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This article considers the problem of order selection of the vector autoregressive moving-average models and of the sub-class of the vector autoregressive models under the assumption that the errors are uncorrelated but not necessarily independent. We propose a modified version of the AIC (Akaike information criterion). This criterion requires the estimation of the matrice involved in the asymptotic variance of the quasi-maximum likelihood estimator of these models. Monte carlo experiments show that the proposed modified criterion estimates the model orders more accurately than the standard AIC and AICc (corrected AIC) in large samples and often in small samples.

Introduction

The class of vector autoregressive moving-average (VARMA) models and the sub-class of vector autoregressive (VAR) models are used in time series analysis and econometrics to describe not only the properties of the individual time series but also the possible cross-relationships between the time series (see [START_REF] Reinsel | Elements of multivariate time series Analysis[END_REF][START_REF] Lütkepohl | New introduction to multiple time series analysis[END_REF], 1993).
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or by least squares procedures, given the orders p and q of the model. A companion to the problem of parameter estimation is the problem of model selection, which consists of choosing an appropriate model from a class of candidate models to characterize the data at the hand. The choice of p and q is particularly important because the number of parameters, (p + q + 3)d 2 where d is the number of series, quickly increases with p and q, which entails statistical difficulties. If orders lower than the true orders of the VARMA(p, q) models are selected, the estimate of the parameters will not be consistent and if too high orders are selected, the accuracy of the estimation parameters is likely to be low. This paper is devoted to the problem of the choice (by minimizing an information criterion) of the VARMA orders under the assumption that the errors are uncorrelated but not necessarily independent. Such models are called weak VARMA, by contrast to the strong VARMA models, that are the standard VARMA usually considered in the time series literature and in which the noise is assumed to be iid. We relax the standard independence assumption to extend the range of application of the VARMA models, allowing us to treat linear representations of general nonlinear processes. The statistical inference of weak ARMA models is mainly limited to the univariate framework (see [START_REF] Francq | Estimating linear representations of nonlinear processes[END_REF][START_REF] Francq | Covariance matrix estimation of mixing weak ARMA models[END_REF][START_REF] Lütkepohl | New introduction to multiple time series analysis[END_REF], 2007[START_REF] Francq | Diagnostic checking in ARMA Models with Uncorrelated Errors[END_REF].

In the multivariate analysis, important advances have been obtained by [START_REF] Dufour | Practical methods for modelling weak VARMA processes: identification, estimation and specification with a macroeconomic application[END_REF] who study the asymptotic properties of a generalization of the regression-based estimation method proposed by [START_REF] Hannan | Recursive estimation of mixed of Autoregressive Moving Average order[END_REF] under weak assumptions on the innovation process, [START_REF] Francq | Multivariate Portmanteau Test for Autoregressive Models with Uncorrelated but Nonindependent Errors[END_REF] who study portmanteau tests for weak VAR models, Boubacar Mainassara and [START_REF] Boubacar Mainassara | Estimating structural VARMA models with uncorrelated but non-independent error terms[END_REF] who study the consistency and the asymptotic normality of the quasi-maximum likelihood estimator (QMLE) for weak VARMA models and Boubacar Mainassara (2009a[START_REF] Boubacar Mainassara | Estimating the asymptotic variance matrix of structural VARMA models with uncorrelated but non-independent error terms[END_REF] who studies portmanteau tests for weak VARMA models and studies the estimation of the asymptotic variance of the QMLE of weak VARMA models. [START_REF] Dufour | Practical methods for modelling weak VARMA processes: identification, estimation and specification with a macroeconomic application[END_REF] have proposed a modified information criterion which is a generalization of the information criterion proposed by [START_REF] Hannan | Recursive estimation of mixed of Autoregressive Moving Average order[END_REF].

The choice amongst the models is often made by minimizing an information criterion. The most popular criterion for model selection is the Akaike information criterion (AIC) proposed by [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF]. The AIC was designed to be an approximately unbiased estimator of the expected Kullback-Leibler information of a fitted model. Tsai andHurvich (1989, 1993) derived a bias correction to the AIC for univariate and multivariate autoregressive time series under the assumption that the errors ǫ t are independent identically distributed (i.e. strong models). The main goal of our paper is to complete the above-mentioned results concerning the statistical analysis of weak VARMA models, by proposing a modified version of the AIC criterion.

The paper is organized as follows. Section 2 presents the models that we consider here and summarizes the results on the QMLE asymptotic distribution obtained by Boubacar [START_REF] Boubacar Mainassara | Estimating structural VARMA models with uncorrelated but non-independent error terms[END_REF]. In Section 3, we present the AIC M criterion which we minimize to choose the orders for a weak VARMA(p, q) models and we establish his overfitting property. This section is also of interest in the univariate framework because, to our knowledge, this model selection criterion has not been studied for weak ARMA models. Numerical experiments are presented in Section 4. The proofs of the main results are collected in the appendix.

Model and assumptions

Consider a d-dimensional stationary process (X t ) satisfying a structural VARMA(p 0 , q 0 ) representation of the form

A 00 X t - p 0 i=1 A 0i X t-i = B 00 ǫ t - q 0 i=1 B 0i ǫ t-i , ∀t ∈ Z = {0, ±1, . . . }, (1) 
where ǫ t is a white noise, namely a stationary sequence of centered and uncorrelated random variables with a non singular variance Σ 0 . The structural forms are mainly used in econometrics to introduce instantaneous relationships between economic variables. Of course, constraints are necessary for the identifiability of these representations. Let [A 00 . . . A 0p 0 B 00 . . . B 0q 0 Σ 0 ] be the d × (p 0 + q 0 + 3)d matrix of all the coefficients, without any constraint. The parameter of interest is denoted θ 0 , where θ 0 belongs to the parameter space Θ p 0 ,q 0 ⊂ R k 0 , and k 0 is the number of unknown parameters, which is typically much smaller that (p 0 + q 0 + 3)d 2 . The matrices A 00 , . . . A 0p 0 , B 00 , . . . B 0q 0 involved in (1) and Σ 0 are specified by θ 0 . More precisely, we write A 0i = A i (θ 0 ) and B 0j = B j (θ 0 ) for i = 0, . . . , p 0 and j = 0, . . . , q 0 , and Σ 0 = Σ(θ 0 ). We need the following assumptions used by Boubacar Mainassara and [START_REF] Boubacar Mainassara | Estimating structural VARMA models with uncorrelated but non-independent error terms[END_REF], hereafter BMF, to ensure the consistence and the asymptotic normality of the QMLE.

A1: The functions θ → A i (θ) i = 0, . . . , p, θ → B j (θ) j = 0, . . . , q and θ → Σ(θ) admit continuous third order derivatives for all θ ∈ Θ p,q .

For simplicity we now write A i , B j and Σ instead of A i (θ), B j (θ) and Σ(θ).

Let A θ (z) = A 0 -p i=1 A i z i and B θ (z) = B 0 -q i=1 B i z i .
A2: For all θ ∈ Θ p,q , we have det A θ (z) det B θ (z) = 0 for all |z| ≤ 1; A3: We have θ 0 ∈ Θ p 0 ,q 0 , where Θ p 0 ,q 0 is compact; A4: The process (ǫ t ) is stationary and ergodic; A5: For all θ ∈ Θ p,q such that θ = θ 0 , either the transfer functions

A -1 0 B 0 B -1 θ (z)A θ (z) = A -1 00 B 00 B -1 θ 0 (z)A θ 0 (z) for some z ∈ C, or A -1 0 B 0 ΣB ′ 0 A -1 ′ 0 = A -1 00 B 00 Σ 0 B ′ 00 A -1 ′ 00 ; A6: We have θ 0 ∈ • Θp 0 ,q 0 , where • Θp 0 ,q 0 denotes the interior of Θ p 0 ,q 0 ; A7: We have E ǫ t 4+2ν < ∞ and ∞ k=0 {α ǫ (k)} ν 2+ν < ∞ for some ν > 0.
The reader is referred to BMF for a discussion of these assumptions. Note that (ǫ t ) can be replaced by

(X t ) in A4, because X t = A -1 θ 0 (L)B θ 0 (L)ǫ t and ǫ t = B -1 θ 0 (L)A θ 0 (L)X t ,
where L stands for the backward operator. Note that from A1 the matrices A 0 and B 0 are invertible. Introducing the innovation process e t = A -1 00 B 00 ǫ t , the structural representation A θ 0 (L)X t = B θ 0 (L)ǫ t can be rewritten as the reduced VARMA representation

X t - p i=1 A -1 00 A 0i X t-i = e t - q i=1
A -1 00 B 0i B -1 00 A 00 e t-i .

We thus recursively define ẽt (θ) for t = 1, . . . , n by

ẽt (θ) = X t - p i=1 A -1 0 A i X t-i + q i=1 A -1 0 B i B -1 0 A 0 ẽt-i (θ), with initial values ẽ0 (θ) = • • • = ẽ1-q (θ) = X 0 = • • • = X 1-p = 0.
The gaussian quasi-likelihood is given by

Ln (θ) = n t=1 1 (2π) d/2 √ det Σ e exp - 1 2 ẽ′ t (θ)Σ -1 e ẽt (θ) , Σ e = A -1 0 B 0 ΣB ′ 0 A -1 ′ 0 .
A quasi-maximum likelihood estimator of θ is a measurable solution θn of θn = arg max θ∈Θ Ln (θ). We now use the matrix M θ 0 of the coefficients of the reduced form to that made by BMF, where

M θ 0 = [A -1 00 A 01 : • • • : A -1 00 A 0p : A -1 00 B 01 B -1 00 A 00 : • • • : A -1 00 B 0q B -1 00 A 00 : Σ e0 ].
We denote by vec(A) the vector obtained by stacking the columns of A. Now we need an assumption which specifies how this matrix depends on the parameter θ 0 . Let M θ 0 be the matrix ∂vec(M θ )/∂θ ′ evaluated at θ 0 .

A8:

The matrix M θ 0 is of full rank k 0 .

Under Assumptions A1-A8, BMF showed the consistency ( θn → θ 0 a.s as n → ∞) and the asymptotic normality of the QMLE:

√ n θn -θ 0 L → N (0, Ω := J -1 IJ -1 ), (2) 
where J = J(θ 0 ) and I = I(θ 0 ), with

J(θ) = lim n→∞ 2 n ∂ 2 ∂θ∂θ ′ log Ln (θ) a.s. and I(θ) = lim n→∞ Var 2 √ n ∂ ∂θ log Ln (θ).
Note that, for VARMA models in reduced form, it is not very restrictive to assume that the coefficients A 0 , . . . , A p , B 0 , . . . , B q are functionally independent of the coefficient Σ e . Thus we can write θ = (θ (1) ′ , θ (2) ′ ) ′ , where θ (1) ∈ R k 1 depends on A 0 , . . . , A p and B 0 , . . . , B q , and where θ (2) ∈ R k 2 depends on Σ e , with k 1 + k 2 = k 0 . With some abuse of notation, we will then write e t (θ) = e t (θ (1) ).

A9: With the previous notation θ = (θ (1) ′ , θ (2) ′ ) ′ , where θ (2) = D vec Σ e for some matrix D of size k 2 × d 2 .

3 Identification of VARMA models

Let ln (θ) = -2n -1 log Ln (θ) and e t (θ

) = A -1 0 B 0 B -1 θ (L)A θ (L)X t .
In BMF, it is shown that ℓ n (θ) = ln (θ) + o(1) a.s, where

ℓ n (θ) := - 2 n log L n (θ) = 1 n n t=1 d log(2π) + log det Σ e + e ′ t (θ)Σ -1 e e t (θ) .
It is also shown uniformly in θ ∈ Θ p,q that ∂ℓ n (θ) ∂θ = ∂ ln (θ) ∂θ + o(1) a.s.

The same equality holds for the second-order derivatives of ln .

Note that, minimizing the Kullback-Leibler information of any approximating (or candidate) model, characterized by the parameter vector θ, is equivalent to minimizing the contrast (or the discrepancy between the approximating and the true models) defined by ∆(θ) := E {-2 log L n (θ)}. Omitting the constant nd log(2π), we find that

∆(θ) = n log det Σ e + nTr Σ -1 e S(θ) ,
where S(θ) = Ee 1 (θ)e ′ 1 (θ). The following Lemma shows that the application θ → ∆(θ) is minimal for θ = θ 0 .

Lemma 1 For all θ ∈ p,q∈N Θ p,q , we have ∆(θ) ≥ ∆(θ 0 ).

Let X = (X 1 , . . . , X n ) be observation of a process satisfying the VARMA representation (1). Let, êt = ẽt ( θn ) be the QMLE residuals of a candidate VARMA model when p > 0 or q > 0, and let êt = e t = X t when p = q = 0. When p + q = 0, we have êt = 0 for t ≤ 0 and t > n, and

êt = X t - p i=1 A -1 0 ( θn )A i ( θn ) Xt-i + q i=1
A -1 0 ( θn )B i ( θn )B -1 0 ( θn )A 0 ( θn )ê t-i , for t = 1, . . . , n, with Xt = 0 for t ≤ 0 and Xt = X t for t ≥ 1.

In view of Lemma 1, it is natural to minimize an estimation of the theoretical criterion E∆( θn ). Of course, E∆( θn ) is unknown, but it can be estimated if certain additional assumptions are made. Note that E∆( θn ) can be interpreted as the average discrepancy when one uses the model of parameter θn .

Estimating the discrepancy

Let J 11 and I 11 be respectively the upper-left block of the matrices J and I, with appropriate size. The AIC was designed to provide an approximately unbiased estimator of E∆( θn ). In this Section, we will adapt to weak VARMA models the corrected AIC version (AICc) developed by Tsai andHurvich (1989, 1993) for the univariate and the multivariate strong autoregressive models. Under Assumptions A1-A9, an approximately unbiased estimator of E∆( θn ) is given by

AIC M := n log det Σe + n 2 d 2 nd -k 1 + nd 2(nd -k 1 ) Tr Î11,n Ĵ-1 11,n , (3) 
where Ĵ11,n and Î11,n are respectively consistent estimators of the matrice J 11 and I 11 (see Section 4 of BMF).

Remark 1 Given a collection of competing families of approximating models, the one that minimizes E∆( θn ) might be preferred. For model selection, we then choose p and q as the set which minimizes the information criterion (3).

Remark 2 In the strong VARMA case, i.e. when A4 is replaced by the assumption that (ǫ t ) is iid, we have I 11 = 2J 11 , so that Tr I 11 J -1 11 = 2k 1 . In this case, the AIC M takes the following form

AIC * M := n log det Σe + nd + nd nd -k 1 2k 1 = AICc.

Other decomposition of the discrepancy

In Section 3.1, the minimal discrepancy (contrast) has been approximated by -2E log L n ( θn ) (the expectation is taken under the true model X). Note that studying this average discrepancy is too difficult because of the dependance between θn and X. An alternative slightly different but equivalent interpretation for arriving at the expected discrepancy quantity E∆( θn ), as a criterion for judging the quality of an approximating model, is obtained by supposing θn be the QMLE of θ based on the observation X and let Y = (Y 1 , . . . , Y n ) be independent observation of a process satisfying the VARMA representation (1) (i.e. X and Y independent observations satisfying the same process).

Then, we may be interested in approximating the distribution of (Y t ) by using L n (Y, θn ). So we consider the discrepancy for the approximating model (model Y ) that uses θn and, thus, it is generally easier to search a model that minimizes

C( θn ) := -2E Y log L n ( θn ), (4) 
where E Y denotes the expectation under the candidate model Y . Since θn and Y are independent, C( θn ) is the same quantity as the expected discrepancy E∆( θn ). A model minimizing (4) can be interpreted as a model that will do globally the best job on an independent copy of X, but this model may not be the best for the data at hand. The average discrepancy can be decomposed into

C( θn ) = -2E X log L n ( θn ) + a 1 + a 2 ,
where a

1 = -2E X log L n (θ 0 ) + 2E X log L n ( θn ) and a 2 = -2E Y log L n ( θn ) + 2E X log L n (θ 0 ). The QMLE satisfies log L n ( θn ) ≥ log L n (θ 0 ) almost surely,
thus a 1 can be interpreted as the average over-adjustment (over-fitting) of this QMLE. Now, note that E X log L n (θ 0 ) = E Y log L n (θ 0 ), thus a 2 can be interpreted as an average cost due to the use of the estimated parameter instead of the optimal parameter, when the model is applied to an independent replication of X. We now discuss the regularity conditions needed for a 1 and a 2 to be equivalent, in the following Proposition.

Proposition 1 Under Assumptions A1-A9, a 1 and a 2 are both equivalent to 2 -1 Tr I 11 J -1 11 , as n → ∞.

In view of Proposition 1, in the weak VARMA case, the AIC formula denoted

AIC W := -2 log L n ( θn ) + Tr Î11 Ĵ-1 11 (5)
is an approximately unbiased estimate of the contrast C( θn ). Model selection is then obtained by minimizing (5) over the candidate models.

Remark 3 In the strong VARMA case, we have Tr I 11 J -1 11 = 2k 1 . There-fore, a 1 and a 2 are both equivalent to k 1 = dim(θ

(1) 0 ) (we retrieve the result obtained by [START_REF] Findley | The overfitting principles supporting AIC[END_REF]. In this case, the AIC W formula takes the more conventional form AIC = -2 log L n ( θn ) + 2k 1 .

Overfitting property of the AIC M criterion

For any models with k-dimensional parameter, the AIC M criterion given in (3) can be rewritten as

AIC M (k) = n log det Σe (k) + n 2 d 2 nd -k + nd 2(nd -k) c k ,
where

c k = Tr I 11 ( θn,k )J -1 11 ( θn,k ) and Σe (k) = Σ e ( θn,k ).
We define an overfitted model as a model that has more parameters than the true model. Overfitting is analysed here by comparing the model of true orders p 0 and q 0 and an overfitted model of orders p ′ = p 0 + ℓ 1 and q ′ = q 0 + ℓ 2 , where the integers ℓ 1 , ℓ 2 > 0. Recall that, for the true VARMA model in the reduced form, the number of unknown parameters in VAR and MA parts is

k 1 = d 2 (p 0 + q 0 ). By analog, let k ′ 1 = d 2 (p ′ + q ′ ) the number of parameters without any constraints of the overfitted model. Note that, k ′ 1 = k 1 + ℓ where ℓ = d 2 (ℓ 1 + ℓ 2 ) and let c ℓ = c k ′ 1 -c k 1 .
The overfitting property of the AIC M criterion is described here through the probability of overfitting. The following Lemma gives the overfitting property of the VARMA models.

Proposition 2 The AIC M criterion overfits if AIC M (k ′ 1 ) < AIC M (k 1 )
. The modified probability that the AIC M criterion selects the overfitted model is

P W := P {AIC M (k 1 + ℓ) < AIC M (k 1 )} = P χ 2 ℓ > 2ℓ + c ℓ 2 .
Remark 4 In the strong VARMA case, i.e. when A4 is replaced by the assumption that (ǫ t ) is iid, we have c ℓ = 2ℓ. In this case, the probability that the AIC M criterion selects the overfitted model takes the following form

P S := P {AIC M (k 1 + ℓ) < AIC M (k 1 )} = P χ 2 ℓ > 2ℓ .
From Table 1, it is clear that the AIC M criterion is not consistent in the strong VAR case, since his probability of overfitting is not zero. 

Numerical illustrations

In this section, by means of Monte Carlo experiments, we present the results of simulations study on small and large sample performance of several AIC criteria introduced in this paper. The numerical illustrations of this section are made with the software R (see http://cran.r-project.org/). We generate VAR models, with several choices of their innovation process (ǫ t ). Firstly, we consider the strong case in which (ǫ t ) is defined by

   ǫ 1,t ǫ 2,t    ∼ IID N (0, I 2 ). (6) 
The same experiment is repeated for three weak choices for (ǫ t ). In the first one, we assume that (ǫ t ) is an ARCH(1) model:

   ǫ 1,t ǫ 2,t    =    h 11,t 0 0 h 22,t       η 1,t η 2,t    , with    η 1,t η 2,t    ∼ IID N (0, I 2 ), (7) 
and where

   h 2 11,t h 2 22,t    =    0.3 0.2    +    0.45 0 0.4 0.25       ǫ 2 1,t-1 ǫ 2 2,t-1    .
In two other sets of experiments, we assume that (ǫ t ) is defined by

   ǫ 1,t ǫ 2,t    =    η 1,t η 2,t-1 η 1,t-2 η 2,t η 1,t-1 η 2,t-2    , with    η 1,t η 2,t    ∼ IID N (0, I 2 ), (8) 
and then by

   ǫ 1,t ǫ 2,t    =    η 1,t (|η 1,t-1 | + 1) -1 η 2,t (|η 2,t-1 | + 1) -1    , with    η 1,t η 2,t    ∼ IID N (0, I 2 ), (9) 
These noises are direct extensions of those defined by [START_REF] Romano | Inference for autocorrelations under weak assumptions[END_REF] in the univariate case.

We used the spectral estimator ÎSP := Φ-1 r (1) Σûr Φ′-1 r (1) of the matrix I defined in Theorem 3 of BMF. In this theorem, the AR order r = r(n) is automatically selected by BIC criterion in the weak models (in this case, Theorem 3 requires that r → ∞), using the function VARselect() of the vars R package. In the strong case we can be shown that, the AR spectral estimator is consistent with any fixed value of r (or r = o(n 1/3 ) as in Theorem 3 and we took r = 1. The matrix J can easily be estimated by its empirical counterpart. The reader is referred to Section 4 in BMF for a discussion of these estimators involved in our modified criterion.

The corresponding relative rejection frequencies to the orders chosen are displayed in bold type in Tables 2, 3 and4. We simulated N independent trajectories of different sizes of a bivariate VAR(1) model with the strong Gaussian and weak noise above-mentioned. We took N = 1, 000 when the sample size n ≤ 2000 and N = 1, 00 in the opposite case. For each of these N replications, we will fit 6 bivariate candidates models (i.e. VAR(k) models with k = 1, . . . , 6). The quasi-maximum likelihood (QML) method was used to fit VAR models of order 1, . . . , 6. The standard and modified versions of AIC criteria were used to select among the candidate models. To generate the strong and weak VAR(1) models, we consider the bivariate model of the form:

   X 1t X 2t    =    0.5 0.1 0.4 0.5       X 1t-1 X 2t-1    +    ǫ 1t ǫ 2t    , Σ 0 =    1 0 0 1    . (10) 
Table 2 displays the relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria of a strong (Model I) candidates models, over the N = 1, 000 independent replications. In view of the observed relative frequency, the order p = 1 (i.e. VAR(1) model) is selected by all versions of the AIC criteria and they have the similar performance.

Table 3 displays the relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria of a strong (Model I) and weak (Model II, with error term (8)) candidates models, over the N indepen-dent replications. Table 3 shows that the standard AIC criteria clearly did not perform well here when n ≥ 500, and they have tendency to overestimate the order p. When n = 500 the order p = 1 is selected by all versions of the AIC criteria, but the modified criterion has better performed. As expected, when n ≥ 2000 the standard AIC criteria select a weak VAR(2) model. By contrast, a VAR(1) model is selected by a modified criterion for all values of n and its performance is increasing with n.

Table 4 displays the relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria of a weak VAR(k) candidates models for k = 1, . . . , 6, firstly with error term (7) (Model III) and secondly with error term (9) (Model IV). In view of the observed relative frequency, a VAR(1) model is selected by all versions of the AIC criteria and they have the same performance in Model IV. By contrast, Table 4 shows that a modified criterion has clearly hight performance in Model III. 10)-( 6) 10)-( 6), II: Weak VAR(1) model ( 10)-( 8) 10)-( 7), IV: Weak VAR(1) model ( 10)-( 9) 10)-( 6) II: Weak VAR(1) model ( 10)-( 8)

Table 5 displays the modified version of asymptotic probabilities of overfitting by ℓ := d 2 ℓ 1 parameters for bivariate VAR models of various versions of AIC criteria. Table 5 shows clearly that the AIC M criterion is not consistent in the weak and strong cases, since his probability of overfitting is not zero. As expected, the asymptotic probabilities of overfitting of the standard versions of the AIC criteria are very strong than the modified criterion in the weak case. By contrast, they are similar in the strong case for all versions of the AIC criteria. The asymptotic probabilities of overfitting of the modified version is decreasing with the sample size n.

Conclusion

The results of Section 4 suggest that the relative frequency of the orders selected by the standard criteria (AIC and AICc) and by the modified AIC M versions are comparable, with a slight advantage to the modified version, in the strong VAR model case. In the weak VAR models cases, the modified version performs better than the standard versions, which often overestimate the order.

Appendix

Proof of Lemma 1: We have

∆(θ) = n log det Σ e + nTr Σ -1 e
Ee 1 (θ 0 )e ′ 1 (θ 0 ) + 2Ee 1 (θ 0 ) {e 1 (θ)e 1 (θ 0 )} ′ + E (e 1 (θ)e 1 (θ 0 )) (e 1 (θ)e 1 (θ 0 )) ′ . Now, using the fact that the linear innovation e t (θ 0 ) is orthogonal to the linear past (i.e. to the Hilbert space H t-1 generated by the linear combinations of the X u for u < t), it follows that Ee 1 (θ 0 ) {e 1 (θ)e 1 (θ 0 )} ′ = 0, since {e t (θ)e t (θ 0 )} belongs to the linear past H t-1 . We thus have

∆(θ) = n log det Σ e + nTr Σ -1 e Σ e0 +nTr Σ -1 e E (e 1 (θ) -e 1 (θ 0 )) (e 1 (θ) -e 1 (θ 0 )) ′ . Moreover ∆(θ 0 ) = n log det Σ e0 + nTr Σ -1 e0 S(θ 0 ) = n log det Σ e0 + nTr Σ -1 e0 Σ e0 = n log det Σ e0 + nd.
Thus, we obtain

∆(θ) -∆(θ 0 ) = -n log det Σ -1 e Σ e0 -nd + nTr Σ -1 e Σ e0 +nTr Σ -1 e E (e 1 (θ) -e 1 (θ 0 )) (e 1 (θ) -e 1 (θ 0 )) ′ ≥ -n log det Σ -1 e Σ e0 -nd + nTr Σ -1 e Σ e0 ,
with equality if and only if e 1 (θ) = e 1 (θ 0 ) a.s. Using the elementary inequality Tr(A -1 B)log det(A -1 B) ≥ Tr(A -1 A)log det(A -1 A) = d for all symmetric positive semi-definite matrices of order d × d, it is easy see that ∆(θ) -∆(θ 0 ) ≥ 0. The proof is complete. 2

Justification of (3). Let J 11 and I 11 be respectively the upper-left block of the matrices J and I, with appropriate size. Recall that

E∆( θn ) = En log det Σe + nETr Σ-1 e S( θn ) , (11) 
where Σe = n -1 n t=1 e t ( θn )e ′ t ( θn ). Then the first term on the right-hand side of (11) can be estimated without bias by n log det n -1 n t=1 e t ( θn )e ′ t ( θn ) . Hence, only an estimate for the second term needs to be considered. Moreover, in view of (2), a Taylor expansion of e t (θ) around θ

(1) 0 yields e t (θ) = e t (θ 0 ) + ∂e t (θ 0 ) ∂θ (1) ′ (θ (1) -θ (1) 0 ) + R t ,
where

R t = 1 2 (θ (1) -θ (1) 0 ) ′ ∂ 2 e t (θ * ) ∂θ (1) ∂θ (1) ′ (θ (1) -θ (1) 0 ) = O P π 2 ,
with π = θ (1)θ

(1) 0 and θ * is between θ

(1) 0 and θ (1) . We then obtain

S(θ) = S(θ 0 ) + E ∂e t (θ 0 ) ∂θ (1) ′ (θ (1) -θ (1) 0 )e ′ t (θ 0 ) + ER t e ′ t (θ 0 ) +E e t (θ 0 )(θ (1) -θ (1) 0 ) ′ ∂e ′ t (θ 0 ) ∂θ (1) + D θ (1) +ER t (θ (1) -θ (1) 0 ) ′ ∂e ′ t (θ 0 ) ∂θ (1) + Ee t (θ 0 )R t +E ∂e t (θ 0 ) ∂θ (1) ′ (θ (1) -θ (1) 0 ) R t + ER 2 t ,
where

D θ (1) = E ∂e t (θ 0 ) ∂θ (1) ′ (θ (1) -θ (1) 0 )(θ (1) -θ (1) 0 ) ′ ∂e ′ t (θ 0 ) ∂θ (1) .
Using the orthogonality between e t (θ 0 ) and any linear combination of the past values of e t (θ 0 ) (in particular ∂e t (θ 0 )/∂θ ′ and ∂ 2 e t (θ 0 )/∂θ∂θ ′ ), and the fact that Ee t (θ 0 ) = 0, we have

S(θ) = S(θ 0 ) + D(θ (1) ) + O π 4 = Σ e0 + D(θ (1) ) + O π 4 ,
where Σ e0 = Σ e (θ 0 ). Thus, we can write the expected discrepancy quantity in (11) as

E∆( θn ) = En log det Σe + nETr Σ-1 e Σ e0 + nETr Σ-1 e D( θ(1) n ) +nE Tr Σ-1 e O P 1 n 2 . ( 12 
)
As in the classical multivariate regression model, we deduce

Σ e0 ≈ n n -d(p + q) E Σe = dn dn -k 1 E Σe , where k 1 = d 2 (p + q).
Thus, using the last approximation and from the consistency of Σe , we obtain

E Σ-1 e ≈ E Σe -1 ≈ nd(nd -k 1 ) -1 Σ -1 e0 . (13) 
An alternative to ( 13) is to use a slightly more accurate result, as in [START_REF] Hurvich | A corrected Akaike information criterion for vector autoregressive model selection[END_REF], by treating n Σe as having a asymptotic Wishart distribution1 with matrix Σ e0 and nd(p + q) degrees of freedom, so that E Σ-1

e ≈ n/[n -d(p + q) -d -1]Σ -1
e0 . See Wei (1994, p. 406) and Anderson (2003, p. 296) for these results.

Using the elementary property on the trace, we have

Tr Σ -1 e (θ)D θ (1) n = Tr Σ -1 e (θ)E ∂e t (θ 0 ) ∂θ (1) ′ (θ (1) -θ (1) 0 )(θ (1) -θ (1) 0 ) ′ ∂e ′ t (θ 0 ) ∂θ (1) = E Tr ∂e ′ t (θ 0 ) ∂θ (1) Σ -1 e (θ) ∂e t (θ 0 ) ∂θ (1) ′ (θ (1) -θ (1) 0 ) ′ (θ (1) -θ (1) 0 ) = Tr E ∂e ′ t (θ 0 ) ∂θ (1) Σ -1 e (θ) ∂e t (θ 0 ) ∂θ (1) ′ (θ (1) -θ (1) 0 ) ′ (θ (1) -θ (1) 0 ) .
Now, using (2), ( 13) and the last equality, the third term in (12) becomes

ETr Σ-1 e D θ(1) n = 1 n Tr E ∂e ′ t (θ 0 ) ∂θ (1) Σ-1 e ∂e t (θ 0 ) ∂θ (1) ′ En( θ(1) n -θ (1) 0 ) ′ ( θ(1) n -θ (1) 0 ) = d nd -k 1 Tr E ∂e ′ t (θ 0 ) ∂θ (1) Σ -1 e0 ∂e t (θ 0 ) ∂θ (1) ′ J -1 11 I 11 J -1 11 = d 2(nd -k 1 )
Tr I 11 J -1

11

, where J 11 = 2E ∂e ′ t (θ 0 )/∂θ (1) Σ -1 e0 ∂e t (θ 0 )/∂θ (1) ′ (see Theorem 3 in BMF). Thus, using (13), the second term in (11) becomes

ETr Σ-1 e S( θn ) = ETr Σ-1 e Σ e0 + ETr Σ-1 e D θ(1) n +E Tr Σ-1 e O P 1 n 2 = nd nd -k 1 Tr Σ -1 e0 Σ e0 + d 2(nd -k 1 )
Tr

I 11 J -1 11 + O 1 n 2 = nd 2 nd -k 1 + d 2(nd -k 1 )
Tr

I 11 J -1 11 + O 1 n 2 .
Therefore, using the last equality in ( 11), we deduce an approximately unbiased estimator of E∆( θn ) given by

AIC M = n log det Σe + n 2 d 2 nd -k 1 + nd 2(nd -k 1 ) Tr Î11,n Ĵ-1 11,n ,
where Ĵ11,n and Î11,n are respectively consistent estimators of the matrice J 11 and I 11 defined in Section 4 of BMF. The justification is complete. 2

Proof of Proposition 1: Using a Taylor expansion of the quasi log-likelihood, we obtain

-2 log L n (θ 0 ) = -2 log L n ( θn ) + n 2 ( θ(1) n -θ (1) 0 ) ′ J 11 ( θ(1) n -θ (1) 0 ) + o P (1).
Taking the expectation (under the true model) of both sides, and in view of (2) we shown that

E X n( θ(1) n -θ (1) 0 ) ′ J 11 ( θ(1) n -θ (1) 0 ) = Tr J 11 E X n( θ(1) n -θ (1) 0 ) ′ ( θ(1) n -θ (1) 0 ) → Tr I 11 J -1 11 , we then obtain a 1 = 2 -1 Tr I 11 J -1 11 + o(1).

Now a Taylor expansion of the discrepancy yields

∆( θn ) = ∆(θ 0 ) + ( θ(1) n -θ (1) 0 ) ′ ∂∆(θ) ∂θ (1) θ=θ 0 + 1 2 ( θ(1) n -θ (1) 0 ) ′ ∂ 2 ∆(θ) ∂θ (1) ∂θ (1) ′ θ=θ 0 ( θ(1) n -θ (1) 0 ) + o P (1) = ∆(θ 0 ) + n 2 ( θ(1) n -θ (1) 0 ) ′ J 11 ( θ(1) n -θ (1) 0 ) + o P (1),
assuming that the discrepancy is smooth enough, and that we can take its derivatives under the expectation sign. We then deduce that

E Y -2 log L n ( θn ) = E X ∆( θn ) = E X ∆(θ 0 ) + 1 2 Tr I 11 J -1 11 + o(1),
which shows that a 2 is equivalent to a 1 . The proof is complete. 2

Proof of Proposition 2: We denote by |A|, the determinant of the matrix A. The probability that the AIC M criterion selects the overfitted model is

P {AIC M (k ′ 1 ) < AIC M (k 1 )} = P n log Σe (k ′ 1 ) + n 2 d 2 nd -k ′ 1 + ndc k ′ 1 2(nd -k ′ 1 ) < n log Σe (k 1 ) + n 2 d 2 nd -k 1 + ndc k 1 2(nd -k 1 ) = P {AIC M (k 1 + ℓ) < AIC M (k 1 )} = P    n log    n Σe (k 1 + ℓ) n Σe (k 1 )    < n 2 d 2 nd -k 1 + ndc k 1 2(nd -k 1 ) - n 2 d 2 nd -(k 1 + ℓ) - nd(c k 1 + c ℓ ) 2 [nd -(k 1 + ℓ)] = P    n log    n Σe (k 1 + ℓ) n Σe (k 1 )    < -n 2 ℓd 2 (nd -k 1 ) [nd -(k 1 + ℓ)] + nd(k 1 c ℓ -ℓc k 1 ) -n 2 d 2 c ℓ 2(nd -k 1 ) [nd -(k 1 + ℓ)] .
Let q 1 = k 1 /d and q 2 = (k 1 + ℓ)/d, we denote

n Σe (k 1 + ℓ) n Σe (k 1 ) = n Σe (k 1 + ℓ) n Σe (k 1 + ℓ) + n Σe (k 1 ) -Σe (k 1 + ℓ) ∼ U d,ℓ,n-q 2 ,
where U d,ℓ,n-q 2 is the U-statistic (see Anderson, 2003, chap. 8), a generalized version of the F-statistic used for the univariate case. From Theorem 3.2.15 in Muirhead (1982, p. 100), the distribution of the determinants |n Σe (k 1 )| and |n Σe (k 1 + ℓ)| are respectively the product of independent χ2 random variables,

n Σe (k 1 ) |Σ e0 | ∼ d i=1 χ 2 n-q 1 -i+1
and n Σe (k 1 + ℓ)

|Σ e0 | ∼ d i=1 χ 2 n-q 2 -i+1 .
Note that in view of Theorem 7.3.2 (see Anderson, 2003, p. 260) 

n Σe (k 1 ) -Σe (k 1 + ℓ) ∼ W d (ℓ/d, Σ e0 ),
n Σe (k 1 + ℓ) n Σe (k 1 ) ∼ d i=1 Beta n -q 2 -i + 1 2 , ℓ 2d .
Expressed in terms of independent χ 2 , we obtain

   n Σe (k 1 + ℓ) n Σe (k 1 )    -1 = n Σe (k 1 ) n Σe (k 1 + ℓ) ∼ d i=1 1 + χ 2 ℓ/d χ 2 n-q 2 -i+1
.

Thus the probability of overfitting for AIC M criterion can be rewrite as

P {AIC M (k 1 + ℓ) < AIC M (k 1 )} = P -n d i=1 log 1 + χ 2 ℓ/d χ 2 n-q 2 -i+1 < -n 2 ℓd 2 (nd -k 1 ) [nd -(k 1 + ℓ)] + nd(k 1 c ℓ -ℓc k 1 ) -n 2 d 2 c ℓ 2(nd -k 1 ) [nd -(k 1 + ℓ)] .
Recall that, log(1 + x) ≃ x for small value of |x|. Using the fact that χ 2 n-q 2 -i+1 /n → 1 a.s. as n → ∞ for k 1 , ℓ fixed and 1 ≤ i ≤ d; it follows that

n d i=1 log 1 + χ 2 ℓ/d χ 2 n-q 2 -i+1 = n d i=1 log 1 + (1/n)χ 2 ℓ/d (1/n)χ 2 n-q 2 -i+1 → n d i=1 (1/n)χ 2 ℓ/d (1/n)χ 2 n-q 2 -i+1 → d i=1 χ 2 ℓ/d = χ 2 ℓ . (14)
Note that, as n → ∞, for k 1 , ℓ and d fixed, we have

-n 2 ℓd 2 (nd -k 1 ) [nd -(k 1 + ℓ)] + nd(k 1 c ℓ -ℓc k 1 ) -n 2 d 2 c ℓ 2(nd -k 1 ) [nd -(k 1 + ℓ)] = -2n 2 ℓd 2 + nd(k 1 c ℓ -ℓc k 1 ) -n 2 d 2 c ℓ 2(nd -k 1 ) [nd -(k 1 + ℓ)] → - 2ℓ + c ℓ 2 . ( 15 
)
In view of ( 14) and ( 15), we deduce the following asymptotic probability of overfitting

P {AIC M (k 1 + ℓ) < AIC M (k 1 )} = P χ 2 ℓ > 2ℓ + c ℓ 2 .
The proof is complete. 2

Selection of weak VARMA models by modified Akaike's information criteria: Complementary simulations results that are not submitted for publication

A General multivariate linear regression model

Now we need to recall several results concerning general multivariate linear regression models.

Let Z t = (Z 1t , . . . , Z dt ) ′ be a d-dimensional random vector of response variables, X t = (X 1t , . . . , X kt ) ′ be a k-dimensional input variables and B = (β 1 , . . . , β d ) be a k × d matrix. We consider a multivariate linear model of the form

Z it = X ′ t β i + ǫ it , i = 1, . . . , d, or Z ′ t = X ′ t B + ǫ ′ t , t = 1, . . . , n
, where the ǫ t = (ǫ 1t , . . . , ǫ dt ) ′ are uncorrelated and identically distributed random vectors with variance Σ = Eǫ t ǫ ′ t . The i-th column of B (i.e. β i ) is the vector of regression coefficients for the i-th response variable. Now, given the n observations Z 1 , . . . , Z n and X 1 , . . . , X n , we define the n × d data matrix Z = (Z 1 , . . . , Z n ) ′ , the n × k matrix X = (X 1 , . . . , X n ) ′ and the n × d matrix ε = (ǫ 1 , . . . , ǫ n ) ′ . Then, we have the multivariate linear model Z = XB + ε. Now, it is well known that the QMLE of B is the same as the LSE and, hence, is given by

B = (X ′ X) -1 X ′ Z, that is, βi = (X ′ X) -1 X ′ Z i , i = 1, . . . , d,
where Z i = (Z i 1 , . . . , Z i n ) ′ is the i-th column of Z. We also have

ε := Z -X B = M X Z = ε -X(X ′ X) -1 X ′ ε = M X ε,
where M X = I n -X(X ′ X) -1 X ′ is a projection matrix. The usual unbiased estimator of the error covariance matrix Σ is

Σ * = 1 n -k ε′ ε = 1 n -k (Z -X B) ′ (Z -X B) = 1 n -k n t=1 (Z t -B′ X t )(Z t -B′ X t ) ′ or Σ * = (n -k) -1 n t=1 ǫt ǫ′ t ,
where the ǫt = Z t -B′ X t are the residual vectors. Note that the gaussian quasi-likelihood is given by

L n (B, Σ; Z) = 1 (2π) d/2 √ det Σ e exp - 1 2 n t=1 (Z t -B ′ X t ) ′ Σ -1 (Z t -B ′ X t ) , 1 
whose maximization shows that the QMLE of B is equal to B and that of Σ is Σ := n -1 n t=1 ǫt ǫ′ t = (nk)n -1 Σ * . Because Σ * is an unbiased estimator of the matrix Σ, by definition we have E {Σ * } = Σ, we then deduce that

n n -k E Σ = 1 n -k E ε′ ε = 1 n -k Eε ′ M X ε = Σ.

B Kullback-Leibler discrepancy

This Section presents the definition and mains properties of the Kullback-Leibler divergence.

Assume that, with respect to a σ-finite measure µ, the true density of the observations X = (X 1 , . . . , X n ) is f 0 , and that some candidate model m gives a density f m (•, θ m ) to the observations, where θ m is a k m -dimensional parameter.

The discrepancy between the candidate and the true models can be measured by the Kullback-Leibler divergence (or information)

d {f m (•, θ m )|f 0 } = E f 0 log f 0 (X) f m (X, θ m ) = E f 0 log f 0 (X) + 1 2 ∆ {f m (•, θ m )|f 0 } , where ∆ {f m (•, θ m )|f 0 } = -2E f 0 log f m (X, θ m ) = -2 {log f m (x, θ m )} f 0 (x)µ(dx)
is sometimes called the Kullback-Leibler contrast (or the discrepancy between the approximating and the true models). Using the Jensen inequality, we have

d {f m (•, θ m )|f 0 } = -log f m (x, θ m ) f 0 (x) f 0 (x)µ(dx) ≥ -log f m (x, θ m ) f 0 (x) f 0 (x)µ(dx) = 0, with equality if and only if f m (•, θ m ) = f 0 . This is the main property of the Kullback-Leibler divergence. Minimizing d {f m (•, θ m )|f 0 } with respect to f m (•, θ m ) is equivalent to minimizing the contrast ∆ {f m (•, θ m )|f 0 }. Let θ 0,m = arg inf θm d {f m (•, θ m )|f 0 } = arg inf θm -2E log f m (X, θ m )
be an optimal parameter for the model m corresponding to the density f m (•, θ m ) (assuming that such a parameter exists). We estimate this optimal parameter by QMLE θn,m .

C Strong and weak VARMA case

In this Section, we presents the simulations results on the VARMA model in echelon form. We simulated N independent trajectories of different sizes of a bivariate VARMA(1, 1) model in echelon form or, more precisely, an ARMA E (0, 1), with the strong Gaussian and weak noise above-mentioned.

We took N = 1, 000 when the sample size n ≤ 2000 and N = 1, 00 in the opposite case. For each of these N replications of both models, we have 9 candidates models (i.e. VARMA(1, 1), VARMA(2, 2),VARMA(2, 1), VARMA(1, 2), VARMA(1, 3), VARMA(3, 1), VARMA(3, 2), VARMA(2, 3) and VARMA(3, 3) models). These candidates models are constrained in echelon form (i.e. an ARMA E (0, k) for k = 1, 2, 3). The quasi-maximum likelihood method was used to fit candidates bivariate VARMA models and standard and modified versions of AIC criteria were used to select among the candidates models. To generate the strong and weak VARMA(1, 1) model, we consider the bivariate model of the form

   X 1,t X 2,t    =    0 0 0 0.225       X 1,t-1 X 2,t-1    +    ǫ 1,t ǫ 2,t    -    0 0 -0.313 0.750       ǫ 1,t-1 ǫ 2,t-1    . (C.1)
Table C.1 displays the relative frequency (in %) of the orders selected by various standard and modified versions of the AIC criteria of a strong (Model I) candidates VARMA models, over the N independent replications. Table C.1 shows that a standard AICc and a modified AIC M have performed in the small samples sizes (n = 20 and n = 50) and selected the true orders of the strong model. By contrast, when n = 20 a standard AIC overfit the order q and selected an VARMA(1, 3), but did not perform well. In view of the observed relative frequency in Tables C.2 and C.3, the true orders (1, 1) (i.e. VARMA(1, 1) model) are selected by all versions of the AIC criteria. They have similar performance, with a slight advantage to the standard versions.

Tables C.4 and C.5 display the relative frequency (in %) of the orders selected by various standard and modified versions of the AIC criteria of weak candidates VARMA models, firstly with error term (7) (Model III) and secondly, with error term (9) (Model IV). In view of the observed relative frequency, the (2, 3) 11.0 0.1 2.1
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(1, 2) 6.3 6.7 6.9 100 (3, 3) 12.5 6.4 10.7 We simulated N independent trajectories of different sizes of bivariate VMA(1) model with the strong Gaussian and the weak noise above-mentioned. We took N = 1, 000 when the sample size n ≤ 2000 and N = 1, 00 in the opposite case.

(3, 2) 1.7 1.3 2.2 ( 
For each of these N replications of VMA(1) model, we will fit 6 candidates models (i.e. VMA(k) models with k = 1, . . . , 6). The QML method was used to fit candidates bivariate VMA models of order 1, . . . , 6; standard and modified versions of AIC criteria were used to select among the candidates models.

To generate the strong and weak VMA(1) models, we consider the bivariate model of the form

   X 1,t X 2,t    =    ǫ 1,t ǫ 2,t    -    0.5 0.1 0.4 0.5       ǫ 1,t-1 ǫ 2,t-1    , Σ 0 =    1 0 0 1    . (D.1)
Table D.1 displays the relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria of a strong (Model I) VMA(k) candidates models, for k = 1, . . . , 6, over the N independent replications. Table D.1 shows that the standard AIC criteria have overfit the order q in the small sample size (i.e. n = 50) and selected a VMA(6) model. By contrast, the modified criterion selected a VMA(1) model. In view of the observed relative frequency, when n > 50, the order q = 1 (i.e. VMA(1) model) is selected by all versions of the AIC criteria, but the modified criterion has clearly hight performance.

Table D.2 displays the relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria of a strong (Model I) and weak (Model II, with error term (8)) VMA(k) candidates models, for k = 1, . . . , 6, over the N independent replications. Table D.2 shows that the standard AIC criteria have overfit the order q in the small sample size (n = 20

and n = 50). In view of the observed relative frequency, the order q = 1 (i.e.

VMA(1) model) is selected by all versions of the AIC criteria in Models I and II. As expected in Model II, the observed relative frequency of the standard AIC criteria is very smaller than a modified one. Table D.2 shows also that the standard AIC criteria clearly did not perform well here, and they have tendency to overestimate the order q = 3. By contrast, in Model I all versions of the AIC criteria have the same performance.

Table D.3 displays the relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria of a weak VMA(k) candidates models for k = 1, . . . , 6, firstly with error term (7) (Model III) and secondly with error term (9) (Model IV). In view of the observed relative frequency, a VMA(1) model is selected by all versions of the AIC criteria and they have the same performance in Model IV. By contrast, Table D.3 shows that a modified criterion has clearly hight performance in Model III. 

Table 1

 1 The calculated values for the standard version of asymptotic probabilities of overfitting by ℓ = d 2 ℓ 1 parameters for strong bivariate VAR model.

	ℓ 1	1	2	3	4	5
	P S	0.0915782	0.04238011	0.02034103	0.00999978	0.004995412
	ℓ 1	6	7	8	9	10
	P S	0.002524130 0.001286361 0.0006599276 0.0003403570 0.0001763029

Table 2

 2 Relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria.

	Length Order	Criteria Model I
	n	p	AIC	AICc AIC M
		1	84.9	91.1	90.6
		2	9.3	7.4	7.8
		3	3.0	1.3	1.2
	50	4	0.8	0.1	0.2
		5	1.1	0.1	0.2
		6	0.9	0.0	0.0
		1	86.9	90.4	90.9
		2	8.9	7.5	7.1
		3	2.7	1.6	1.4
	100	4	0.7	0.3	0.4
		5	0.4	0.0	0.0
		6	0.4	0.2	0.2
		1	88.6	89.4	89.6
		2	6.7	7.0	6.8
		3	2.8	2.4	2.4
	200	4	1.0	0.7	0.7
		5	0.5	0.4	0.4
		6	0.4	0.1	0.1
	I: Strong VAR(1) model (		

Table 3

 3 Relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria.

	Length Order	Criteria Model I	Criteria Model II
	n	p	AIC	AICc AIC M	AIC AICc AIC M
			89.3	90.0	89.6	46.7 47.3	64.1
			6.9	6.5	6.9	38.5	38.7	24.6
			2.1	2.0	2.0	9.8	9.6	6.9
	500		1.1	1.0	0.9	2.5	2.2	2.7
			0.5	0.4	0.5	1.1	1.1	0.9
			0.1	0.1	0.1	1.4	1.1	0.8
			87.7	87.7	87.9	40.6	40.7	69.3
			8.1	8.1	8.1	42.7 42.8	22.3
			2.7	2.7	2.7	11.9	11.8	5.7
	2, 000		1.0	1.0	0.9	3.5	3.5	2.1
			0.4	0.4	0.3	0.6	0.7	0.3
			0.1	0.1	0.1	0.7	0.5	0.3
			88.0				

Table 4

 4 Relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria.

	Length Order	Criteria Model III	Criteria Model IV
	n	p	AIC	AICc AIC M	AIC AICc AIC M
			67.0	67.9	75.1	91.9 92.5	91.1
			22.2	21.8	15.5	5.2	5.0	6.1
			6.8	6.6	5.8	1.9	1.7	2.0
	500		1.6	1.5	2.0	0.6	0.5	0.5
			1.7	1.7	1.2	0.4	0.3	0.3
			0.7	0.5	0.4	0.0	0.0	0.0
			62.9 63.3	78.0	92.3 92.5	90.6
			22.3	22.2	15.0	4.8	4.7	6.2
			9.4	9.3	4.6	2.2	2.2	2.3
	2, 000		3.4	3.5	1.7	0.4	0.4	0.6
			1.3	1.2	0.5	0.3	0.3	0.3
			0.				

Table 5

 5 Modified version of asymptotic probabilities of overfitting by ℓ = d 2 ℓ 1 parameters for bivariate VAR models of various versions of AIC criteria.

	Length Order	P W Model I	P W Model II
	n	ℓ 1	P AIC W	P AICc W	P AIC M W	P AIC W	P AICc W	P AIC M W
		1	0.076	0.072	0.075	0.492	0.486	0.325
		2	0.040	0.037	0.039	0.370	0.359	0.221
	500	3	0.018	0.015	0.014	0.243	0.231	0.144
		4	0.015	0.010	0.013	0.172	0.157	0.091
		5	0.003	0.002	0.002	0.109	0.099	0.059
		1	0.101	0.101	0.100	0.557	0.557	0.283
		2	0.046	0.044	0.045	0.406	0.403	0.204
	2000	3	0.027	0.025	0.026	0.274	0.271	0.120
		4	0.014	0.013	0.012	0.172	0.168	0.077
		5	0.008	0.008	0.009	0.126	0.121	0.056
	I: Strong VAR(1) model (					

  where the subscript on W denoting the size of the matrix Σ e0 . Using the previous results and Lemma 8.4.2 (seeAnderson, 2003, p. 305), it follows that the distribution of the ratio |n Σe (k 1 + ℓ)|/|n Σe (k 1 )| is the multivariate Beta d distribution 2 i.e. the product of independents Beta distributions (seeAnderson, 2003, Section 5.2):

Table C .

 C 1 Relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria.

	Length Order	Criteria Model I
	n	(p, q) AIC AICc AIC M
		(1, 1) 27.5	64.1	62.1
		(2, 2) 0.2	0.0	0.5
		(2, 1) 1.6	2.0	4.1
		(1, 2) 19.3	22.2	14.9
	20	(3, 3) 2.8	0.0	0.8
		(3, 2) 3.5	0.0	1.3
		(3, 1) 0.6	0.0	1.8

  Modified version of asymptotic probabilities of overfitting by ℓ = d 2 (ℓ 1 + ℓ 2 ) parameters for bivariate VARMA models of various versions of AIC criteria.

	Table C.2 Table C.4 Table C.6						
	Relative frequency (in %) of the order selected by various standard and modified Relative frequency (in %) of the order selected by various standard and modified
	versions of the AIC criteria. versions of the AIC criteria.				
	Length Order Length Order Length Order	Criteria Model I Criteria Model III P W Model I	Criteria Model II Criteria Model IV P W Model II
	n	n n	(p, q) AIC AICc AIC M (p, q) AIC AICc AIC M (ℓ 1 , ℓ 2 ) P AIC W P AICc W P AIC M W	AIC AICc AIC M AIC AICc AIC M P AIC W P AICc W P AIC M W
			(1, 1) 82.0 83.4 (1, 1) 74.3 75.6 (1, 0) 0.009 0.009	74.4 67.9 0.028	62.6 63.7 82.1 83.0 0.057 0.056	59.2 75.0 0.104
			(2, 2) 0.1 (2, 2) 0.3 (0, 1) 0.025	0.1 0.3 0.024	1.1 1.0 0.060	1.2 0.3 0.237	0.9 0.3 0.231	2.9 1.0 0.228
			(2, 1) 0.8 (2, 1) 0.8 (1, 1) 0.003	0.8 0.8 0.002	2.1 2.9 0.021	1.6 0.3 0.086	1.5 0.2 0.079	3.9 1.4 0.136
			(1, 2) 1.9 (1, 2) 8.4 (0, 2) 0.016	1.9 8.2 0.016	4.6 11.4 0.036	20.0 1.2 0.130	19.6 1.1 0.117	17.2 4.3 0.139
	500	500 500	(3, 3) 11.4 (3, 3) 8.5 (2, 0) 0.002	10.3 8.0 0.002	12.9 7.0 0.011	9.2 12.5 0.016	9.2 11.8 0.016	10.8 13.2 0.057
			(3, 2) 0.3 (3, 2) 0.4 (1, 2) 0.027	0.2 0.4 0.024	0.5 0.7 0.036	0.6 0.1 0.073	0.5 0.1 0.065	0.7 0.6 0.103
			(3, 1) 0.0 (3, 1) 0.0 (2, 1) 0.006	0.0 0.0 0.005	0.3 0.4 0.011	0.0 0.0 0.043	0.0 0.0 0.039	0.7 0.1 0.076
			(2, 3) 2.1 (2, 3) 6.1 (2, 2) 0.126	1.9 5.9 0.114	2.4 6.0 0.140	1.7 2.3 0.127	1.7 2.3 0.121	2.1 1.8 0.168
			(1, 3) 1.4 (1, 3) 1.2 (1, 0) 0.007	1.4 0.8 0.007	1.7 2.7 0.026	3.1 1.2 0.083	2.9 1.2 0.081	2.5 2.6 0.124
			(1, 1) 90.6 91.1 (1, 1) 84.0 84.2 (0, 1) 0.020 0.017	80.2 73.4 0.058	79.1 79.3 90.9 90.9 0.258 0.251	73.5 87.3 0.221
			(2, 2) 0.8 (2, 2) 0.3 (1, 1) 0.009	0.7 0.3 0.009	1.7 1.8 0.022	0.3 0.0 0.103	0.3 0.0 0.102	1.5 0.9 0.133
			(2, 1) 0.2 (2, 1) 0.8 (0, 2) 0.010	0.2 0.8 0.010	1.6 3.4 0.036	1.9 0.3 0.147	1.9 0.3 0.146	4.8 0.9 0.141
	2000	(1, 2) 1.7 (1, 2) 7.8 (2, 0) 0.001	1.5 7.8 0.001	4.2 8.4 0.006	11.9 1.8 0.026	11.8 1.8 0.025	10.4 3.2 0.069
		2000 2000	(3, 3) 5.5 (3, 3) 3.2 (1, 2) 0.005	5.3 3.2 0.005	10.5 7.2 0.011	4.6 6.7 0.071	4.5 6.7 0.071	4.9 5.8 0.096
			(3, 2) 0.2 (3, 2) 0.1 (2, 1) 0.005	0.2 0.1 0.005	0.1 0.4 0.011	0.2 0.1 0.053	0.2 0.1 0.052	0.4 0.1 0.082
			(3, 1) 0.0 (3, 1) 0.0 (2, 2) 0.057	0.0 0.0 0.055	0.1 0.7 0.108	0.0 0.0 0.073	0.0 0.0 0.071	0.3 0.0 0.122
	(2, 3) 0.4 (2, 3) 0.5 I: Strong VARMA(1, 1) model (C.1)-(6) 0.4 0.5	0.1 0.5	0.6 0.0	0.6 0.0	1.4 0.5
	(1, 3) 0.6 (1, 3) 3.3 II: Weak VARMA(1, 1) model (C.1)-(8) 0.6 3.1	1.5 4.2	1.4 0.2	1.4 0.2	2.8 1.3
		I: Strong VARMA(1, 1) model (C.1)-(6) III: Weak VARMA(1, 1) model GARCH (C.1)-(7)
		II: Weak VARMA(1, 1) model (C.1)-(8) IV: Weak VARMA(1, 1) model (C.1)-(9)	
					3, 1) 0.2		0.1	0.6
					(2, 3) 22.5	18.7	18.0
					(1, 3) 3.6		3.1	2.4
			I: Strong VARMA(1,1) model (C.1)-(6)

Table C .

 C 6 displays the modified version of asymptotic probabilities of overfitting by ℓ = d 2 (ℓ 1 + ℓ 2 ) parameters for bivariate VARMA models of various versions of AIC criteria. TableC.6 shows clearly that the AIC M criterion is not consistent in the weak and strong VARMA cases, since his probability of overfitting is not zero. The modified asymptotic probabilities of overfitting of the standard and modified versions of the AIC criteria are similar in the two cases. Note that the asymptotic probabilities of overfitting of the AIC M criterion decreases when n is large.

	D Others simulations on strong and weak vector moving average
	(VMA) case

  TableD.1 Relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria. Relative frequency (in %) of the order selected by various standard and modified versions of the AIC criteria.

	Table D.2							
	Length Order	Criteria Model I	Criteria Model II
	n	q	AIC AICc AIC M	AIC AICc AIC M
			95.1 95.8	95.6	57.3 58.5	73.4
			0.0		0.0	0.0		0.0	0.0	0.0
		Length Order 2.9 2.6	Criteria Model I 3.0 34.8	34.4	19.7
	500	n	1.4	q	1.1	AIC AICc AIC M 1.0 4.5 4.1	4.3
			0.4	1	0.4	1.8 0.3	5.8	2.0	53.4 1.8	1.6
			0.2	2	0.1	0.0 0.1	0.0	1.4	1.3 1.2	1.0
			3 95.0 95.0	1.8 95.2	4.5 54.7 55.1 9.7	77.5
		50 0.0	4	0.0	7.4 0.0	12.0	0.0	9.4 0.0	0.0
			3.1	5	3.1	25.0 3.1	28.8 37.9	13.5 37.8	17.2
	2, 000		1.6	6	1.6	64.0 48.9 1.4	4.8	12.7 4.7	2.8
			0.2	1	0.2	65.3 72.5 0.2	1.5	85.3 1.3	1.4
			0.1	2	0.1	0.2 0.1	0.1	1.1	0.5 1.1	1.1
			3 95.0 95.	6.5	5.1		5.2
		100	4		3.2	2.4		1.4
				5		5.9	4.8		2.9
				6		18.9	15.1		4.7
				1		92.4 93.8		94.2
				2		0.0	0.0		0.0
				3		3.1	2.7		3.2
		200	4		1.8	1.9		1.2
				5		1.4	1.0		0.8
				6		1.3	0.6		0.6
		I: Strong VMA(1) model (D.1)-(6)

Table D .

 D 3 Relative frequency (in %) of the order selected by various standard and modified versions of the criteria AIC.

	Length Order	Criteria Model III	Criteria Model IV
	n	q	AIC AICc AIC M	AIC AICc AIC M
			75.9 77.2	82.8	96.0 96.5	95.6
			0.0	0.0	0.0	0.0	0.0	0.0
			17.2	16.5	12.2	2.2	2.1	3.0
	500		3.7	3.5	2.9	1.3	1.1	1.2
			2.0	1.9	1.7	0.5	0.3	0.2
			1.2	0.9	0.4	0.0	0.0	0.0
			72.0 72.3	84.8	96.1 96.3	95.6
			0.0	0.0	0.0	0.0	0.0	0.0
			19.4	19.3	10.9	2.8	2.7	3.2
	2000		5.4	5.4	2.6	0.5	0.5	0.6
			2.4	2.2	1.1	0.4	0.4	0.4
			0.8	0.8	0.6	0.2	0.1	0.2
			70.				

The Wishart distribution arises in a natural way as a matrix generalization of the chi-square distribution.

The multivariate beta distribution generalizes the usual beta distribution in much the same way that the Wishart distribution generalizes the χ 2 distribution.

(2, 3) 2.1 1.9 2.4 0.0 0.0 1.0