and
the Padé approximants (19). The truncature order p is fixed and
equal to 20 according to the conclusions of previous studies about
ANM [24]. In fact, in Table 4 we have fixed the number of steps of
the Padé approximants to 20 and we give the number of steps de-
manded with the polynomial representation to reach the same fi-
nal value of x. In this table, one can remark that the number of
steps demanded with the Padé approximants is always smaller
than with the polynomial representations.

To illustrate greater step lengths obtained with the Padé
approximants, we have plotted in Figs. 4 and 5 the evolution of
the indicator versus the angular frequency (for a Reynolds number
equal to 39.01). In these figures, the square symbol indicates the
starting point X0 of the asymptotic expansions (15). These starting
points are determined by using expression (30). In these figures,
the reference curve is the one obtained with the continuation
method. In these curves, Fig. 5 being an enlarged view of Fig. 4,
we have plotted for the second continuation point the evolutions
Table 4
Number of steps to compute the indicator by using the polynomial representation
(15) or with the Padé approximants (19). The order of truncature p is equal to 20. The
considered example is the flow around a cylinder.

Re Number of steps x reached

Pade 23.05 20 10.16
Poly 26 10.17

Pade 32.41 20 8.71
Poly 24 8.74

Pade 39.01 20 6.75
Poly 23 7.21

Pade 45.60 20 4.00
Poly 24 4.00

Pade 54.92 20 8.20
Poly 23 8.23
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of the polynomial approximations (15) and of the Padé approxi-
mants (19).

One can clearly see in these figures that the solution obtained
with the Padé approximants is closer to the reference curve for
greatest values of the angular frequency than with the polynomial
approximations. It shows that the range of validity of the Padé
approximants is generally greater than the one obtained with the
polynomial approximations. Each step of the continuation method
needs a single matrix triangulation (Eq. (23)) and p backward/fore-
ward substitution. The points where a matrix triangulation is real-
ized are indicated by square symbols in Figs. 4 and 5. We have
reported in Table 5, the CPU time needed for the computation of
one step of the indicator. One considers the CPU time for the
matrix triangulation, for the computation of the solution of the
p linear systems (18) and for the construction of the Padé approx-
imants (19). These times are given for the flow around a cylinder
and the lid-driven cavity, respectively denoted by Examples 1
and 2 in Table 5. In the latter, one can see that the largest CPU time
of one step of the perturbation method is for the matrix
triangulation. The computation of all the unknows Xp requires
approximatively 30% and 14% of the total CPU cost respectively
for Examples 1 and 2. This short CPU time is due to the fact that
the matrix triangulation is done only once, for the order of trunca-
ture equal to 0, and for the supplementary unknowns (for p P 1),
only forward and backard substitutions are required. Concerning
the Padé approximants, Table 5 illustrates the fact that the CPU
time for the construction of the rational fraction (19) is insignifi-
cant compared to what it needed for a matrix triangulation. Finally
Table 5
CPU time (in second) for one step of the indicator computation. The truncature order
is equal to 20. Examples 1 and 2 designate respectively the flow around a cylinder and
the 2-D lid-driven cavity. Computations are realized on a workstation DELL Precision
490.

Example 1 (6112
d.o.f.)

Example 2 (13 122
d.o.f.)

Matrix triang 7.3 58.67
Computations of all the

Xp

2.83 9.64

Padé approximants 0.04 0.07

Total 10.13 68.31



as the Padé approximants lead to larger step sizes than with the
polynomial approximations, the CPU computing times to deter-
mine the indicator curves GReðU;xÞ is then reduced. This is an
improvement of the bifurcation indicator compared to the ones
previously presented in Ref. [1]. Comparisons of the computational
cost between the indicator proposed in Ref. [1] and the method
proposed in this work are realized in the following section.

Another important feature of the indicator curves is that, for a
fixed number of steps, the maximum value of x decreases when
a bifurcating point is close. For example, in Table 4, one can see
that for a Reynolds number equal to 23.05 with 20 steps and the
Padé approximants, we get a maximum value of x equal to
10.17, whereas for a Reynolds number equal to 45.60, the curve
GReðU;xÞ is computed only up to x ¼ 4. In fact, the nonlinear
curve GReðU;xÞ is less regular when a bifurcation point is close
to the considered Reynolds number. This is mainly due to the def-
inition (16). Let us recall that this definition has been introduced in
Ref. [1] to avoid numerical instabilities. In the following results, the
Padé approximants are always the representation used for the
computation of the curves GReðU;xÞ.

We now propose to associate the direct method presented in
Section 3.1 by taking the initial values from the curves GReðU;xÞ.

5.3. Results with the proposed algorithm

We consider the same example as before (flow around a cylin-
der). For each curve GReðU;xÞ shown in Fig. 3, we choose initial
values for the augmented system (12). It is quite easy to define
these initial values. Indeed, as the perturbation method gives ana-
lytic solutions, one has to choose a value x on the curves GReðU;xÞ
and by introducing the chosen value in expressions (19), one ob-
tains initial values for the Newton method. This has been done
for the four value of the Reynolds number in the case of the flow
around a cylinder. For a Reynolds number equal to 23.05 (Fig. 3a,
no chosen value x on this curve leads to a convergence of the
Newton algorithm. For the other values of the Reynolds number,
the area in x for which the Newton method converges is plotted
in dashed lines in Fig. 3. The closer the critical Reynolds number
is, the wider the convergence area is.

In Fig. 6, we plot the number of necessary iterations to get the
required accuracy with the Newton algorithm for the values of x
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highlighted in Fig. 3 by dashed lines. Obviously the minimum num-
ber of iterations is obtained when the Reynolds number is equal to
45.60. Nevertheless, one can remark that each curve GReðU;xÞ
gives initial values leading to the convergence of the Newton
method. Moreover, if on each curve GReðU;xÞ, one chooses as an
initial guess the value of x for which the indicator U is minimum,
the Newton method converges to the critical numbers of the flow
which are Rec = 45.98 and xc ¼ 3:972 (Stc = 0.137). These critical
values are very similar to those found in the literature and reported
in Table 2.

We now consider the 2-D lid-driven cavity with an aspect ratio
A equal to 1. We have computed the indicator curves, GReðU;xÞ, for
Reynolds numbers between 6000 and 11,000. The evolution of the
indicator versus the Strouhal number for four values of the
Reynolds number included in the studied range is plotted in
Fig. 7. This example is interesting because the curves, GReðU; StÞ,
show a lot of minima of the indicator, U, for Stc in [0; 0.8]. More-
over, these minima change with the Reynolds number. For exam-
ple, when Re = 7257 the minimum of the indicator is reached for
Stc close to 0.27, whereas when Re = 8089 it is for Stc = 0.44. These
values are summarized in Table 6. For each minimum value of the
curves GReðU; StÞ, the direct method is used to determine precisely
the critical values of the flow. The number of iterations of the New-
ton method and the found critical numbers are given in Table 6.

For this example, the first Hopf bifurcation is found for a
Reynolds number and a Strouhal number respectively equal to
7890 and 0.44. These critical values are close to the ones found
in the literature, see for example Table 3 or the Ref. [6] where a
great number of works on this numerical test are summarized.
To prove that our results correlate well with those of the literature,
we plot in Fig. 8 the streamlines of the stationary solution (at
Re = 7890, Fig. 8a) and of the real and imaginary parts of the critical
eigenvector (respectively Fig. 8b and c). These figures are quite
similar to those presented in Refs. [5,6,31].

5.4. Computational costs

This section is devoted to the comparison of the computational
cost needed by the proposed method and the indicator presented
in Ref. [1]. We consider the two previous examples: the flow
around a cylinder (denoted by Example 1) and the lid-driven cavity
(denoted by Example 2). These computational cost are given in
Table 7. In this table, we give the number of matrix triangulations,
N1, (which is the most time consuming operation in both methods)
needed for each method and the corresponding CPU times. For the
proposed method, the estimation of the CPU times is easy to do. For
example, let us consider the flow around a cylinder (Example 1)
with an initial Reynolds number equal to 39.01 (Reini = 39.01 in
Table 7). To compute the initial guesses for the Newton method,
the indicator phase requires 20 steps of the perturbation method
(according to the results presented in Table 4. From this
computation, the number of Newton iterations to converge (with
the following required accuracy kRSk < 10�4; kRak < 10�8 and
kRbg < 10�8) towards the Hopf bifurcation point is equal to 5 (see
Fig. 6). The total number of triangulated matrix to determine
precisely the critical values of the flow is then equal to 25 (20 for
the indicator phase and 5 for the Newton method). By taking into
account this number of matrix triangulations and the CPU times gi-
ven in Table 5 for each step of the proposed method, the total com-
putational cost can be estimated. Let us point out that, as the
tangent matrix of the Newton method has approximatively the
same size as the one of the indicator phase, we consider the same
computational times for both methods.

The computational times needed to compute the bifurcation
point when only indicator calculi are realized (as initially proposed
in Ref. [1]) are now considered. These computational times are
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Table 6
Critical parameter values obtained with several initial values. Convergence of the
Newton method for the following accuracy: kRSk < 10�4 ; kRak < 10�8 and
kRbk < 10�8. ‘NC’ means no convergence of the Newton method after 20 iterations.
The considered example is the lid-driven cavity, A = 1.

Reini Stini Umini Nb iterations Rec Stc

6332.42 0.27 0.65 NC
7257.45 0.27 0.508 NC
7672.70 0.44 0.45 5 7890.29 0.44
8089.12 0.44 0.39 4 7890.28 0.44
8488.05 0.52 0.29 5 8829.59 0.52
8888.08 0.52 0.04 4 8829.59 0.52
9296.59 0.34 0.26 6 11286.55 0.33
9706.36 0.34 0.206 7 11286.55 0.33

10147.27 0.34 0.14 6 11286.55 0.33
10589.87 0.33 0.088 6 11286.55 0.33
more difficult to estimate than with the proposed method. As ex-
plained in Section 5.2, for Example 1, the minimum of the indicator
decreases when we get closer to the critical Reynolds number and
9

increases when we get farther from this value. This indicates that a
Hopf bifurcation occurs between the tested Reynolds numbers. It
means that the indicator needs at least three computations of the
curve GReðU; StÞ (for three Reynolds numbers) to suggest that a
Hopf bifurcation is in this range of Reynolds numbers. With these
three computations, the indicator does not give a precise value for
the critical values of the flow (especially for the Reynolds number).
Indeed, these critical values are (Rec = 45.6, Stc = 0.137) and
(Rec = 8089, Stc = 0.44) respectively for the flow around and the
lid driven cavity. To compute more precise values of these critical
values, supplementary indicator calculi have to be done in this
range of Reynolds numbers. Finally, if with the indicator, the same
accuracy as with the proposed method is required this can lead to a
great number of computed indicator curves and consequently to a
large computational cost. So in Table 7, the minimum computa-
tional cost is given that permits one to prove with the indicator
that a Hopf bifurcation exits in the studied range of Reynolds num-
bers. These computational costs are established by taking into ac-
count the results presented in Figs. 3 and 7 respectively for the
Examples 1 and 2. With the results presented in Table 7, one can



Fig. 8. Streamlines for the lid-driven cavity, A = 1, at Re = 7890. The Strouhal Number is equal to 0.44.
clearly see that the proposed method leads to lower CPU times
than the indicator proposed in Ref. [1]. So the proposed hybrid
method is a real improvement of the indicator presented in Ref. [1].

5.5. The lid-driven cavity with aspect ratio, A = 0.8 and A = 1.5

We now consider the lid-driven cavity with a geometric param-
eter A equal to 0.8 and 1.5. The number of references concerning
10
these two examples is relatively small compared to case A = 1.
The found critical parameters for these values of parameter A are
summarized in Table 9. The computations are done in the same
manner as before. First the curves GReðU; StÞ are computed. Next
the minimum of the indicator is automatically detected on this
curve and is finally used as an initial guess for the Newton method.
One considers first that case A is equal to 0.8. For this example, the
following critical numbers corresponding to the first Hopf



Table 7
Comparison of the estimated CPU time to compute the first bifurcation point with the
indicator[1] and the proposed method according to the CPU time given in the Table 5
and the number of Newton iterations shown in Fig. 6 and in Table 6. N1 is the number
of matrix triangulation needed and T1 is the CPU time. Examples 1 and 2 are
respectively the flow around a cylinder and the lid-driven cavity with A = 1.

Method N1 T1 (s)

Example 1 Indicator [1] Re 2 [39.01, 54.92] 3 � 20 610
This study Reini = 39.01 20 + 5 254

Reini = 45.6 20 + 4 244
Reini = 54.92 20 + 5 254

Example 2 Indicator [1] Re 2 [7257, 8089] 63 + 66 + 68 13,470
This study Reini = 7672.7 66 + 5 4806

Reini = 8089 68 + 4 4885

Table 8
Comparison of the critical parameters for the first Hopf bifurcation from the
literature. The following acronyms EC and NM respectively stand for eigenvalues
computation and Newton method. The considered examples are the lid-driven cavity
with A = 0.8 and A = 1.5.

Aspect ratio Authors Rec Stc Method

A = 0.8 Polishenko and Aidun [17] 5225 0.35 NM
This study 5698 0.31

A = 1.5 Boppana and Gajjar [6] 5326 0.34 EC
Polishenko and Aidun [17] 7216 0.44 NM
Abouhamza and Pierre [31] 5674 0.49 EC
This study 7769 0.239
bifurcation, Rec = 5698 and Stc = 0.31 (see Table 9), are found. In
Ref. [17] (see also results in Table 8), the authors have mentioned
Fig. 9. Streamlines for the lid-driven cavity, A

11
a critical Reynolds number equal to 5225 and an adimensional fre-
quency close to 0.35. These results are quite different from those
found in our study. However, by comparing the streamlines of
= 0.8 plotted at Re = 5698 and Stc = 0.31.



the stationary solution (at Rec = 5698) for both real and imaginary
parts of the eigenvector found in this work (see Fig. 9) and those of
Ref. [17], one can clearly say that it is the same Hopf bifurcation
point.

Concerning A = 1.5, the present algorithm gives a critical Rey-
nolds number equal to 7769 and a corresponding Strouhal number
equal to 0.239 (Table 9). For this example, Polianshenko and Aidun
Fig. 10. Streamlines for the lid-driven cavity, A

12
[17] have found Rec = 7216.9 and Stc = 0.44 whereas Boppana and
Gajjar [6] have mentioned critical Reynolds and Strouhal numbers
equal respectively to 5326.9 and 0.34 (see also results in Table 8).
Once more, if the stationary solution, the real and the imaginary
parts of the eigenvector at this critical Reynolds number are com-
pared (see Fig. 10) to those shown in Refs. [6,17], one comes to the
same Hopf bifurcation points.
= 1.5 plotted at Re = 7769 and Stc = 0.24.



Table 10
Results from the literature for the second and the third Hopf bifurcation points. The
considered example is the lid-driven cavity with A = 1.

Authors Rec Stc

Tiesenga et al. [33] 8375–8875 0.6
8875–9375 0.52
8875–9375 0.7

Cazemier et al. [34] 8214 1.16
10,116 –
11,175 –

Auteri et al. [35] 9765 0.27
Nevertheless, Boppana and Gajjar [6] also reported a difference
between the critical numbers they have found and the other works
of the literature. The previous authors explain these differences by
the fact that the number of computations done for these examples
is relatively small (the case A = 1.5). We have performed supple-
mentary computations with other grid sizes (smaller and larger)
and the critical numbers are quite similar to those reported in this
paper. In conclusion, the values of the critical numbers for these
two examples seem to remain an open question.

The results presented in Tables 6 and 9 show an interesting task
when using the proposed algorithm to determine Hopf points. Let
us consider, for example, case A = 1.5 (Table 9). For this test, six ini-
tial values give the same bifurcation point (Rec = 7769 and
Stc � 0.24). These six initial guesses have approximatively the
same value for the frequency, but are quite different for the Rey-
nolds number. It shows that the bifurcation indicator can give good
initial values on the stationary solution, even if the initial Reynolds
numbers are far from the critical values. Moreover, results pre-
sented in Table 9 show that this is true for initial values before
and after the critical Reynolds number. This is very interesting, be-
cause it means that with the indicator, we do not have to check any
sign change of a function before performing the Newton method.
5.6. Additional bifurcation points

Another important feature concerning this work is the ability of
the proposed algorithm to detect several bifurcation points. Indeed
as the proposed algorithm is entirely automatic, the minimum on
the curves GReðU; StÞ is computed automatically and evolves with
the Reynolds number. So in this section, we present for the previ-
ous considered examples the second and the third (if it is found)
Hopf bifurcation points. For the sake of simplicity, we characterize
them as Hopf bifurcation points because these points are solutions
of the nonlinear system (9). Few works give critical numbers for
the second and following Hopf bifurcations.

We consider the lid-driven cavity with the three previous as-
pect ratios A. The results concerning A = 1 are given in Table 6
and in Table 9 for A = 0.8 and A = 1.5. In Table 6, one can see that
the second and the third bifurcations are respectively found for
Rec = 8829, Stc = 0.52 and Rec = 11,287, Stc = 0.33. If these results
are compared with those found in the literature (see Table 10)
one can remark that few results correlate well with our results
or with each other. Sometimes, the critical Reynolds and frequency
numbers are quite similar but the bifurcation is not the same (see
results of Tiesanga et al., Table 10, for 8875 < Rec < 9375 and
Stc = 0.52 for the third bifurcation point). At other times, the
Reynolds number and the frequency do not correspond. Even if
the physical signification of these bifurcation points can be dis-
Table 9
Critical parameter values obtained with several initial values. Convergence of the
Newton method for the following accuracy: kRSk < 10�4; kRak < 10�8and
kRbk < 10�8. ‘NC’ means no convergence of the Newton method after 20 iterations.
The considered example is the lid-driven cavity.

Reini Stini Nb iterations Rec Stc

A = 0.8 6023.72 0.31058 4 5698.57 0.31239
6549.52 0.41938 4 6308.61 0.420738
7079.31 0.52311 4 6707.58 0.524798

A = 1.5 3077.77 0.00157 NC
3658.37 0.26426 9 7769.67 0.23941
4246.35 0.26141 11 7769.67 0.23941
5070.06 0.25644 7 7769.67 0.23941
5902.49 0.25098 8 7769.67 0.23941
7025.93 0.24352 7 7769.67 0.23941
8158.78 0.23768 6 7769.67 0.23941
9547.93 0.31275 6 10335.39 0.30919
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cussed, the present method can easily and automatically give more
than one bifurcation point.

Concerning the two other aspect ratios A, no results are re-
ported in the literature. Thus, we just give, for information, the crit-
ical values found for the second and the third Hopf bifurcations in
Table 9.
6. Conclusion

In this paper, we propose an algorithm to compute Hopf bifur-
cation points in fluid mechanics. This algorithm is based on the
coupling of an indirect method (a bifurcation indicator presented
in Ref. [1]) and a direct one (a nonlinear augmented system solved
by the well-known Newton method). The bifurcation indicator pre-
sented in this paper is improved by using the Padé approximants
which lead to less matrix triangulations and consequently saving
computational times.

The bifurcation indicator gives initial values for the direct meth-
od. As these initial values are the minima values of the indicator U,
they can be computed automatically and are easily taken as initial
guesses for the Newton method. Several numerical examples ema-
nating from classical benchmarks in fluid mechanics have shown
the efficiency of the proposed algorithm. Indeed, the bifurcation
indicator gives initial conditions which permit a fast convergence
of the Newton method. As the minimum on the curves GReðU; StÞ
evolves with the Reynolds number, several bifurcation points can
be easily computed. The advantage of the present algorithm is that
these Hopf bifurcation points are automatically determined. In
comparison with other methods, with the proposed algorithm
the user does not have to check if a test function becomes null,
the computation of the minima on the curves GReðU; StÞ is auto-
matically done and finally the Newton method starts with good
initial values to determine the singular points. The drawback lies
in the fact that the method is based on the detection of the mini-
mum of the curves GReðU;xÞ in a range ½0;xmax�. So the user has
to define, from the beginning, the range of interest in x for which
a bifurcation can appear. This value of xmax is the only user param-
eter which seems to be difficult to define to avoid missing a bifur-
cation point.

Moreover, with the proposed method one can not certify, with-
out doing a lot of computations, that the found critical values cor-
respond to the first bifurcation point. Whereas, by computing the
eigenvalues of the Jacobian matrix, this can be asserted.

The proposed method lies on the computation of at least one
indicator curve, GReðU; StÞ. The computation cost of this curve can
be great (see the results in Table 7). This is a drawback of the pro-
posed method if, for example, 3D flow are investigated. Neverthe-
less, this computational cost can be decreased by using either
reduced order models for example or a linear solver which is
well-adapted to repeated right-hand side problems [38] such as
the ones defined in Eqs. (17) and (18). Application of these tech-
niques to the proposed method is a subject of current studied.



Future works also concern the use of a high order iterative
method [36,37] instead of the Newton one. The main objective will
be to decrease the number of matrix triangulations to compute
precisely the bifurcation points.

Appendix A. Details on the direct method

In this appendix, we present the direct method used in this
work. During one iteration of the Newton method, one has to
determine the unknown increment, DK, which is the solution of
the linearized system (12). This sytem written in a condensed form
in the core of this paper is precisely defined by the following
relations:

LtðDUSÞ � DkF ¼ RS in X

LtðDVaÞ þ QðVa
0;DUSÞ þ QðDUS;Va

0Þ �x0MðDVbÞ
�DxMðVb

0Þ ¼ Ra in X

LtðDVbÞ þ QðVb
0;DUSÞ þ QðDUS;Vb

0Þ þx0MðDVaÞ
þDxMðVa

0Þ ¼ Rb in X

DVa
u ¼ 0 on @uX

DVb
u ¼ 0 on @uX

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð25Þ

where RS; Ra and Rb are respectively the steady residual, the real
and the imaginary ‘‘dynamic” residual. Lt is a tangent operator.
The residual quantities are defined by the following expressions:

RS ¼ �LðUS
0Þ � QðUS

0;U
S
0Þ þ kS

0F in X

Ra ¼ �LðVa
0Þ � QðVa

0;U
S
0Þ � QðUS

0;V
a
0Þ þx0MðVb

0Þ in X

Rb ¼ �LðVb
0Þ � QðVb

0;U
S
0Þ � QðUS

0;V
b
0Þ �x0MðVa

0Þ in X

8><
>: ð26Þ

In the relations (25), the tangent operator Lt has been introduced.
This operator is defined by:

Ltð�Þ ¼ Lð�Þ þ Qð�;US
0Þ þ QðUS

0; �Þ ð27Þ
Appendix B. Range of validity of asymptotic expansion and Padé
approximants

Once the polynomial approximation (15) is computed by solv-
ing the linear sytems (17) and (18), one have to define its range
of validity. This forwards defining a new starting point inside this
domain of validity and finally by reapplying the perturbation
method from this point to determine the following part of the
solution.

In the case of polynomial approximation, a very simple criterion
has been proposed in Ref. [13]. The idea is to require that the
difference between two consecutive order solutions is smaller than
a chosen small parameter � (typically 10�3

6 � 6 10�6):

kVaðNÞ � VaðN � 1Þk
kVaðNÞ � Va

0k
¼ kx̂NVa

Nk
kx̂Va

1 þ � � � þ x̂NVa
Nk
6 � ð28Þ

where VaðNÞ is the series expansions (15) computed at the order of
truncature p ¼ N. By considering that the denominator of the previ-
ous relation can be estimated by kx̂Va

1k, this leads to the following
definition of the maximum value, x̂max Poly, of the perturbation
parameter x̂:

x̂max Poly ¼ �
kVa

1k
kVa

Nk

� 	1=ðN�1Þ

ð29Þ

In Ref. [22], the authors have extended the criterion (28) to the Padé
approximants (19). By requiring that the difference between two ra-
tional solutions (19) at consecutive orders remains smaller at the
14
end of the step than a chosen parameter, d, the maximum value,
x̂max Pad�e, of the perturbation parameter x̂ can be defined:

d ¼
kVa

Pad�e;Nðx̂max Pad�eÞ � Va
Pad�e;ðN�1Þðx̂max Pad�eÞk

kVa
Pad�e;Nðx̂max Pad�eÞ � Va

0k
ð30Þ

One can remark that with the previous relation, we do not have an
explicit relation of the validity range of the Padé approximants,
contrariwise to polynomial approximations with the relation (29).
In fact, the maximum value of the perturbation parameter,
x̂max Pad�e, has to be evaluated with expression (30) in the range
½x̂max Poly; r1�, where r1 designates the first pole of the Padé
approximants.

Finally, the relations (29) and (30) permit defining an automatic
continuation procedure by successively reapplying the perturba-
tion method in a step-by-step manner. Let us remark that the
two parameters � and d play the same role: they govern the step
length and the accuracy, respectively of the asymptotic expansions
and the Padé approximants.
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