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The Blasius equation

Bernard Brighi, Augustin Fruchard and Tewfik Sari

June 14, 2010

Abstract. The Blasius problem f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b,
f ′(+∞) = λ is investigated, in particular in the difficult and scarcely stud-
ied case b < 0 6 λ. The shape and the number of solutions are determined.
The method is first to reduce to the Crocco equation uu′′ + s = 0 and then to
use an associated autonomous planar vector field. The most useful properties
of Crocco solutions appear to be related to canard solutions of a slow fast vec-
tor field.

Keywords : Blasius equation, Crocco equation, boundary value problem on
infinite interval, canard solution.

1 Introduction

This is the report of a talk given in Rencontre du réseau Georges Reeb à la

mémoire d’Emmanuel Isambert, Paris, December 21 - 22, 2007.
We present in this article a selection of results of [6]. The reader is referred

to [6] for complete proofs, additional and intermediate results. We take the
occasion to completely change the order of presentation: in [6] we first give
the results on the Blasius equation with a sketch of proof, then we introduce
the Crocco equation and the vector field, we establish results and proofs on
these intermediate equations and then we return to the proof of the initial
result. Here we choose a different order and we postpone the main result
at the end of the article. We hope that this article may be a first approach
before a thorough study of [6].

The paper is organized as follows. In Section 2, we state the main problem
of the paper which is the investigation of the following Blasius Boundary
Value Problem (BBVP for short)

f ′′′ + ff ′′ = 0 on [0,+∞[, (1)

f(0) = −a, f ′(0) = b, lim
t→+∞

f ′(t) = λ. (2)

We list some former results, according to the relative values of b and λ, and
we focus our attention on the case b < 0 6 λ, which is our case of interest.
In Section 3, we show that, in the latter case, this boundary value problem
is equivalent to the Crocco Boundary Value Problem (CBVP)







uu′′ + s = 0 on [b, λ[,

u′(b) = a, lim
s→λ

u(s) = 0.
(3)

where [b, λ[ appears as the maximal right-interval of definition of the solu-
tion. In Section 4, we show that the similarity properties of the Blasius or

the Crocco solutions permit to reduce the non autonomous second order dif-
ferential equation of Crocco to an autonomous planar vector and we notice
that the maximal right-interval of definition of the solutions of the Crocco
equation presents a discontinuity with respect to the initial condition. It
is well known that the maximal right-interval of definition of the solution
of a differential equation is not continuous in general with respect to the
initial conditions. It is simply lower semicontinuous. Actually, in Section 6,
we see that the solutions of the Crocco differential equation which are close
to 0 for s close to 0 are canard solutions of a slow-fast vector field. These
solutions play an important role in the description of the discontinuity of the
maximal right-interval of definition of the solution of the Crocco equation.
In Section 7, we analyze this discontinuity which occurs along a particular
orbit of the planar vector field considered in Section 4. In Section 8, we give
a lower bound of the number of solutions of the boundary value problem
associated to the Blasius equation, in the case b < 0 6 λ. In Section 9,
we describe a difficulty encountered in numerical simulations. Indeed, due
to the canard solutions phenomenon, some solutions of the Crocco equation
become exponentially small for s < 0 and the numerical scheme cannot give
the right solution. We show how to use the theoretical study in Section 5 to
overcome this difficulty.

2 The Blasius Boundary Value Problem

The Blasius Boundary Value Problem (1-2) arises for the first time, with
a = b = 0 and λ = 2, in 1907 in the thesis of Blasius [3, 4]. In the case
a = b = 0, Hermann Weyl [16] proves that the BBVP has one and only
one solution. The proof is very elementary but strongly uses the fact that
a = b = 0, see also [5, 8]. The BBVP plays a central role in fluid mechanics
[12]: The Blasius equation (1) was obtained using a similarity transform and
enabled successful treatment of the laminar boundary layer on a flat plate.
Since equation (1) can be seen as a first order linear differential equation for
f ′′, we have

f ′′(t) = f ′′(0) exp

{

−
∫ t

0

f(τ)dτ

}

.

Hence, the BBVP splits into three cases, called respectively linear, concave
and convex:

• If λ = b, then the BBVP has a unique solution, given by f(t) = bt − a.

• If λ > b, then any possible solution must satisfy f ′′(t) > 0 for all t > 0,
i.e. has to be convexe.

• If λ < b, then possible solutions are concave.

The concave case is completely solved and well-known [1].
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Proposition 1 — In the case λ < b, the BBVP (1 - 2) has exactly one
solution if 0 6 λ < b, and no solution if λ < 0.

When b > 0, the convex case λ > b is also well-known, see [8].

Proposition 2 ([6] Corollary 3.6) — The BBVP (1 - 2), where b > 0 and
λ > b, has exactly one solution when a 6 0 or b > 0. When a > 0 and
b = 0, the BBVP has exactly one solution for all λ > a2λ+ and no solution
if 0 < λ 6 a2λ+, where λ+ ≃ 1.304 is defined in Proposition 5.

We know that every solution of the Blasius equation (1) such that f ′′(0) > 0
is defined for all t and its derivative has a finite and non-negative limit as
t → +∞ ([6] Proposition 3.1). Thus

Proposition 3 — The BBVP (1 - 2) has no solution if b < λ < 0.
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Figure 1: In the plane (b, λ), the number of solutions of the BBVP (5) in
each region and on their border. In gray, the remaining region to investigate,
purpose of this article.

In this article, we focus on the remaining case b < 0 6 λ, which is much richer
and trickier. Non uniqueness for the BBVP is mentioned in the literature,
but either only supported by numerical investigations [9], or with incomplete
proofs [10, 13].

The Blasius equation (1) has the following similarity property:

If t 7→ f(t) is a solution of (1), so is t 7→ σf(σt), for all σ ∈ R. (4)

This allows us to restrict our attention without loss of generality to the case
b = −1, i.e. to the BBVP







f ′′′ + ff ′′ = 0 on [0,+∞[,

f(0) = −a, f ′(0) = −1, lim
t→+∞

f ′(t) = λ > 0.
(5)

The purpose of this article is to count the number of solutions of (5). The
main result, at the end of Section 8, gives a minimum number of solutions of
(5) depending on the values of a and λ. We conjecture that this minimum
number is the exact number of solutions.

3 The Crocco Boundary Value Problem

Since f ′′ > 0 it follows that t 7→ f ′(t) is a diffeomorphism. Hence we can
use f ′ as an independent variable and express f ′′ as a function of f ′. This
is the so-called Crocco transformation [7]

s = f ′, f ′′ = u(s)

Differentiating f ′′ = u(f ′) we obtain u′(s) = −f . Differentiating once again
we obtain u′′(s)u(s) = −s. Thus the Blasius equation (1) is equivalent to
the Crocco differential equation

u′′u + s = 0 (6)
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Figure 2: On the left, the Blasius solution t 7→ f(t;−2, 1); on the right, the
corresponding Crocco solution s 7→ u(s;−2, 1).

As we will see, the BBVP (5) is equivalent to the Crocco Boundary Value
Problem (3) for b = −1, rewritten below for convenience







uu′′ + s = 0 on [−1, λ[,

u′(−1) = a, lim
s→λ

u(s) = 0.
(7)
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The equivalence between (5) and (7) will become clear after the following
remarks. In order to solve (5) we use the shooting method. Let f( · ; a, c)
denote the solution of the Blasius Initial Value Problem (BIVP)

f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = −1, f ′′(0) = c > 0. (8)

The solution f( · ; a, c) is defined for all t > 0 and its derivative has a finite
and non-negative limit as t → +∞ ([6] Proposition 3.1). Let £(a, c) denote
the limit1

£(a, c) := lim
t→+∞

f ′(t; a, c) > 0. (9)

Then ([6] Proposition 2.1), [−1,£(a, c)[ is the maximal right interval of ex-
istence of the solution u( · ; a, c) of the Crocco Initial Value Problem (CIVP)

uu′′ + s = 0, u(−1) = c > 0, u′(−1) = a. (10)

See Figure 2 for a comparison between a Blasius solution and the corre-
sponding Crocco solution.

Moreover, we have

lim
s→£(a,c)

u(s) = 0 and
(

£(a, c) > 0 ⇒ lim
s→£(a,c)

u′(s) = −∞
)

This shows that (5) is equivalent to (7).

4 Use of symmetries to reduce the order

The similarity property (4) is rewritten as follows for the Crocco equation
(6)

If σ > 0 and s 7→ u(s) is a solution of (6), so is uσ : s 7→ σ3u(σ−2s). (11)

This similarity property reduces the Crocco equation (6) to a system of
autonomous differential equations. Actually, the change of variables

x(s) = (−s)−1/2u′ (s) , y(s) = (−s)−3/2u (s)

leads to the system

x′ =

1
2 x + 1

y

−s
, y′ =

x + 3
2 y

−s
.

Thus, using the change of independent variable s = −e−τ , we obtain the
planar vector field

ẋ =
1

2
x +

1

y
, ẏ = x +

3

2
y, (12)

1This function £ is denoted by eΛ in [6].
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Figure 3: On the left: the phase portrait of (12). On the right: sketch of
enlargement of Γ∞ near S∗. The functions Ln and Rn are defined in Section
7.

where the dot is for differentiating with respect to the new independent
variable τ . The initial conditions u(−1) = c, u′(−1) = a in the CIVP (10)
correspond to

x(0) = a, y(0) = c.

Notice that this vector field describes the Crocco equation (6) only for s < 0,
since τ tends to +∞ as s tends to 0.

Because the transformation u 7→ uσ given by (11) corresponds to the shift
τ 7→ τ + 2 ln σ, to each orbit

{(

x(τ), y(τ)
)

; τ ∈ R
}

of a solution of (12)
corresponds a whole family (uσ)σ>0 of solutions of (6) connected by the
similarity (11). In particular, the unique stationary point S∗ =

(

−
√

3, 2√
3

)

of (12) corresponds to the unique self-similar positive solution u∗ of (6), i.e.

satisfying u∗(s) = σ3u∗(σ
−2s) for s < 0 < σ, namely

u∗(s) = 2√
3
(−s)3/2. (13)

A study of this vector field, detailed in [6], shows the following.

• All solutions of (12) are defined on R and tend to S∗ as τ → −∞.

• There is one and only one orbit, denoted by Γ∞, such that any solution

(x, y) parametrizing Γ∞ satisfies that x(τ)
y(τ) tends to −1 as τ → +∞, see

Figure 3.

• For all solutions
(

x(τ), y(τ)
)

except those on Γ∞ ∪ {S∗}, the quotient
x(τ)
y(τ) tends to 0 as τ → +∞.

• ([6] Theorem 2.4) For all solutions
(

x(τ), y(τ)
)

except those on Γ∞ ∪
{S∗}, x(τ)3

y(τ) has a limit k ∈ R as τ → +∞. The number k parametrizes
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the orbit of (12) denoted by Γk. In terms of positive Crocco solutions,
we have the following properties:

1. if (a, c) ∈ Γ∞ then lim
s→0−

u(s; a, c) = 0 and lim
s→0−

u′(s; a, c) < 0,

2. if (a, c) = S∗ then lim
s→0−

u(s; a, c) = 0 and lim
s→0−

u′(s; a, c) = 0,

3. Otherwise (a, c) ∈ Γk for some k ∈ R. In that case, u(0; a, c) > 0
and u′(0; a, c) is of the same sign as k.

Let (a, c) be an initial condition which is close to Γ∞. If (a, c) lies on
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Figure 4: A sketch of the spiral Γ∞ and two numerical Crocco solutions with
initial conditions u1(−1) = c1 = 1.78, u′

1(−1) = a = −2 and u2(−1) = c2 =
1.62, u′

2(−1) = a = −2, where (a, c1) and (a, c2) are on the convex and on
the concave sides of Γ∞ respectively.

the convex side of Γ∞, then u(0; a, c) is close to 0 and u′(0; a, c) < 0. Since
u(s; a, c) becomes concave for s > 0, it follows that £(a, c) is close to 0. If
(a, c) lies on the concave side of Γ∞, then u(0; a, c) is small and u′(0; a, c) > 0.
Thus £(a, c) is not close to 0, see Figure 4. This shows that the function
£(a, c) is discontinuous on Γ∞. The precise description of this discontinuity
needs the knowledge of the behavior of the solutions u(s) of the Crocco
equation (6) for which u(0) is close to 0. This behavior is described in the
following section.

5 Crocco solutions near u = 0 ...

The following result describes Crocco solutions close to 0 and with positive
slope for s = 0: they take an exponentially small value at some small negative
abscissa of s and then go far from the s axis.

Proposition 4 — Fix α > 0 and let 0 < ε → 0. Let u = u(s, ε) denote the
solution of (6) such that u(0, ε) = ε and u′(0, ε) = α. Then u(s, ε) reaches

-
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Figure 5: Above: schematic graphs of the solution of (14) in the limit ε → 0,
respectively in the variables S,U , the variables U, V and S, V . Below: the
numerical solution corresponding to ε = 0.1 and α = 2.

its minimum at some abscissa s = κ(ε) < 0 satisfying κ(ε) = − ε
α

(

1 + o(1)
)

and

u(κ(ε), ε) = exp
(

− α3

2ε

(

1 + o(1)
)

)

as ε → 0.

Moreover, for all B < 0 fixed, we have u(εs, ε) = ε
(

|αs+1|+o(1)
)

as ε → 0,
uniformly for s ∈ [B, 0].

Proof. The reference [6] contains two proofs: one in Section 5 and an
alternative one in Section 6. We give here an overview of the second one.
The solution u(s, ε) is defined for all s 6 0 and is positive. The function
U(S, ε), defined by

U(S, ε) =
1

ε
u (εS, ε) ,

is the solution of the initial value problem

U
d2U

dS2
+ εS = 0, U(0) = 1,

dU

dS
(0) = α. (14)

Except near the axis U = 0, and for bounded values of S, U ′′ is close to 0, i.e.

the solutions are almost affine. Precisely, one has for all fixed S0 ∈
]

− 1
α , 0

]

U(S, ε) = αS + 1 + o(1) as ε → 0, uniformly for S ∈ [S0, 0] (15)

What is less obvious is that this approximation is still valid up to − 1
α

and that, for any fixed B 6 − 1
α , the solution satisfies the approximation
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U(S, ε) = −αS − 1 + o(1) uniformly for B 6 S 6 − 1
α . In other words,

after its passage near the axis, the solution U(S, ε) behaves like a light ray
reflecting on a mirror, see Figure 5. To see this, we use the new variable
W = ε ln U and we choose V = dU

dS as an independent variable; we obtain

dS

dV
= −eW/ε

εS
,

dW

dV
= −V

S
. (16)

In a interval where W < 0 and S < 0, we have lim
ε→0

eW/ε

εS = 0. Thus (16) is a

regular perturbation of

dS

dV
= 0,

dW

dV
= −V

S
.

Since S is close to − 1
α when U is close to 0, we deduce that

–5

–4

–3

–2

–1

1

–2 –1 1 2

-
V

6W

Figure 6: On the left, a scheme of the vector field in the variables V,W . On
the right, the numerical solution corresponding to ε = 0.1 and α = −2.

S(V, ε) = − 1

α
+ o(1), W (V, ε) =

αV 2

2
+ W0 + o(1) as ε → 0, (17)

uniformly for V ∈ [−V0, V0], where W0 < 0 and V0 <
√

−2W0/α, see Figure

6, left. With the condition W (α, ε) = o(1), we obtain W0 = −α3

2 + o(1).
Thus we have

S(V, ε) = − 1

α
+ o(1), W (V, ε) = α

V 2 − α2

2
+ o(1) as ε → 0,

uniformly for V ∈ [−A0, A0], where A0 can be chosen as close to α as we
want. Hence we have

U(V, ε) = o(1) uniformly for V ∈ [−A0, A0]. (18)

The minimum of U(S, ε) is reached for S = K(ε) which corresponds to
V = 0. Hence

K(ε) = − 1

α
+o(1), U(K(ε), ε) = exp

(

W (0, ε)

ε

)

= exp

(

−α3 + o(1)

2ε

)

.

Thus κ(ε) = εK(ε) = ε
(

1
α + o(1)

)

and, using ε = exp ε ln ε
ε = exp o(1)

ε , we
have

u(κ(ε), ε) = εU(K(ε), ε) = ε exp

(

−α3 + o(1)

2ε

)

= exp

(

−α3 + o(1)

2ε

)

.

Using again the differential equation in (14), we have V (S, ε) = −α + o(1)
uniformly for S ∈ [B,S1], where B < S1 and S1 is as close to − 1

α as we
want. Thus

U(S, ε) = −α

(

S +
1

α

)

+ o(1), uniformly for S ∈ [S2, S1]. (19)

Using (15) and (19), together with (18) we conclude that

U(S, ε) = |αS + 1| + o(1) uniformly for S ∈ [S2, 0].

Hence u(εS, ε) = ε
(

|αS + 1| + o(1)
)

uniformly for S ∈ [B, 0], as ε → 0.

6 ... are canard solutions!

The solution U(V, ε) considered in the proof of Proposition 4 is a canard
solution. Indeed,

(

S(V, ε), U(V, ε)
)

is a solution of the slow fast system

ε
dS

dV
= −U

S
, ε

dU

dV
= −V U

S
. (20)

whose slow manifold U = 0 is attractive when V < 0 and repulsive when
V > 0. Notice that

S(V ) = constant < 0, U(V ) = 0, (21)

are canard solutions of (20) since they are on the attractive part of the slow
manifold when V < 0 and on its repulsive part when V > 0. These solutions
do not correspond to actual solutions of the differential equation in (14) since
the latter are for U 6= 0.

Considered as a system in R
3, (20) is a slow-fast system with two fast

variables S and U and one slow variable V . However, it is possible to rewrite
it as a system with two slow variables and only one fast. Actually T = V S−U
is a slow variable. With this variable, (20) becomes

ε
dS

dV
=

T − V S

S
,

dT

dV
= S. (22)

5



6T

*S

jV

r(α,0,−1)

**
s

**

@I
(α,− 1

α
,−1)

�	
(−α,− 1

α
,1)

Figure 7: The canard of (22).

This is a singularly perturbed system whose slow manifold is the surface
T = V S. This slow manifold is attractive for V < 0 and repulsive for
V > 0. The Tikhonov theorem (see [14, 11] and [15] Section 39) describes
the behavior of the solution

(

S(V, ε), T (V, ε)
)

of (22) when V > 0. There is a

fast transition (see Figure 7) taking the trajectory
(

V, S(V, ε), T (V, ε)
)

, from

its initial point (α, 0,−1), to a o(1) neighborhood of the point
(

α,− 1
α ,−1

)

of

the slow manifold, preceded by a slow transition near a solution
(

− 1
α ,−V

α

)

of the reduced problem

S =
T

V
,

dT

dV
= S.

More precisely, for any A0 and A1, such that 0 < A1 < A0 < α, we have

S(V, ε) = − 1

α
+ o(1) uniformly for V ∈ [A1, A0], (23)

T (V, ε) = −V

α
+ o(1) uniformly for V ∈ [A1, α].

Notice that A0 (resp. A1) is fixed but may be chosen as close to α (resp. 0),
as we want. The approximation for S does not hold near V = α since there
is a boundary layer (fast transition) from S = 0 at V = α to S = − 1

α for V
close to α. We deduce that

U(V, ε) = V S(V, ε) − T (V, ε) = o(1), uniformly for V ∈ [A1, α]. (24)

A priori, Tikhonov theorem does not apply for V 6 0, because for V = 0
the slow manifold becomes repulsive, but we will see that (24) still holds
for negative values of V . This is the so-called bifurcation delay [2]. The
slow manifold is foliated by the explicit solutions S(V ) = S0 = constant,
T (V ) = V S0, corresponding to the solutions (21). These solutions are canard
solutions since they follow the attractive part and then the repulsive part
of the slow manifold, see Figure 7. Knowing the “exit” value V = α of the

solution T (V, ε) in a small neighborhood of the slow manifold, we want to
compute now the “entry” value for which the solution was far from the slow
manifold. Since U = V S − T > 0, we use the change of variable W = ε lnU
which proves that the “entry” of the solution in the neighborhood of the
slow manifold holds asymptotically for V = −α, as shown in the proof of
Proposition 4. For details and complements see [6] Section 6.

7 The discontinuity of the function £

Two particular solutions of the Crocco equation (6) play an important role
in our study.

0.2
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0.6
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1

1.2

1.4

0–1 –0.8 –0.6 –0.4 –0.2

0

0.2

0.4

0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 8: The graphs of u− on the left and of u+ on the right.

Proposition 5 ([6] Theorem 2.2) — The Crocco equation (6) has two so-
lutions, denoted by u− and u+ such that u− is the unique solution of (6)
satisfying

lim
s→0−

u−(s) = 0, lim
s→0−

u′
−(s) = −1

and u+ is the unique solution of (6) satisfying

lim
s→0+

u+(s) = 0, lim
s→0+

u′
+(s) = 1.

The solution u− is defined on ]− ∞, 0[ and the solution u+ is defined on
]0, λ+[ for some λ+ > 0.

Numerical computations give λ+ ≈ 1.303918. See Figure 8 for the graphs of
u− and u+.

The orbit Γ∞ on which £ is discontinuous (See Figure 4 for an illustration
of this discontinuity) is given by

Γ∞ =
{

m(s) =
(

(−s)−1/2u′
−(s), (−s)−3/2u−(s)

)

; s < 0
}

.

A consequence of Proposition 4 is the following; see [6] Section 5.2 for the
proofs.
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Proposition 6 — For every sequence
(

(αn, γn)
)

n∈N
which tends to m(−1),

the sequence
(

u′(0;αn, γn)
)

n∈N
is bounded and has at most two cluster

points: 1 and −1. Precisely, if (αn, γn) tends to m(−1) on the convex
side then u′(0;αn, γn) tends to −1, and if (αn, γn) tends to m(−1) on the
concave side then u′(0;αn, γn) tends to 1.

Remark — This statement seems to contradict the well-known property of
continuity with respect to initial conditions: if (a1, c1) and (a2, c2) are two
points close to m(−1) such that u′(0; a1, c1) is close to −1 and u′(0; a2, c2)
close to 1, then this continuity property seems to imply that, for any fixed d ∈
]−1, 1[ there would exist (a, c) between (a1, c1) and (a2, c2) with u′(0; a, c) =
d. In fact there is no contradiction: any small path joining (a1, c1) and
(a2, c2) has to cross the “singular line”

{(

u−(s), u′
−(s)

)

; s < 0
}

at some
point (a0, c0) and the solution with this initial condition is no longer defined
at 0. This could explain an error in [13] Lemma 2 p. 257, which asserts the
continuity of £.
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Figure 9: Numerical graphs of some orbits Γk and of the level set curves of
the function £. On the left nine curves Γk for various values of k ∈ R∪{∞}
and £(a, c) = λ for λ = 0, 1 and 10. On the right the sames curves in the
plane (a, ln c), showing the details for small values of c. The flow of (12)
transforms a level curve of £(a, c) into another level curve. Notice that the
level set curve £(a, c) = 0 is equal to the orbit Γ∞.

Proposition 6 shows that the discontinuity of £ at the point m(−1) of Γ∞

is equal to λ+, see [6] Theorem 2.5. The discontinuity of £ at any point
m(s) of Γ∞ can be obtained using the similarity property (11). To see this,
let Λ(a, b, c) denote the limit, when t → ∞, of the derivative f ′(t) of the

solution f(t) of the BIVP

f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b, f ′′(0) = c > 0.

This limit is finite and non negative ([6] Proposition 3.1). The function £ is
simply given by

£(a, c) = Λ(a,−1, c).

Then ([6] Proposition 2.1), [−1,Λ(a, b, c)[ is the maximal right interval of
existence of the solution u(s) of the CIVP

uu′′ + s = 0, u(b) = c > 0, u′(b) = a.

The similarity property (11) implies

∀σ > 0, Λ(σa, σ2b, σ3c) = σ2Λ(a, b, c). (25)

This formula justifies, as said in the introduction, that the properties of Λ
for b < 0 can be deduced from the case b = −1, i.e. from the properties of
the function £ : (a, c) 7→ Λ(a,−1, c).

Notice that, for any positive solution u of the Crocco equation defined on
some interval I, we have

∀s ∈ I, £
(

u′(−1), u(−1)
)

= Λ
(

u′(−1),−1, u(−1)
)

= Λ
(

u′(s), s, u(s)
)

.

As a consequence, (25) gives

∀s < 0, £
(

u′(−1), u(−1)
)

= −s£
(

(−s)−1/2u′(s), (−s)−3/2u(s)
)

.

In terms of the associated vector field, we deduce that for all (x, y) solution
of (12)

∀τ ∈ R, £
(

x(τ), y(τ)
)

= eτ£
(

x(0), y(0)
)

. (26)

This formula shows how the τ -map flow of (12) transforms the level curve
£(a, c) = λ into the level curve £(a, c) = eτλ, see Figure 9. Hence the
similarity property (11) yields the discontinuity at any point of Γ∞.

Corollary 7 — The discontinuity of £ at a point m(s) of Γ∞ is as follows:
on the convex side of Γ∞, £ tends to 0, whereas on the concave side, £ tends
to −λ+

s .

8 The number of solutions of the BBVP

To count the number of solutions of (5) we adopt the following strategy: for
any values of a ∈ R and λ > 0, we count the number of values of c for which
£(a, c) = λ where £ : R×]0,+∞[→ [0,+∞[ is the limit defined by (9). Let
A(λ) denote the abscissa of the point of Γ∞ where £ takes the values 0 and
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Figure 10: On the left: the graph of A. On the right: an enlargement near
(0,−

√
3).

λ on each side of Γ∞ respectively. Corollary 7 yields −s = λ+

λ , from which
we deduce that

A : ]0,+∞[ → ]−∞, 0[ , λ 7→
√

λ
λ+

u′
−

(

−λ+

λ

)

.

See Figure 10 for a numerical graph of A and Figure 12 for a sketch showing
the oscillations near λ = 0. A careful study of the vector field shows that
Γ∞ has no inflexion point and S∗ is a focus. Therefore for all n > 1, with
the convention a0 = −∞, there exist functions

Ln : [a2n, a2n−1] → R, Rn : [a2n−2, a2n−1] → R,

Ln convex and Rn concave, such that Γ∞ is the union of the graphs of the
mappings x 7→ Ln(x) and x 7→ Rn(x); see Figure 3 right for the graphs of R1,
R2 and L1. As a consequence, the function A has the following properties.

Proposition 8 ([6] Proposition 1.1) — The function A is C∞ and has an
infinite sequence of extremal points (λn)n>1 decreasing to 0: local minima
at λ2n and local maxima at λ2n+1, and no other extremum. Let A(λn) = an

denote these extremal values. Sequences (a2n) and (a2n+1) are adjacent and

lim
n→+∞

λn+1

λn
= e−π

√
2, lim

n→+∞

an+1 +
√

3

an +
√

3
= −e−π

√
2. (27)

The map λ 7→ A(λ) is increasing on each interval [λ2n, λ2n−1] and decreasing
on each [λ2n−1, λ2n−2].

Hence for all n > 1, with the convention λ0 = +∞, there exist one-to-one
mappings

ln : [a2n, a2n−1] → [λ2n, λ2n−1], rn : [a2n−2, a2n−1] → [λ2n−1, λ2n−2],

such that the graph of λ 7→ A(λ) is the union of the graphs of a 7→ ln(a) and
a 7→ rn(a), see Figure 12 left for the graphs of r1, r2 and l1.

Given a ∈ R and λ > 0, counting the number of solutions of the Blasius
Problem (1 - 5) amounts to counting the number of times the function £

takes the value λ on a vertical ray

Da := {a}×]0,+∞[. (28)

For that purpose, we introduce the function

£a : ]0,+∞[→ [0,+∞[, c 7→ £(a, c).

The description below is succinct. We refer to [6] Section 2.4 for proofs,
additional details and explanatory figures.

Let n > 1 be such that a is between an−2 and an, possibly a = an (with
the convention a−1 = +∞, a0 = −∞). Then the ray Da crosses n − 1
times the spiral Γ∞ (if a = an, there is an n-th point of contact but without
crossing, hence without creating any discontinuity for £a). To fix ideas,

6λ

-
c0

q

)

L1(a)

l1(a)

q

R1(a)

r1(a) (

C3(a)
Λ3(a)

Figure 11: A sketch of graph of £a in the case a3 < a < a1, a close to a3.

assume that n is odd. A similar description can be done for n even. Then
the graph of £a consists of n branches: n−1

2 on the left, one central and n−1
2

on the right. On the central part, by continuity, if a is close to an then £a

has a minimum close to 0. Therefore we consider dn ∈ ]an, an−2] as close to
an−2 as possible such that, for any a ∈ [an, dn[, the central branch of £a

attains its infimum, at some (possibly non unique) abscissa c = Cn(a). We
already know that d1 = +∞. For n > 2, let µn ∈ ]λn−1, λn−2] be such that
dn = A(µn). For a ∈ [an, dn[, we define Λn(a) as the minimum of £a on its
central branch. With the convention µ1 = +∞, this yields a continuous map
Λn : [an, dn[→ [0, µn[, satisfying Λn(an) = 0 and Λn(a) → µn as a → d−n .
See Figure 11 for a sketch of graph of £a, Figure 13 for some graphs of £a

when a ≈ a1 and Figure 14 for the graph of £−
√

3. We now present our
main result.
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Theorem 9 — The BBVP (5) has

• no solution if and only if a > a1 and 0 6 λ < Λ1(a),

• at least n solutions (where n > 0) if (λ, a) belongs to one of the regions
marked n in Figure 12, right, in other words, if:

– either a = A(λ) with µn+1 6 λ < µn,

– or λ = Λn(a) with a ∈ [an, dn[ if n is odd, a ∈ ]dn, an] if n is even,
including the end-point (0, an),

– or (λ, a) is in the open region below the graphs of Λ2 and A in
the case n = 1, and in the open region between the graphs of
Λn−1,Λn+1 and A in the case n > 2,

– or λ = 0 and an−1 < a < an+1 if n is odd, an+1 < a < an−1 if n is
even.

• infinitely many solutions if λ = 0 and a = −
√

3.

6a

0

a1-d3 a3
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√
3

a4
-d4
a2

d2

-
λµ2λ1λ2

A
AAK
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� λ = r1(a)

� λ = l1(a)
� λ = r2(a)

�	
a = A(λ)

0

2

1

3

45
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?
3��
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2

q

� 1

HY 1

�� 2

�� 1
q

HY 3

AU
2

q

��
2 �	

1

Figure 12: In the (λ, a) plane. On the left, a sketch of the graphs of the
functions A and Λn; on the right, a lower bound of the number of solutions
of (5). We conjecture that this number is exact. We stress that the distances

are not respected: due to (27) with eπ
√

2 ≈ 85, on the true graph of A no
more than one extremal point is visible, see Figure 10.

Remark — We conjecture that each branch of £a is monotonous, except
possibly the central one, which can be either monotonous or first decreasing
then increasing, depending on the place of a with respect to the ak and dl.
A consequence of this conjecture would be that this lower bound is tight.
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Figure 13: Scenario of bifurcation of the graphs of £a near a1 ≈ −1.702704.
Top left: a = −1.68, top right: a = −1.7027, bottom left: a = −1.7028,
bottom right: a = −1.705.

9 Numerical simulations

When (a, c) is close to Γ∞ and on its concave side, u(s; a, c) is exponentially
small for the small negative value of s at which u reaches its minimum on
[−1, 0]. This phenomenon can lead to bad numerical simulations. As we will
see, the passage to the variables s(v), w(v), corresponding to the variables
S(V ),W (V ) described in Section 5, is appropriate, not only for theoretical
but also for numerical reasons. As an illustration, let us solve numerically,
with the use of Maple, the CIVP (in the phase plane, i.e. with v = u′) with
the initial conditions

{

(u(−1) = c1 = 2.94, v(−1) = a = −3.12
}

and
{

u(−1) = c2 = 2.95, v(−1) = a
}

.

The first initial condition lies on the concave side of Γ∞ and the second one
on its concave side. For the convenience of the reader we give hereafter the
Maple instructions and the resulting output. Because the aim is to compute
bounds of existence intervals of solutions, the output is an error message,
with a numerical value of a possible singularity.
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Figure 14: Numerical graph of £a for a = −
√

3, with successive enlarge-
ments.

> restart:

> a:=-3.12: c1:=2.94: c2:=2.95:

> EqCroccoUV:=diff(u(s),s)=v(s),diff(v(s),s)=-s/u(s):

du

ds
= v,

dv

ds
= − s

u
(29)

> SolCroccoUV:=proc(c)

> Sol:=dsolve({EqCroccoUV,u(-1)=c,v(-1)=a},{u(s),v(s)},

> numeric,output=listprocedure):

> SolU:=eval(u(s),Sol):

> SolU(50):

> end proc:

> SolCroccoUV(c1);

Error, (in SolU) cannot evaluate the solution further right of

-0.21850903e-2, probably a singularity

> SolCroccoUV(c2);

Error, (in SolU) cannot evaluate the solution further right of

0.99652635e-3, probably a singularity

The result for c1 is not correct since the solution must be defined for all
s 6 0. The second result c2 is correct and predicts that £(a, c2) ≈ 0.001. It
is a fact, not completely elucidated, that the use of the logarithmic change
of variable w = lnu does not yield better numerical results: in the variables
(w, v) the numerical solutions are still incorrect for c1 (and correct for c2).

> EqCroccoVW:=diff(w(s),s)=v(s)*exp(-w(s)),

> diff(v(s),s)=-s*exp(-w(s));

dw

ds
= ve−w,

dv

ds
= −se−w (30)

> SolCroccoVW:=proc(c)

> Sol:=dsolve({EqCroccoVW,w(-1)=ln(c),v(-1)=a},{w(s),v(s)},

> numeric,output=listprocedure):

> SolW:=eval(w(s),Sol):

> SolW(50):

> end proc:

> SolCroccoVW(c1);

Error, (in SolW) cannot evaluate the solution further right of

-0.21862961e-2, probably a singularity

> SolCroccoVW(c2);

Error, (in SolW) cannot evaluate the solution further right of

0.99531941e-3, probably a singularity

Following Section 5, we now consider the change of variable w = lnu and
use the variable v as an independent variable. This gives correct numerical
results.

> EqCroccoSW:=diff(s(v),v)=-exp(w(v))/s(v),diff(w(v),v)=-v/s(v);

ds

dv
= −ew

s
,

dw

dv
= −v

s
(31)

> SolCroccoSW:=proc(c)

> Sol:=dsolve({EqCroccoSW,w(a)=ln(c),s(a)=-1},{w(v),s(v)},

> numeric,output=listprocedure):

> SolS:=eval(s(v),Sol):

> SolS(10):

> end proc:

> SolCroccoSW(c1);

Error, (in SolS) cannot evaluate the solution further right of

2.7651840, probably a singularity

> SolCroccoSW(c2);

Error, (in SolS) cannot evaluate the solution further right of

-2.7726621, probably a singularity

10



We see that for c1, the solution w(v) is computed until the value v =
2.7651840. Hence the numerical solution succeeded to pass exponentially
close to the axis u = 0 and to reflect on this axis and get a positive deriva-
tive. The singularity encountered now at v = 2.7651840 is caused by the fact
that system (31) is defined only in the half space s < 0. For s > 0 we must
return to the original variables u(s) and v(s). Hence we use the following
procedure to evaluate £(a, c).

> Lambda:= proc(a,c)

> erreur:=0.0000000001:

> fSW:=dsolve({EqCroccoSW,w(a)=ln(c),s(a)=-1},{s(v),w(v)},

> numeric,stop_cond=[s(v)+erreur]):

> fSW(10);

> IC:=subs(%,[v,s(v),w(v)]):

> v0:=IC[1]: s0:=IC[2]: w0:=IC[3]:

> f:=dsolve({EqCroccoUV,u(s0)=exp(w0),v(s0)=v0},{u(s),v(s)},

> numeric,stop_cond=[u(s)-erreur]):

> f(50):

> subs(%,s):

> end proc:

This procedure is easy to understand. First system (31) is solved with ini-
tial conditions w(a) = ln(c), s(a) = −1 as far as s 6 −erreur. Next, one
computes the values v0, s0 = s(v0) and w0 = w(v0) such that the stop-
ping condition s0 = −erreur is reached. Then system (29) is solved with
initial conditions u(s0) = ew0 , v(s0) = v0, as far as u > erreur. The proce-
dure gives the value s1 such that the stopping condition u(s1) = erreur is
attained. This value is a very good approximation of £(a, c).

> Lambda(a,c1);

Warning, cannot evaluate the solution further right of

2.7651840, stop condition #1 violated

Warning, cannot evaluate the solution further right of

10.012058, stop condition #1 violated

10.0120586420604791

> Lambda(a,c2);

Warning, cannot evaluate the solution further right of

-2.7726621, stop condition #1 violated

Warning, cannot evaluate the solution further right of

.99606109e-3, stop condition #1 violated

0.000996061092810659674

Hence, £(a, c1) ≈ 10.012 and £(a, c2) ≈ 0.001. The following instructions
which use the procedure Lambda produce the numerical graph of £a for
a = −

√
3 and 1.15466 6 c 6 1.15476, see Figure 14 bottom right.

> a:=-sqrt(3): c1:=1.15466: c2:=1.15476: N:=200;

> for n from 0 to N do LLambda[n]:=c1+n*(c2-c1)/N,

> Lambda(a,c1+n*(c2-c1)/N) end do:

> L1:=[[LLambda[i]]$i=0..112]: L2:=[[LLambda[i]]$i=113..N]:

> plot([L1,L2],c1..c2,-.0000031..0.00012,thickness =4,

> color=black);
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